Long-range forces and the early Universe: primordial black holes and gravitational waves Séminaire GReCO, IAP

Marcos M. Flores — 6th, May, 2024

Overview

- Part I: Primordial structure formation
 - Definition & general picture
- Part 2: Applications
 - Primordial black holes
 - Review of standard PBH story
 - Gravitational waves
 - Baryogenesis i.e., matter-antimatter asymmetry
 - Generation of dark matter

$$\hbar = c = k_B = 1$$

The paradigm of *primordial* structure formation

Cosmological timeline

"Primordial"

Inflation

Accelerated expansion of the Universe

Formation of light and matter

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter separate

 Protons and electrons form atoms

 Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)

Structure Formation

Dark ages

Atoms start feeling the gravity of the cosmic web of dark matter

First stars

The first stars and galaxies form in the densest knots of the cosmic web

Galaxy evolution

The present Universe

Conventional structure formation: basics $\rho(x,t) = \bar{\rho}(t) \big(1 + \delta(x,t) \big)$ \downarrow $G_{\mu\nu} = 8\pi G T_{\mu\nu}, \qquad \nabla_{\mu} T^{\mu\nu} = 0$

System of Coupled Differential Equations

 $\left(\delta(x,t)\ll 1\right)$

 \downarrow

Conclusion: Matter perturbations only grow logarithmically during a radiation dominated era

Conventional structure formation by example

7

How can you have *primordial* structure formation?

How can you have primordial structure formation?

ψ : fermion (~ dark electron) $\chi \sim \text{scalar mediator (Higgs)}$

 $(\hbar = c = k_R = 1)$

How can you have primordial structure formation?

$\mathscr{L} \supset y \chi \bar{\psi} \psi \Longrightarrow V($

 $(\hbar = c = k_R = 1)$

$$(r) = -\frac{y^2}{4\pi r} \exp\left(-m_{\chi}r\right)$$

$r \ll m_{\gamma}^{-1} \longleftrightarrow$ long-range force

 $\implies H^{-1} \ll m_{\gamma}^{-1}$

How can you have primordial structure formation?

$\mathscr{L} \supset y \chi \bar{\psi} \psi \Longrightarrow V($

Yukawa interactions are *always* attractive^{*}

$(\hbar = c = k_R = 1)$

$$(r) = -\frac{y^2}{4\pi r} \exp\left(-m_{\chi}r\right)$$

 $\beta \equiv y \left(M_{\rm Pl} / m_{\psi} \right)$

• In Fourier space, the growth of ψ overdensities, denoted $\Delta(x, t) = \Delta n_{\psi}/n_{\psi}$ are given by a set of coupled differential equations:

 $\ddot{\delta}_k + 2H\dot{\delta}_k - \frac{3}{2}H^2(\Omega_r\delta_k + \Omega_m\Delta_k) = 0$ $\ddot{\Delta}_k + 2H\dot{\Delta}_k - \frac{3}{2}H^2 \left[\Omega_r \delta_k + \Omega_m (1+\beta^2)\Delta_k\right] = 0$

[L. Amendola et. al., arXiv:1711.09915]
[S. Savastano et. al., arXiv:1906.05300]
[Domenech and Sasaki, arXiv:2104.05271]
[Domenech, et. al., arXiv:2303.13053]

the approximate solution:

$$\Delta_k(t) \approx \frac{\Delta_k(t_0)}{\sqrt{8\pi}} \frac{\exp\left(4\sqrt{p}(t/t_{\rm eq})^{1/4}\right)}{p^{1/4}(t/t_{\rm eq})^{1/8}}, \qquad p = \frac{3}{8} (1+\beta^2)$$

• For large scalar forces, the perturbations grow quickly as demonstrated by

the approximate solution:

$$\Delta_k(t) \approx \frac{\Delta_k(t_0)}{\sqrt{8\pi}} \frac{\exp\left(4\sqrt{p}(t/t_{\rm eq})^{1/4}\right)}{p^{1/4}(t/t_{\rm eq})^{1/8}}, \qquad p = \frac{3}{8} (1+\beta^2)$$

• For large scalar forces, the perturbations grow quickly as demonstrated by

For $p \gg 1 \implies \Delta_k / \dot{\Delta}_k \ll H^{-1} \implies$ rapid structure formation

Domenech, et. al., arXiv:2303.13053

Without dissipation, halos will remain viralized until the constituent particles decay

$\Delta_k \ll 1 \implies \Delta_k \gtrsim 1 \iff$ nonlinear regime \implies virialize

