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Lesson #1



N-body 
simulations are 
hard to learn!
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• Create labelled 
training data

• Train ML model

• Plug trained model 
into posterior sampler

CosmoPower: flexible emulation of cosmological power spectra
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A. Spurio Mancini, D. Piras, J. Alsing, B. Joachimi, M. Hobson, CosmoPower: emulating 

cosmological power spectra for accelerated Bayesian inference from next-generation 

surveys, 2021, submitted to MNRAS

Standard forward model (few hours)
Our emulator (15 seconds)

Planck 2018

CosmoPower: flexible emulation of cosmological power spectra
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Lesson #2

Provide the 
model with a 

starting point!



GAN VAE
Generative Adversarial Network Variational AutoEncoder
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What information can we provide?

• Many fast approximations of N-body simulations exist

• They trade accuracy with speed

• Lognormal fields are decent, and extremely cheap



From lognormal to N-body 

D. Piras, B. Joachimi, F. Villaescusa-Navarro, Fast and realistic large-scale structure 

from machine-learning-augmented random field simulations, in preparation
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How to create the dataset?

• The lognormal field is highly correlated with the N-body

- Same power spectrum by construction

- We find correlation between the position of the peaks and voids

- We consider 2-D slices of the density fields (512x512)



The model

• Wasserstein GAN 
with gradient 
penalty
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The model

• Wasserstein GAN 
with gradient 
penalty

• Generator is U-net

• Add L2 
penalisation term

D. Piras, B. Joachimi, F. Villaescusa-Navarro, Fast and realistic large-scale structure 

from machine-learning-augmented random field simulations, in preparation



Results



Density Power spectrum Peak counts



Bispectrum
(k1=0.4 h Mpc-1, k2=0.6 h Mpc-1)

Bispectrum
(k1=0.5 h Mpc-1, k2=0.5 h Mpc-1)
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The elephants in the room

• We need to make model conditional on 
redshift and cosmological parameters

• We need to apply this model on the sphere

• Work in progress!
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• We trained a model that maps lognormal 
fields to more realistic simulations

• We plan to apply this to augment spherical 
random fields (FLASK)

• Embrace the uncertainty!

Conclusions

Thank you.
d.piras@ucl.ac.uk
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The elephant in the room



Memes



>103 SIMULATIONS 

FLAGSHIP 
SIMULATION EUCLID



Exponentiate 
the Gaussian 
field


