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Probing two different “sectors”:
• Background evolution: all standard rulers/candles

• Perturbations: probes of structure growth 

● Statistical properties 
depend on cosmology

● Main observable:
2pt-correlation function
ξ(r), P(k,z), Cell(z1,z2)

● What about 1pt-CF ?
→ Hard to predict because
    galaxies = non-linear

Large-scale structures

Constraining our cosmological model
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Clusters as cosmological probes

Clusters of galaxies:
• Largest structures in the Universe → closer to linear regime

• Exponentially sensitive to growth rate of structure → great probes of DE

• Affected by volume effects → sensitivity to background

Use as cosmological probe:
• Main principle : compare predicted and observed N(M,z)

• (Fairly) robust framework for predicting abundances ↔ “mass function”
(Press & Schechter 1974 and “successors”)
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Objective

How can machine-learning algorithms
help us here ?

• Neural networks for detecting clusters in 
telescope images and/or galaxy catalogues 

• Neural networks for characterizing clusters 
(mass, redshift, etc)



Sloan Digital Sky Survey (SDSS)



The redMaPPer cluster catalogue

● Catalogue of 26,111 clusters with characteristics 
(position, redshift & “richness” estimates)

● Associated catalogue of 1,703,685 “member 
galaxies” with characteristics (position & 
photometry)



Cluster images

2048x2048 RGB images, ~0.396’’/pixel
(RGB channels roughly mapped to i-r-g frequency bands)

~13.5’
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NN architecture: YOLOv3 (Redmon & Farhadi ‘18)

● Split image into S×S cells
● If object centre falls into cell →  cell is “responsible” for detecting object
● Each cell predicts :

(a) location of B bounding boxes (bbox)

(b) confidence score for each bbox

(c) probability of object class (conditioned on existence of object in bbox)



NN architecture: YOLOv3 (Redmon & Farhadi ‘18)

Darknet-53



NN architecture: YOLOv3 (Redmon & Farhadi ‘18)

Final prediction of 
shape S×S×(5B+C) S×S×



Example of YOLO application

Ilić et al. 2021, to be submitted



Losses

1024x1024 512x512

(tuning of “input size” = dimensions of 1st YOLO layer) 

Ilić et al. 2021, to be submitted



Recall/precision
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Recall/precision

1024x1024 512x512
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Ilić et al. 2021, to be submitted



Conclusions and perspectives

● Fast and accurate performance from YOLOv3

● New avenue of research for cluster detection 
+ domain-specific customisation 

● Performance ultimately conditioned on 
training sample (⇔ redMaPPer algo)

● Eventually: training on other samples
and/or simulations

● Secondary permutation-invariant NN for 
characterisation from galaxy list 



Backup slides



YOLOv3 training: technicalities

● Pure Tensorflow implementation

● Run on NVIDIA Tesla P100 16 GB

● Usual hyper-parameters to be tuned: batch 
size, learning rate,…

● Additional tuning: “input size” (first layer) 
of YOLO network
→ we did 512x512, 1024x1024, 2048x2048



YOLOv3 training: technicalities

● Training/Validation split: 50/50

● Bbox defined as minimal box encompassing all 
member galaxies

● For each image/cluster, bbox of “main” cluster 
has to be fully in image

● For secondary clusters, bbox has to have center 
in image to be considered

● Total training/validation : ~12000/12000 (+ aug)

● For testing: equivalent amount of empty images



Recall/precision

“Pure counting” performance:

● Precision (purity) = TP / (TP + FP)

● Recall (completeness) = TP / (TP + FN)

YOLO detects 
bbox

YOLO does not 
detect bbox

Cluster is in 
image TP FN

No cluster is in 
image FP TN



Performance as function of redshift

Ilić et al. 2021, to be submitted



Performance as function of (log10) mass

Ilić et al. 2021, to be submitted



Metric for performance
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□ = True bbox
□ = YOLO prediction
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Metric for performance
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