Energy dissipation through scalar radiation

The same long-range force that cause the growth of structure will also <u>cause accelerating</u> particles to emit scalar waves

There are *five* possible dissipation channels:

- 1. Coherent motion
- 2. Incoherent motion
- 3. Bremsstrahlung (free-free) emission
- 4. Bound state formation
- 5. Surface radiation

Bremsstrahlung and surface radiation will be the most important channels for our discussion

Energy dissipation through scalar radiation

The same long-range force that cause the growth of structure will also cause accelerating particles to emit scalar waves

There are *five* possible dissipation channels:

- Coherent motion
- 2. Incoherent motion
- 3. Bremsstrahlung (free-free) emission
- 4. Bound state formation
- 5. Surface radiation

Bremsstrahlung and surface radiation will be the most important channels for our discussion

Energy dissipation through scalar radiation

The same long-range force that cause the growth of structure will also <u>cause accelerating</u> particles to emit scalar waves

There are *five* possible dissipation channels:

- 1. Coherent motion
- 2. Incoherent motion
- 3. Bremsstrahlung (free-free) emission
- 4. Bound state formation
- 5. Surface radiation

Bremsstrahlung and surface radiation will be the most important channels for our discussion

Energy dissipation through scalar radiation Given a halo of size R can lose energy and contract as long as,

General algorithm for collapse:

Cooling via free-free emission χ radiation becomes trapped Surface radiation takes over

 $\tau_{\rm cool}(R) \ll H^{-1}$

★
 ★
 Fermi ball forms
 Halo annihilates

Primordial black holes 8

primordial structure formation

[**MMF**, A. Kusenko: *PRL* 126 (2021) 4, 041101] [**MMF**, A. Kusenko: *JCAP* 05 (2023) 013] [MMF, Y. Lu, A. Kusenko: *PRD* 108 (2023) 12, 123511]

Primordial black holes: An overview

- stars and galaxies [Zel'dovich, Novikov (1967); Hawking (1971)]
- Can account for some or all of *dark matter*
- Astrophysical implications:
 - Can account for some LIGO events
 - Can seed supermassive black holes
 - Can account for all or part of *r*-process nucleosynthesis
 - G objects
 - [**MMF**, A. Kusenko, A.M. Ghez, S. Naoz, : *PRD* 108 (2023) 6, L061301]
 - Many more!

PBHs are black holes formed in the early Universe before the formation of

Primordial black holes: An overview

Primordial black holes: Candidate Events

arXiv:1901.07120]

PBH-Neutron star interactions

1. Primordial black holes produced in Big Bang make up part or all of dark matter.

Microscopic primordial black hole

r – process nucleosynthesis

[Takhistov, Fuller, Kusenko, PRL 119 (2017) 6, 061101] [Takhistov, Fuller, Kusenko, PRL 126, 071101 (2021)] [Takhistov, arXiv:1707.05849] [Caiozzo, Bertone, Kühnel, arXiv:2404.08057] [Baumgarte, Shapiro, arXiv:2404.08735]

2. A microscopic black hole falls into a neutron star, eats it from the inside, and creates a 1-2 solar mass black hole

Primordial black holes; the canonical picture

Cosmological Inflation ↓

Primordial Black Holes

Slow-roll inflation in a few words

$$\Delta_{\mathcal{R}}^2(k) = A_s \left(\frac{k}{k_0}\right)^{n_s - 1}$$

$(k \sim \ell)$

Inflationary perturbations & PBHs

$$\beta(M_H) = \frac{\rho_{\text{PBH}}}{\rho_{\text{tot}}} = \int_{\delta_c}^{\infty} P(\delta) \, \mathrm{d}\delta \sim \sigma(M_H) \exp\left(-\frac{1}{2}\int_{\delta_c}^{\infty} P(\delta) \, \mathrm{d}\delta \sim \sigma(M_H) \exp\left(-\frac{1}{2}\int_{\delta_c}^{\infty} P(\delta) \, \mathrm{d}\delta\right) + \frac{1}{2}\int_{\delta_c}^{\infty} P(\delta) \, \mathrm{d}\delta \sim \sigma(M_H) \exp\left(-\frac{1}{2}\int_{\delta_c}^{\infty} P(\delta) \, \mathrm{d}\delta\right)$$

[Credit: Frank van den Bosch, Yale University]

Inflationary perturbations & PBHs

Inflationary perturbations & PBHs

- Remarkably, is it possible to generate the necessary power spectrum using more complicated potentials.
- However, you start to have to <u>fine-tune</u> the inflaton potential.
- Other ways to accomplish this including multi-field inflation, etc.

