The Planck results in light of the BICEP B-mode detection

Silvia Galli

IAP 21/03/2014

Scalar versus Tensor perturbations

Tensors produce BB-polarization, but contribute also to TT and EE!

Planck constraints from TT

Model	Parameter	Planck+WP
ΛCDM + tensor	$n_{\rm s}$	0.9624 ± 0.0075
	<i>r</i> _{0.002}	< 0.12
	n _s	0.9583 ± 0.0081
	r	< 0.25
$\Lambda \text{CDM} + r + \mathrm{d}n_{\rm s}/\mathrm{d}\ln k$	$dn_s/d\ln k$	0.021 ± 0.012

Constraints from Planck come from the large scale TT (I<100). (assumed consistency relation nt=-r/8)

See Planck 2013 XXII

BICEP2 constraints from BB

Planck+WP + BICEP2, ΛCDM+r+extensions

- Planck+WP,ΛCDM+r
- ---- $Planck+WP,\Lambda CDM+r+nrun$
- Planck+WP,ΛCDM+r+yhe
- Planck+WP,ΛCDM+r+nnu
- ---- Planck+WP,ΛCDM+r+mnu
- Planck+WP,ΛCDM+r+Alens
- Dashed=Add prior on r
 - r=0.16±0.06

Planck constraints from TT

LCDM+r+running

$$\mathcal{P}_{\mathcal{R}}(k) = A_{\rm s} \left(\frac{k}{k_0}\right)^{n_{\rm s} - 1 + (1/2)(dn_{\rm s}/d\ln k)\ln(k/k_0)}$$

LCDM+r+Helium

