# Probabilistic Mapping of Dark Matter with Neural Score Matching

astro-ph.CO arXiv:2011.08271

Benjamin Remy

With : <u>Francois Lanusse</u>, Niall Jeffrey, Jia Liu, <u>J.-L. Starck</u>, Ken Osato









### Gravitational lensing

galaxy



Galaxy shapes as estimators for gravitational shear

 $e = \gamma + e_i$  with  $e_i \sim \mathcal{N}(0, I)$ 

• We are trying the measure the **ellipticity** e of galaxies as an estimator for the **gravitational shear**  $\gamma$ 

Shear  $\gamma$ 



Shear  $\gamma$ 



Convergence K

Shear  $\gamma$ 



$$\gamma_1 = \frac{1}{2} (\partial_1^2 - \partial_2^2) \Psi$$
;  $\gamma_2 = \partial_1 \partial_2 \Psi$ ;  $\kappa = \frac{1}{2} (\partial_1^2 + \partial_2^2) \Psi$ 

Shear  $\gamma$ 



$$\gamma = \mathbf{P}\kappa$$

### $\gamma = \mathbf{A}\kappa + n$

A is known and encodes our physical understanding of the problem.

### $\gamma = \mathbf{A}\kappa + n$

A is known and encodes our physical understanding of the problem.  $\implies$  When non-invertible or ill-conditioned, the inverse problem is ill-posed with no unique solution x

### $\gamma = \mathbf{A}\kappa + n$

A is known and encodes our physical understanding of the problem.  $\implies$  When non-invertible or ill-conditioned, the inverse problem is ill-posed with no unique solution x

The Bayesian view of the problem:

 $p(\kappa|\gamma) \propto p(\gamma|\kappa) p(\kappa)$ 

### $\gamma = \mathbf{A}\kappa + n$

A is known and encodes our physical understanding of the problem.  $\implies$  When non-invertible or ill-conditioned, the inverse problem is ill-posed with no unique solution x

The Bayesian view of the problem:

 $p(\kappa|\gamma) \propto p(\gamma|\kappa) \, p(\kappa)$ 

•  $p(\gamma|\kappa)$  is the data likelihood, which **contains the physics** 

### $\gamma = \mathbf{A}\kappa + n$

A is known and encodes our physical understanding of the problem.  $\implies$  When non-invertible or ill-conditioned, the inverse problem is ill-posed with no unique solution x

The Bayesian view of the problem:

### $p(\kappa|\gamma) \propto p(\gamma|\kappa) \, p(\kappa)$

•  $p(\gamma|\kappa)$  is the data likelihood, which **contains the physics** 

•  $p(\kappa)$  is the prior knowledge on the solution.

### $\gamma = \mathbf{A}\kappa + n$

A is known and encodes our physical understanding of the problem.  $\implies$  When non-invertible or ill-conditioned, the inverse problem is ill-posed with no unique solution x

The Bayesian view of the problem:

 $p(\kappa|\gamma) \propto p(\gamma|\kappa) p(\kappa)$ 

•  $p(\gamma|\kappa)$  is the data likelihood, which **contains the physics** 

•  $p(\kappa)$  is the prior knowledge on the solution.

We can estimate for instance the Maximum A Posteriori solution:

$$\hat{\kappa} = \arg \max_{\kappa} \log p(\gamma \mid \kappa) + \log p(\kappa)$$
$$\hat{\kappa} = \arg \max_{\kappa} - \frac{1}{2} \parallel \gamma - \mathbf{A}x \parallel_{\Sigma}^{2} + \log p(\kappa)$$

### $\gamma = \mathbf{A}\kappa + n$

A is known and encodes our physical understanding of the problem.  $\implies$  When non-invertible or ill-conditioned, the inverse problem is ill-posed with no unique solution x

The Bayesian view of the problem:

 $p(\kappa|\gamma) \propto p(\gamma|\kappa) p(\kappa)$ 

•  $p(\gamma|\kappa)$  is the data likelihood, which **contains the physics** 

•  $p(\kappa)$  is the prior knowledge on the solution.