29

Can you form PBHs in a more "conventional" way?

PBH Formation: primordial structure formation Cooling via free-free emission $\begin{array}{c} \downarrow \\ \chi \text{ radiation becomes trapped} \\ \downarrow \end{array} \qquad \left\{ \begin{array}{c} \star \\ \Longrightarrow \\ Halo annihilates \end{array} \right\} \qquad \left\{ \begin{array}{c} \text{Black hole forms} \\ \text{Fermi ball forms} \\ \text{Halo annihilates} \end{array} \right\}$ Surface radiation takes over To ensure that a black hole forms, we will introduce an asymmetric dark fermion ψ $\mathcal{L} \supset y \chi \psi \psi \qquad \&$

Yukawa Interaction & Scalar Cooling + Fermion Asymmetry \implies PBHs

$$\eta_{\psi} = (n_{\psi} - n_{\bar{\psi}})/s \neq 0$$

PBH abundance

- to capture all of the dark matter ψ particles in halos and therefore PBHs.
- Thus, the PBH-dark matter fraction is related to the baryon density:

$$f_{\rm PBH} = \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}} = 0.2 \frac{m_{\psi} \eta_{\psi}}{m_p \eta_{\rm B}} = \left(\frac{m_{\psi}}{5 \text{ GeV}}\right) \left(\frac{\eta_{\psi}}{10^{-10}}\right)$$

<u>Our mechanism can describe the closeness of $\Omega_{\rm DM}$ and Ω_{R} .</u>

• The strength of the long-range force we are considering is likely strong enough

PBH Mass Distribution

- the time of formation.
- formation.
- Schechter function:

$$M^2 \frac{dN_h}{dM} \propto \frac{1}{\sqrt{\pi}}$$

 Again, the strength of the scalar interaction will lead to rapid PBH formation. Thus, we expect the mass function of PBHs to represent the structure of the ψ - fluid at

• We need N-body simulations to accurately describe the details of ψ - structure

• In the absence of this, we will approximate the mass function using the Press-

$$\left(\frac{M}{M_*}\right)^{1/2} e^{-M/M_*}$$

Illustrative examples

• PBH dark matter:

$$\eta_{\psi} \sim \eta_B \sim 10^{-10} \\ m_{\psi} = 5 \text{ GeV}$$

$$f_{\text{PBH}} = 1$$

Relevant to LIGO

$$\eta_{\psi} \sim 10^{-9}$$

 $m_{\psi} = 5 \text{ MeV} \begin{cases} f_{\text{PBH}} \sim 10^{-3} \\ f_{\text{PBH}} \sim 10^{-3} \end{cases}$

Observational implications of primordial structure formation: gravitational waves

[MMF, A. Kusenko, M. Sasaki; PRL 131 (2023) 1, 1]

Primordial structure formation & GWs

• Generically, the collapse of dark matter ψ halos will be **aspherical**

- It's still not obvious which methodology is best suited to tackling this problem
 - Standard methods, like cosmological perturbation theory <u>do not</u> include forces which couple to charge/number density as a means of generating perturbations
- We utilized the Zel'dovich approximation to directly determine the quadrupole moment, allowing for a calculation of the expected GW spectrum

See also: I. Dalianis, C. Kouvaris [arXiv:2012.09255]

 \implies Time changing mass quadrupole moment

Zel'dovich Approximation

δ enters the horizon - t_q Overdensity increases to maximum size - t_{max} Collapse begins "Pancake" forms and shell crossing occurs - t_{col} BH formation or halo annihilation

See also:

I. Dalianis, C. Kouvaris [arXiv:2012.09255]

I. Dalianis, C. Kouvaris [arXiv:2403.15126]

Zel'dovich Approximation

δ enters the horizon - t_q Overdensity increases to maximum size - t_{max} Collapse begins "Pancake" forms and shell crossing occurs - t_{col} BH formation or halo annihilation

See also:

I. Dalianis, C. Kouvaris [arXiv:2012.09255]

I. Dalianis, C. Kouvaris [arXiv:2403.15126]

A reminder of the traditional result:

$$\delta \propto \begin{cases} \ln a & \text{for} \quad (\text{RD}) \\ a & \text{for} \quad (\text{MD}) \end{cases}$$

Here, *our fundamental assumption will be* <u>that</u>

$$\delta \propto a^p, \qquad p \ge 1$$

As before p characterizes the strength of the force.

