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Gravitational lensing
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Gravitational lensing

Galaxy shapes as estimators for gravitational shear

We are trying the measure the ellipticity  of galaxies as an estimator for the gravitational shear 

e = γ +  with  ∼  (0, I)ei ei

e γ

3



The Weak Lensing Mass-Mapping as an Inverse Problem
Shear  γ
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Linear inverse problems
 

 is known and encodes our physical understanding of the problem. 
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Classical examples of signal priors
Sparse

 

Gaussian Total Variation

log p(x) =∥ Wx∥1 log p(x) = xx t
Σ

−1 log p(x) =∥ ∇x∥1
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Jeffrey, et al. (2021)

Illustration on the Dark Energy Survey (DES) Y3
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But what about learning the prior  
with deep generative models?
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The score is all you need!

Whether you are looking for the MAP or sampling with
HMC or MALA, you only need access to the score of the
posterior:

Gradient descent: 
Langevin algorithm: 

d log p(x|y)

dx

= + τ log p( |y)xt+1 xt ∇x xt

= + τ log p( |y) +xt+1 xt ∇x xt 2τ‾‾√ nt
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= + τ log p( |y)xt+1 xt ∇x xt

= + τ log p( |y) +xt+1 xt ∇x xt 2τ‾‾√ nt

The score of the full posterior is simply:

 all we have to do is model/learn the score of the prior.

log p(κ|γ) = +∇κ log p(γ|κ)∇κ
  

known

log p(κ)∇κ
  

can be learned

⟹
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Neural Score Estimation by Denoising Score Matching
Denoising Score Matching: An optimal Gaussian denoiser learns the score of a given distribution.
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Efficient sampling by Annealed HMC
Even with gradients, sampling in high number of dimensions is dif�cult! Because of: 

Curse of dimensionality
Highly correlated chains
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Curse of dimensionality
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 Use a parallel annealing strategy to effectively sample from full distribution.⟹

We use the fact that our score network  is learning a noise-convolved distribution , where(x, σ)rθ ∇ log pσ

(x) = ∫ ( ) (x| , )d ,          > > >pσ pdata x′ x′ σ2 x′ σ1 σ2 σ3 σ4

Run many HMC chains in parallel, progressively annealing the  to 0, keep last point in the chain as independent
sample.

σ
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Illustration on -TNG simulationsκ

log (κ|γ) = log (γ|κ) + log (κ)∇κ pσ ∇κ pσ ∇κ pσ
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Illustration on -TNG simulations

 
True convergence map

 
 

κ
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Traditional Kaiser-Squires
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Wiener Filter
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Posterior Mean (ours)
 

Posterior samples
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Probabilistic Mass-Mapping of the HST COSMOS field

COSMOS shear data from 

Prior learned from MassiveNuS at �ducial cosmology (320x320 maps at 0.4 arcsec resolution).

Known massive X-ray clusters indicated with crosses, along with their redshifts, right pannel shows cutouts of
central cluster from multiple posterior samples.

Schrabback et al. 2010
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Takeaways

Hybrid physical/deep learning modeling:
Deep generative models can be used to provide data driven priors.
 
Explicit likelihood, uses of all of our physical knowledge. 

 The method can be applied for varying PSF, noise, or even different instruments!
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Thank you!
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