Parameter Estimation with Physics Informed Neural Networks

Alex Laguë University of Toronto & CITA

with J. R. Bond, R. Hložek, D. J. E. Marsh, K. K. Rogers, D. Grin, B. Schwabe Debating the Potential of Machine Learning in Astronomical Surveys IAP (Oct. 2021)

Part I: Motivation and Problem Statement

Part II: Neural Network Solution and Validation

Ultralight Axions Particle Physics Origin

- QCD axion too heavy
- Turn to axions from string theory
- Axiverse of many axions ($n_{ax} > 1$)
- May compose part of DM

FDM: Impose
$$\Omega_a = \Omega_d \approx 0.3$$

ULA: Ω_a from HEP

Arvanitaki et al. (2010)

Hui *et al.* (2016)

Stott *et al.* (2017)

ULA Model Two free parameters: m_a , Ω_a/Ω_d

- Can't add 100s of parameters to LCDM!
- Minimal extension:
 - 1 ULA, rest of DM behaves as CDM
- Focus on deviations from CDM

Multiple Axions Many models including Early DE

Gravitational lensing H_0 tension from ultralight axion galactic cores

Kfir Blum^{1, *} and Luca Teodori^{1, †}

Gravitational lensing time delays offer an avenue to measure the Hubble parameter H_0 , with some analyses suggesting a tension with early-type probes of H_0 . The lensing measurements must mitigate systematic uncertainties due to the mass modelling of lens galaxies. In particular, a core component in the lens density profile would form an approximate local mass sheet degeneracy and could bias H_0 in the right direction to solve the lensing tension. We consider ultralight dark matter as a possible mechanism to generate such galactic cores. We show that cores of roughly the required properties could arise naturally if an ultralight axion of mass $m \sim 10^{-25}$ eV makes up a fraction of order ten percent of the total cosmological dark matter density. A relic abundance of this order of magnitude could come from vacuum misalignment. Stellar kinematics measurements of well-resolved massive galaxies (including the Milky Way) may offer a way to test the scenario. Kinematics analyses aiming to test the core hypothesis in massive elliptical lens galaxies should not, in general, adopt the perfect mass sheet limit, as ignoring the finite extent of an actual physical core could lead to significant systematic errors.

Simulations First Cosmological Simulations of ULAs + CDM

 $i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m_a a^2}\nabla^2$

Solve Schrödinger Equations for Axions

$${}^{2}\psi + m_{a}V\psi, \quad |\psi|^{2} = \rho_{\mathrm{ax}}$$

Simulations First Cosmological Simulations of ULAs + CDM

Solve Schrödinger-Poisson system and N-body CDM dynamics

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m_a a^2} \nabla^2 \psi + m_a V \psi$$
$$\nabla^2 V = \frac{4\pi G}{a} \left(|\psi|^2 + \rho_{\text{CDM}} - \bar{\rho}_{\text{tot}} \right)$$

Simulations Find Density Profile of CDM + ULAs

Solve Schrödinger-Poisson system and N-body CDM dynamics

Simulations **Halo Density**

Constraining Mass from Sims Halo Density Profiles

Can we infer m_a from a measurement of $\rho(r)$?

Can we infer m_a from a measurement of $\rho(r)$?

Forward problem: Specify parameters + PDE to get solution

Inverse problem: Specify PDE + solution to infer parameters

Non-Linear Modelling A Useful Simplification

Equilibrium Solution $\psi = e^{-i\gamma t/\hbar}\phi$ $\frac{\partial^2 (r\phi)}{\partial r^2} = 2r \left(\frac{m_a^2}{\hbar^2} V - \frac{m_a}{\hbar^2} \gamma \right) \phi$ $\frac{\partial^2 (rV)}{\partial r^2} = 4\pi Gr \left(\phi^2 + \rho_{\rm CDM}\right)$

Non-Linear Modelling A Useful Simplification

Equilibrium Solution

 $\psi = e^{-i\gamma t/n}\phi$

 $\frac{\partial^2 (rV)}{\partial r^2} = 4\pi Gr \left(\phi^2 + \rho_{\rm CDM}\right)$

Inverse Problem

Start with guess m_a , γ

Vary parameters until equation is (approximately) satisfied

$$\frac{\partial^2 (r\phi)}{\partial r^2} = 2r \left(\frac{m_a^2}{\hbar^2} V - \frac{m_a}{\hbar^2} \gamma \right) \phi$$

$$\mathscr{E}(m_a, \gamma) = \sum_i \left| \text{LHS}(r_i) - \text{RHS}(r_i) \right|^2$$

$$m_a^*, \gamma^* = \operatorname{argmin}(\mathscr{E})$$

Inverse Problem Optimization

Goal: Solve inverse problem for m_a , γ

Use Neural Network Optimizers (PINN)

Inverse Problem Optimization

Goal: Solve inverse problem for m_a , γ

Use Neural Network Optimizers (PINN)

Simulation

Simulated Rotation Curve

Simulate Observation

Simulation

Simulated Rotation Curve

Fit Rotation Curve

Simulation

Estimated Density Profile (MCMC)

Fit Rotation Curve

Simulation

Inverse Problem (Validation on Sims) Run PINN for each possible $\phi \& V$

Distribution of Rotation Curves

Distribution of $\phi \& V$

Distribution of m_a

Conclusions PINNs in Cosmology

- 1. Inverse problems approach useful when fitting a PDE to data
- 2. Cheaper than solving the forward problem (expensive sims)
- 3. Can be combined with standard MCMC techniques
- 4. Excellent for finding maximum likelihood parameter value

Thank you!

Questions?