GW Spectrum

GW Spectrum

Primordial structure formation & local heating

[MMF, A. Kusenko, L. Pearce, G. White: *PRD* 108 (2023) 9, 9] [MMF, C. Kouvaris, A. Kusenko: *PRD* 108 (2023) 10, 10]

Primordial structure formation & local heating

• Dark matter halos release a lot of energy as they collapse

$$\Delta E \sim \frac{y^2 M_h^2}{m_\psi^2 R_c} \left(1 - \frac{R_c}{R_h} \right)$$

- If the mediator χ couples to the SM, the SM plasma can become locally heated.
- This heating can potentially restart sphaleron transitions or *restore* thermal equilibrium.

Primordial structure formation & local heating

$\Gamma_{\rm ann, sph} \sim H$ however, $\Gamma_{\rm ann, \ sph} \sim \tau_{\rm diss}^{-1}$ $au_{\rm diss} \ll H^{-1}$

Primordial structure formation & local heating

• Once the plasma is heated locally, it can cool through:

Diffusior

Explosive expansion

heats, and another one as it cools.

$$n: au_{ ext{diff}} \sim rac{R_i^2}{4D} \Big(rac{T_i}{T}\Big)^{8/3},$$

$$n: \tau_{\exp} \sim \frac{4R_i}{\sqrt{3}} \left(1 + \frac{t - t_i}{\sqrt{3}R_i}\right)$$

The SM plasma undergoes two phase transitions: a rapid one as it initially

Primordial structure formation 8 **WIMP** Production

[MMF, C. Kouvaris, A. Kusenko: *PRD* 108 (2023) 10, 10]

Primordial structure formation & WIMP Production

• Traditional freeze-out paradigm:

 $\lambda = \frac{\langle \sigma_{\rm ann} v \rangle m_X^3}{H(m_X)}$

Primordial structure formation & WIMP Production

• Primordial structure formation offers a new fundamental time scale:

 $\Gamma_X(T_f)$

$$\frac{\Gamma_X(T)}{\frac{1}{\text{diss}}(T)} \left[n_X^2 - (n_X^{\text{eq}})^2 \right]$$

$$\downarrow$$

$$= \tau_{\mathrm{diss}}^{-1}(T_f)$$

 \downarrow

 $\rho_X(T_{bg}) \simeq f \cdot m_X n_X^{eq}(T_f)$

Primordial structure formation & WIMP Production

Primordial structure formation & Baryogenesis

[MMF, A. Kusenko, L. Pearce, G. White: *PRD* 108 (2023) 9, 9]

Brief baryogenesis review

- Fundamental to <u>most</u> baryogenesis scenarios are the Sakharov conditions, which state that three elements are required to generate an excess of baryons:
 - 1. Baryon number violation \implies sphaleron transitions
 - 2. C and CP violation
 - 3. Out-of-equilibrium dynamics \implies expansion of heated region

Primordial structure formation & baryogenesis

- From the Sakharov conditions, we need some source of *CP* violation.
 - In principle, any EW baryogenesis scenario will be applicable here
- As a well motivated example, we considered the two Higgs doublet model
 - Leads to term in the Lagrangian, $\mathscr{L}\supset\dot{\theta}J^0_B$, similar as those in spontaneous baryogenesis

$$_{\rm ff} \sim \dot{\theta}$$

Primordial structure formation & baryogenesis

• The evolution of the baryonic number density is given by

$$\frac{dn_B(T)}{d\ln T} = \frac{\Gamma_{\rm sph}(T)}{\tau_{\rm diss}^{-1}(T)} \left(n_B(T) - \mu_{\rm eff} T^2 \right)$$

then frozen into

$$n_B \simeq \mu_{\text{eff}} T^2 \Big|_{T=T_f}$$
 where $\Gamma_{\text{sph}}(T_f) = \tau_{\text{diss}}^{-1}(T_f)$

• This is very similar to classical freeze-out equations. The number density in

Primordial structure formation & baryogenesis

Final thoughts

- Primordial structure formation <u>can occur</u> and has many interesting phenomenological implications
 - Primordial black holes
 - Matter-antimatter asymmetry
 - Generation of DM
 - Gravitational waves
- PBHs are a compelling DM candidate with numerous interesting astrophysical and cosmological implications
- Other interests:
 - Gravitational particle production and baryogengesis
 - [**MMF**, Y. Perez-Gonzalez, arXiv:2404.06530]
 - Unitarity & cosmology
 - [**MMF**, K. Petraki, arXiv:2405.02222]
 - Gravitational waves
 - [MMF, A. Kusenko, L. Pearce, Y. F. Perez-Gonzales, G. White: arXiv: 2308.15522]

Thank you!