We can estimate for instance the Maximum A Posteriori solution:

Or estimate from the full posterior  $p(\kappa|\gamma)$  with MCMC or Variational Inference methods.

$$\hat{\kappa} = \arg \max_{\kappa} \log p(\gamma \mid \kappa) + \log p(\kappa)$$

$$\hat{\kappa} = \arg \max_{\kappa} - \frac{1}{2} \parallel \gamma - \mathbf{A}x \parallel_{\Sigma}^{2} + \log p(\kappa)$$

### $\gamma = \mathbf{A}\kappa + n$

A is known and encodes our physical understanding of the problem.  $\implies$  When non-invertible or ill-conditioned, the inverse problem is ill-posed with no unique solution x

The Bayesian view of the problem:

 $p(\kappa|\gamma) \propto p(\gamma|\kappa) p(\kappa)$ 

•  $p(\gamma|\kappa)$  is the data likelihood, which **contains the physics** 

•  $p(\kappa)$  is the prior knowledge on the solution.

We can estimate for instance the Maximum A Posteriori solution:

Or estimate from the full posterior  $p(\kappa|\gamma)$  with MCMC or Variational Inference methods.

$$\hat{\kappa} = \arg \max_{\kappa} \log p(\gamma \mid \kappa) + \log p(\kappa)$$

$$\hat{\kappa} = \arg \max_{\kappa} - \frac{1}{2} \parallel \gamma - \mathbf{A}x \parallel_{\Sigma}^{2} + \log p(\kappa)$$



### Classical examples of signal priors



 $\log p(x) = \| \mathbf{W} x \|_1$ 

 $\log p(x) = x^t \Sigma^{-1} x^{-1}$ 

 $\log p(x) = \| \nabla x \|_1$ 

### Illustration on the Dark Energy Survey (DES) Y3

Jeffrey, et al. (2021)



But what about learning the prior with deep generative models?

### The score is all you need!

• Whether you are looking for the MAP or sampling with HMC or MALA, you **only need access to the score** of the posterior:

# $\frac{d\log p(x|y)}{dx}$

- Gradient descent:  $x_{t+1} = x_t + \tau \nabla_x \log p(x_t|y)$
- Langevin algorithm:

 $x_{t+1} = x_t + \tau \nabla_x \log p(x_t | y) + \sqrt{2\tau} n_t$ 



### The score is all you need!

• Whether you are looking for the MAP or sampling with HMC or MALA, you **only need access to the score** of the posterior:

## $\frac{d\log p(x|y)}{dx}$

- Gradient descent:  $x_{t+1} = x_t + \tau \nabla_x \log p(x_t|y)$
- Langevin algorithm:
  - $x_{t+1} = x_t + \tau \nabla_x \log p(x_t | y) + \sqrt{2\tau} n_t$



• The score of the full posterior is simply:



 $\implies$  all we have to do is **model/learn the score of the prior**.

### Neural Score Estimation by Denoising Score Matching

• **Denoising Score Matching**: An optimal **Gaussian denoiser learns the score** of a given distribution.

### Neural Score Estimation by Denoising Score Matching

- **Denoising Score Matching**: An optimal **Gaussian denoiser learns the score** of a given distribution.
  - If  $x \sim \mathbb{P}$  is corrupted by additional Gaussian noise  $u \in \mathcal{N}(0, \sigma^2)$  to yield

$$x' = x + u$$

### Neural Score Estimation by Denoising Score Matching

- Denoising Score Matching: An optimal Gaussian denoiser learns the score of a given distribution.
  - If  $x \sim \mathbb{P}$  is corrupted by additional Gaussian noise  $u \in \mathcal{N}(0, \sigma^2)$  to yield

$$x' = x + u$$

• Let's consider a denoiser  $r_{\theta}$  trained under an  $\ell_2$  loss:

$$\mathcal{L} = \parallel x - r_{\theta}(x', \sigma) \parallel_2^2$$

### Neural Score Estimation by Denoising Score Matching

- Denoising Score Matching: An optimal Gaussian denoiser learns the score of a given distribution.
  - If  $x \sim \mathbb{P}$  is corrupted by additional Gaussian noise  $u \in \mathcal{N}(0, \sigma^2)$  to yield

$$x' = x + u$$

• Let's consider a denoiser  $r_{\theta}$  trained under an  $\ell_2$  loss:

$$\mathcal{L} = \parallel x - r_{\theta}(x', \sigma) \parallel_2^2$$

• The optimal denoiser  $r_{\theta^{\star}}$  verifies:

$$\boldsymbol{r}_{\theta^{\star}}(\boldsymbol{x}',\sigma) = \boldsymbol{x}' + \sigma^2 \nabla_{\boldsymbol{x}} \log p_{\sigma^2}(\boldsymbol{x}')$$

### Neural Score Estimation by Denoising Score Matching

- Denoising Score Matching: An optimal Gaussian denoiser learns the score of a given distribution.
  - If  $x \sim \mathbb{P}$  is corrupted by additional Gaussian noise  $u \in \mathcal{N}(0, \sigma^2)$  to yield

$$x' = x + u$$

• Let's consider a denoiser  $r_{\theta}$  trained under an  $\ell_2$  loss:

$$\mathcal{L} = \parallel x - r_{\theta}(x', \sigma) \parallel_2^2$$

• The optimal denoiser  $r_{\theta^{\star}}$  verifies:



### Efficient sampling by Annealed HMC

- Even with gradients, **sampling in high number of dimensions is difficult!** Because of:
  - Curse of dimensionality
  - Highly correlated chains

### Efficient sampling by Annealed HMC

- Even with gradients, sampling in high number of dimensions is difficult! Because of:
  - Curse of dimensionality
  - Highly correlated chains
- $\implies$  Use a **parallel annealing strategy** to effectively sample from full distribution.

### Efficient sampling by Annealed HMC

- Even with gradients, sampling in high number of dimensions is difficult! Because of:
  - Curse of dimensionality
  - Highly correlated chains
- $\implies$  Use a **parallel annealing strategy** to effectively sample from full distribution.
- We use the fact that our score network  $\mathbf{r}_{\theta}(x, \sigma)$  is learning a noise-convolved distribution  $\nabla \log p_{\sigma}$ , where

$$p_{\sigma}(x) = \int p_{\text{data}}(x') \mathcal{N}(x|x',\sigma^2) dx', \qquad \sigma_1 > \sigma_2 > \sigma_3 > \sigma_4$$

| $\sigma_1$                              | $\sigma_{2}$                            | $\sigma_3$                              | $\sigma_{A}$                            |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|                                         |                                         |                                         |                                         |
| /////////////////////////////////////// | /////////////////////////////////////// | /////////////////////////////////////// | /////////////////////////////////////// |
| *****                                   | /////////////////////////////////////// | /////////////////////////////////////// | ****                                    |
| *************************               | /////////////////////////////////////// | /////////////////////////////////////// | /////////////////////////////////////// |
| **************************              |                                         |                                         | /////////////////////////////////////// |
| ***********************************     |                                         |                                         | //////////////////////////////////////  |
| *************************************** |                                         |                                         | //////////////////////////////////////  |
| **********                              | **********                              | **********                              | **************************************  |
| ******                                  | ********                                |                                         | *** * * * * * * * * * * * * * * * * *   |
|                                         |                                         |                                         |                                         |
|                                         |                                         |                                         |                                         |
|                                         |                                         |                                         |                                         |
| *********************************       |                                         |                                         |                                         |
| ~~~~~                                   |                                         |                                         |                                         |
| ~~~~~                                   |                                         |                                         | ~~~~~                                   |
|                                         | ~~~~~                                   | ~~~~~                                   | ~~~~~                                   |
| ~~~~~                                   | **********************************      | *******************************         | ~~~~~                                   |
| ***********************************     | *********************************       | ******************************          | ************************                |
| ~~~~~                                   | ~~~~~                                   | ~~~~~                                   | ~~~~~                                   |
| ~~~~~                                   | ~~~~~                                   |                                         |                                         |
|                                         | 222222222222222222222222222222222222222 |                                         |                                         |
|                                         |                                         | ~~~~~~                                  |                                         |
|                                         | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ~~~~                                    |                                         |

