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Background: Dark Matter

๏ The subhalo mass function depends 
on the temperature of DM 

๏ Warmer models suppress structure 
formation below a certain mass

Hsueh et al (2019)
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Currently known strong 
lenses

~102
Euclid, DES and LSST 
will increase this to

~105

Collett (2015)

Motivation: Upcoming 
Surveys
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Two possible routes for machine learning to improve gravitational 
imaging in the era of large numbers of lenses…

Rank lenses prior to 
modelling to make the 
best use of our time

Approximate the 
modelling with ML to get 
through more data
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Machine Learning

๏ We use ResNet to predict the binary 
presence or absence of 
substructure in an image 

๏ We start by testing the architecture 
on increasingly complex levels of 
(noiseless) data

Convolutional 
Neural Network

Pr(C = 0 |D) Pr(C = 1 |D)

Image data, D
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No subhalo ( )C = 0 One subhalo ( )C = 1 Residuals

Substructure causes a 
slight variation in flux 
across the extended 
image compared with 
the smooth model

With noise and a PSF, 
a source with the right 
structure can mimic 
this signal
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Interpretability? 
Activation maps from 
the first convolution 
layer shows that the 
network picks up on 
this signal

9
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Simulated Euclid data with S/N > 20

6 arcsec
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Euclid Initial Results

๏ We generate approx 1M Euclid 
images as described 

๏ We add subhaloes from a log-
uniform with 

 
๏ Training paused after 70 epochs 
๏ Final accuracy:  

๏ 86% (training) 
๏ 85% (testing)

109 < Msub/M⊙ < 1011

Training Testing



Substructure Sensitivity from Machine Learning |Conor O’Riordan | 21.10.2021 12

Euclid Initial Results

๏ After the initial training we expand 
the range of masses to

 
๏ Restart training on the new data but 

start from previously trained 
weights 

๏ Final accuracy:  
๏ 85% (training) 
๏ 84% (testing)

108.5 < Msub/M⊙ < 1011.5 Training Testing
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Recall the network output…

Convolutional 
Neural Network

Pr(C = 0 |D)

Pr(C = 1 |D)

Image data, C = 1

Images that contain subhaloes with  are correct predictionslog ( Pr(C = 1 |D)
Pr(C = 0 |D) ) > 0
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We compute the 
positive log odds 
ratio for all positive 
images in the 
testing set.

We bin the images 
by subhalo mass 
and plot here the 
distribution of odds 
per bin

For example, a 
subhalo of  
is correctly 
observed ~90% of 
the time

1010M⊙
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Recovering the Mass 
Function

๏ We now fix the range of subhalo 
mass to  

๏ We extend the method to deal with 
multiple subhaloes per image 

๏ Images are labelled by the total 
mass in substructure

109 < Msub/M⊙ < 1011

Label
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No Mass

109 ≤ Msub < 109.5

M⊙

109.5 ≤ Msub < 1010

1010 ≤ Msub < 1010.5

1010.5 ≤ Msub < 1011

1011 ≤ Msub
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Recovering the Mass 
Function
๏ Can we add complexity without 

losing performance on the simpler 
task? 

๏ Can these networks perform just as 
well on the even simpler binary task  
from earlier? 

๏ How complex does the model need 
to be to reach the sensitivity limit of 
the data?

Image data, D

CNN 
Total Mass 

(5 bins)

CNN 
Total Mass 

(10 bins)

Reduce

Reduce
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Model
Top 1 

Correct class has highest 
probability

Top 3 
Correct class in top 3 
highest probabilities

Binary 
Presence or absence of 

any substructure

ResNet 50 36.1% 68.8% 84.0%

ResNet 101 37.2% 70.1% 84.2%

Different model accuracies with 10 mass bins

A model twice as large makes little difference in performance
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Model
Top 1 

Correct class has highest 
probability

Top 3 
Correct class in top 3 
highest probabilities

Binary 
Presence or absence of 

any substructure

5 mass bins 56.5% 86.9% 83.4%

10 mass bins 36.1% 68.8% 84.0%

10 bin model 
with 5 bin data 55.9% 87.7% 84.0%

ResNet 50 accuracies with different binning

Model trained on 10 bin data performs as well on 5 bin data as 5 bin model 
Both models match binary accuracy of earlier 18 layer model
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Conclusions/outlook

• Euclid can reliably detect subhaloes of  
• Lower masses are not impossible - depends on your definition of 

detectable  
• We can also reliably predict the total mass in multiple substructures with 

similar limits 
• Running predictions for different DM models will tell us the available 

constraints on e.g.  from  Euclid strong lenses 
• Complex models can perform as well as their counterparts on simpler 

tasks

M ∼ 1010M⊙

MHM N
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Extra slides…
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Gravitational imaging in J0252+0039 Vegetti et al (2014)

Image Sensitivity ( )M/1010M⊙
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Master 
Catalogue 

of simulated 
lens+source 

systems
Survey Images

Follow-up Images

Example: HST

Example: Euclid

Train with 
varying Msub Odds of sub-halo 

presence

Same system, many different  Msub

Evaluation dataTraining data

Training data

Follow-up 
CNN

Odds as function of  Msub
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Predicts
Pseudo-sensitivity function with 

uncertainties from dropout
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ResNet 18 Layers

ResNet 50 Layers

Effect of model complexity
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The confusion matrix shows 
the network’s top-one 

classifications versus their 
true values in the data
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Images with no subhaloes are 
most often classified as such, 
but are confused for having 

low masses most often
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They are also never confused 
for having large masses
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For images with mass the 
correct bin is the most 

popular bin in all but two 
cases

Incorrect predictions are most 
typically in the neighbouring 

bin and distributed 
symmetrically
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The precision of predictions 
increases with subhalo total 

mass
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Sensitivity also 
depends on S/N in 
a straightforward 
way


