

Dark Substructure Sensitivity in the **Euclid Survey with Machine Learning** Conor O'Riordan IAP Colloquium | 22.10.2021

MAX PLANCK INSTITUTE FOR ASTROPHYSICS

Background: Dark Matter

- The subhalo mass function depends on the temperature of DM
- Warmer models suppress structure formation below a certain mass

Motivation: Upcoming Surveys

Currently known strong lenses

Euclid, DES and LSST will increase this to

Conor O'Riordan | 21.10.2021

Two possible routes for machine learning to improve gravitational imaging in the era of large numbers of lenses...

Conor O'Riordan | 21.10.2021

Machine Learning

- We use ResNet to predict the binary presence or absence of substructure in an image
- We start by testing the architecture on increasingly complex levels of (noiseless) data

Conor O'Riordan | 21.10.2021

Accuracy

Substructure causes a slight variation in flux across the extended image compared with the smooth model

With noise and a PSF, a source with the right structure can mimic this signal

Interpretability? Activation maps from the first convolution layer shows that the network picks up on this signal

Simulated Euclid data with S/N > 20

Euclid Initial Results

- We generate approx 1M Euclid images as described
- We add subhaloes from a loguniform with $10^9 < M_{\rm sub}/M_\odot < 10^{11}$
- Training paused after 70 epochs
- Final accuracy:
 - 86% (training)
 - 85% (testing)

Conor O'Riordan | 21.10.2021

Euclid Initial Results

- After the initial training we expand the range of masses to $10^{8.5} < M_{\rm sub}/M_{\odot} < 10^{11.5}$
- Restart training on the new data but start from previously trained weights
- Final accuracy:
 - 85% (training)
 - 84% (testing)

Conor O'Riordan | 21.10.2021

Recall the network output...

Images **that contain subhaloes** with log

Conor O'Riordan | 21.10.2021

$$\frac{\Pr(C = 1 \mid D)}{\Pr(C = 0 \mid D)} > 0 \text{ are correct predictions}$$

We compute the positive log odds ratio for all positive images in the **testing set**.

We bin the images by subhalo mass and plot here the distribution of odds per bin

For example, a subhalo of $10^{10} M_{\odot}$ is correctly observed ~90% of the time

Recovering the Mass Function

- We now fix the range of subhalo mass to $10^9 < M_{\rm sub}/M_\odot < 10^{11}$
- We extend the method to deal with multiple subhaloes per image
- Images are labelled by the total mass in substructure

Label	Total Mass (M_{\odot})		
0	No Mass		
1	$10^9 \le M_{\rm sub} < 10^{9.5}$		
2	$10^{9.5} \le M_{\rm sub} < 10^{10}$		
3	$10^{10} \le M_{\rm sub} < 10^{10.5}$		
4	$10^{10.5} \le M_{\rm sub} < 10^{11}$		
5	$10^{11} \le M_{\rm sub}$		

Recovering the Mass Function

- Can we add complexity without losing performance on the simpler task?
- Can these networks perform just as well on the even simpler binary task from earlier?
- How complex does the *model* need to be to reach the sensitivity limit of the data?

Different model accuracies with 10 mass bins

Top 1 Correct class has highest probability

ResNet 50 36.1%

ResNet 101 37.2%

A model twice as large makes little difference in performance

Conor O'Riordan | 21.10.2021

Top 3 Correct class in top 3 highest probabilities

Binary Presence or absence of any substructure

68.8%

84.0%

70.1%

84.2%

ResNet 50 accuracies with different binning

Μ	od	el

Model	Top 1 Correct class has highest probability	Top 3 Correct class in top 3 highest probabilities	Binary Presence or absence of any substructure
5 mass bins	56.5%	86.9%	83.4%
10 mass bins	36.1%	68.8%	84.0%
10 bin model with 5 bin data	55.9%	87.7%	84.0%

Conor O'Riordan | 21.10.2021

Model trained on 10 bin data performs as well on 5 bin data as 5 bin model Both models match binary accuracy of earlier 18 layer model

Conclusions/outlook

- Euclid can reliably detect subhaloes of $M \sim 10^{10} M_{\odot}$
- Lower masses are not impossible depends on your definition of detectable
- similar limits
- constraints on e.g. $M_{\rm HM}$ from N Euclid strong lenses
- tasks

• We can also reliably predict the total mass in multiple substructures with

Running predictions for different DM models will tell us the available Complex models can perform as well as their counterparts on simpler

Extra slides...

Conor O'Riordan | 21.10.2021

Gravitational imaging in J0252+0039 Vegetti et al (2014) Image Sensitivity ($M/10^{10}M_{\odot}$)

Conor O'Riordan | 21.10.2021

Training data Evaluation data Follow-up Images Follow-up CNN Train with varying $M_{\rm sub}$ Master Catalogue Example: HST of simulated Survey Images lens+source systems 14 Log-odds 8 2 0 -4 8 6 7 C Training data Example: Euclid

Training data

Effect of model complexity

Conor O'Riordan | 21.10.2021

The confusion matrix shows the network's top-one classifications versus their true values in the data

Images with no subhaloes are most often classified as such, but are confused for having low masses most often

They are also never confused for having large masses

For images with mass the correct bin is the most popular bin in all but two cases

Incorrect predictions are most typically in the neighbouring bin and distributed symmetrically

The precision of predictions increases with subhalo total mass

