IAP colloquium: Debating the potential of machine learning in astronomical surveys - 18/10/2021

Machine learning-infused cluster cosmology

Stéphane Ilić PSL / LERMA / APC (France)

In collaboration with S. Mei (APC, France), L. Daudet, A. Chatelain (LightOn), F. Krzakala (ENS/EPFL)

Constraining our cosmological model

Probing two different "sectors":

Constraining our cosmological model

Probing two different "sectors":

Background evolution: all standard rulers/candles

Constraining our cosmological model

Probing two different "sectors":

- Background evolution: all standard rulers/candles
- Perturbations: probes of structure growth

Large-scale structures

- Statistical properties depend on cosmology
- Main observable: 2pt-correlation function ξ(r), P(k,z), C_{ell}(z₁,z₂)
- What about 1pt-CF ?
- → Hard to predict because galaxies = non-linear

Clusters of galaxies:

- Largest structures in the Universe \rightarrow closer to <u>linear regime</u>
- Exponentially <u>sensitive to growth rate</u> of structure \rightarrow great probes of DE
- Affected by volume effects \rightarrow <u>sensitivity to background</u>

Use as cosmological probe:

- Main principle : compare predicted and observed N(M,z)
- (Fairly) robust framework for predicting abundances ↔ "mass function" (Press & Schechter 1974 and "successors")

Clusters of galaxies:

- Largest structures in the Universe \rightarrow closer to linear regime
- Exponentially sensitive to growth rate of structure \rightarrow great probes of DE
- · Affected by volume effects \rightarrow sensitivity to background

Use as cosmological probe:

- Main principle : compare predicted and observed N(M,z)
- (Fairly) robust framework for predicting abundances ↔ "mass function" (Press & Schechter 1974 and "successors")

Challenges:

Clusters of galaxies:

- Largest structures in the Universe \rightarrow closer to linear regime
- Exponentially sensitive to growth rate of structure \rightarrow great probes of DE
- · Affected by volume effects \rightarrow sensitivity to background

Use as cosmological probe:

- Main principle : compare predicted and observed N(M,z)
- (Fairly) robust framework for predicting abundances ↔ "mass function" (Press & Schechter 1974 and "successors")

Challenges:

· Detecting/identifying clusters in data (what even *is* a cluster ??)

Clusters of gal

- Largest struct
- Exponentially
- Affected by vo

Use as cosmol

- Main principle
- (Fairly) robust
 (Press & Scheet

Challenges:

· Detecting/ider

eat probes of DE

mass function"

uster ??)

Clusters of galaxies:

- Largest structures in the Universe \rightarrow closer to linear regime
- Exponentially sensitive to growth rate of structure \rightarrow great probes of DE
- · Affected by volume effects \rightarrow sensitivity to background

Use as cosmological probe:

- Main principle : compare predicted and observed N(M,z)
- (Fairly) robust framework for predicting abundances ↔ "mass function" (Press & Schechter 1974 and "successors")

Challenges:

- Detecting/identifying clusters in data (what even *is* a cluster ??)
- Total mass is not an observable : proxies (temperature, richness, ...)
 & "scaling laws" required → no consensus on those laws

Clusters of galaxies:

- Largest structures in the Universe \rightarrow closer to linear regime
- Exponentially se
- Affected by volu

Use as cosmolog

- Main principle :
- (Fairly) robust fra (Press & Schecht

Challenges:

- Detecting/identifying clusters in data (what even *is* a cluster ??)
- Total mass is not an observable : proxies (temperature, richness, ...)
 & "scaling laws" required → no consensus on those laws

How can machine-learning algorithms help us here ?

 Neural networks for detecting clusters in telescope images and/or galaxy catalogues

 Neural networks for characterizing clusters (mass, redshift, etc)

Sloan Digital Sky Survey (SDSS)

The redMaPPer cluster catalogue

- Catalogue of 26,111 clusters with characteristics (position, redshift & "richness" estimates)
- Associated catalogue of 1,703,685 "member galaxies" with characteristics (position & photometry)

Cluster images

2048x2048 RGB images, ~0.396''/pixel (RGB channels roughly mapped to i-r-g frequency bands)

Cluster images

2048x2048 RGB images, ~0.396''/pixel (RGB channels roughly mapped to i-r-g frequency bands)

NN architecture: YOLOv3 (Redmon & Farhadi '18)

- Split image into S×S cells
- If object centre falls into cell \rightarrow cell is "responsible" for detecting object
- Each cell predicts :
 - (a) location of B bounding boxes (bbox)
 - (b) confidence score for each bbox
 - (c) probability of object class (conditioned on existence of object in bbox)

NN architecture: YOLOv3 (Redmon & Farhadi '18)

YOLO v3 network Architecture

NN architecture: YOLOv3 (Redmon & Farhadi '18)

YOLO v3 network Architecture

Example of YOLO application

llić et al. 2021, to be submitted

Losses

llić et al. 2021, to be submitted

Training

Validation

1024×1024

512x512

15

Epoch

5

10

20

25

30

(tuning of "input size" = dimensions of 1^{st} YOLO layer)

Recall/precision

llić et al. 2021, to be submitted

Recall/precision

llić et al. 2021, to be submitted

1024×1024

512x512

Conclusions and perspectives

- Fast and accurate performance from YOLOv3
- New avenue of research for cluster detection
 + domain-specific customisation
 - Performance ultimately conditioned on training sample (⇔ redMaPPer algo)
 - Eventually: training on other samples and/or simulations
 - Secondary permutation-invariant NN for characterisation from galaxy list

YOLOv3 training: technicalities

- Pure Tensorflow implementation
- Run on NVIDIA Tesla P100 16 GB
- Usual hyper-parameters to be tuned: batch size, learning rate,...
- Additional tuning: "input size" (first layer) of YOLO network
 → we did 512x512, 1024x1024, 2048x2048

YOLOv3 training: technicalities

- Training/Validation split: 50/50
- Bbox defined as minimal box encompassing all member galaxies
- For each image/cluster, bbox of "main" cluster has to be fully in image
- For secondary clusters, bbox has to have center in image to be considered
- Total training/validation : ~12000/12000 (+ aug)
- For testing: equivalent amount of empty images

"Pure counting" performance:

	YOLO detects bbox	YOLO does not detect bbox
Cluster is in image	TP	FN
No cluster is in image	FP	ΤN

- Precision (purity) = TP / (TP + FP)
- Recall (completeness) = TP / (TP + FN)

Performance as function of redshift

llić et al. 2021, to be submitted

Performance as function of (log₁₀) mass

llić et al. 2021, to be submitted

Metric for performance

Metric for performance