### Efficient sampling by Annealed HMC

- Even with gradients, sampling in high number of dimensions is difficult! Because of:
  - Curse of dimensionality
  - Highly correlated chains
- $\implies$  Use a **parallel annealing strategy** to effectively sample from full distribution.
- We use the fact that our score network  $\mathbf{r}_{\theta}(x, \sigma)$  is learning a noise-convolved distribution  $\nabla \log p_{\sigma}$ , where

$$p_{\sigma}(x) = \int p_{\text{data}}(x') \mathcal{N}(x|x',\sigma^2) dx', \qquad \sigma_1 > \sigma_2 > \sigma_3 > \sigma_4$$



Run many HMC chains in parallel, progressively annealing the σ to 0, keep last point in the chain as independent sample.

 $\nabla_{\kappa} \log p_{\sigma}(\kappa|\gamma) = \nabla_{\kappa} \log p_{\sigma}(\gamma|\kappa) + \nabla_{\kappa} \log p_{\sigma}(\kappa)$ 





True convergence map



True convergence map



#### Traditional Kaiser-Squires



True convergence map



Wiener Filter



True convergence map



#### Posterior Mean (ours)



True convergence map





Posterior Mean (ours)

Posterior samples

### Probabilistic Mass-Mapping of the HST COSMOS field





- COSMOS shear data from Schrabback et al. 2010
- Prior learned from MassiveNuS at fiducial cosmology (320x320 maps at 0.4 arcsec resolution).
- Known massive X-ray clusters indicated with crosses, along with their redshifts, right pannel shows cutouts of central cluster from multiple posterior samples.

- Hybrid physical/deep learning modeling:
  - Deep generative models can be used to provide data driven priors.
  - **Explicit likelihood**, uses of all of our physical knowledge.
    - $\implies$  The method can be applied for varying PSF, noise, or even different instruments!

- Hybrid physical/deep learning modeling:
  - Deep generative models can be used to provide data driven priors.
  - **Explicit likelihood**, uses of all of our physical knowledge.
    - $\implies$  The method can be applied for varying PSF, noise, or even different instruments!
- Neural Score Estimation is a **scalable approach** to learn a prior score.

- Hybrid physical/deep learning modeling:
  - Deep generative models can be used to provide data driven priors.
  - **Explicit likelihood**, uses of all of our physical knowledge.
    - $\implies$  The method can be applied for varying PSF, noise, or even different instruments!
- Neural Score Estimation is a **scalable approach** to learn a prior score.
- Knowledge of the posterior score is all we need for Bayesian inference aka uncertain quantification.

- Hybrid physical/deep learning modeling:
  - Deep generative models can be used to provide data driven priors.
  - **Explicit likelihood**, uses of all of our physical knowledge.
    - $\implies$  The method can be applied for varying PSF, noise, or even different instruments!
- Neural Score Estimation is a **scalable approach** to learn a prior score.
- Knowledge of the posterior score is all we need for Bayesian inference aka uncertain quantification.
- We implemented a new class of mass mapping method, providing the full posterior
  ⇒ recovered a very high quality convergence map of the COSMOS field.

- Hybrid physical/deep learning modeling:
  - Deep generative models can be used to provide data driven priors.
  - **Explicit likelihood**, uses of all of our physical knowledge.
    - $\implies$  The method can be applied for varying PSF, noise, or even different instruments!
- Neural Score Estimation is a **scalable approach** to learn a prior score.
- Knowledge of the posterior score is all we need for Bayesian inference aka uncertain quantification.
- We implemented a new class of mass mapping method, providing the full posterior
  ⇒ recovered a very high quality convergence map of the COSMOS field.