

This talk is brought to you by:

Pierre Ferruit, Laure Piqueras, Emeline Legros, Aurelien Pons, Pierre-Jaques Legay, Arlette Pecontal, Xavier Gnata, Camilla Pacifici, Stephane Charlot

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement n° PITN-GA-2008-214227 – ELIXIR

ELIXIR school EADS/Astrium 02/06/2010

- NIRSpec simulations: How and what?
- Electron rates for spectra: Spatial and spectral features
- Readout simulation: final data example

How: the Instrument Performance Simulator (IPS)

- Development of CRAL (Piqueras et al. 2010)
- Simulate JWST OTE + NIRSpec
- Modules for
 - Fourier propagation
 - Geometrical transforms
 - Radiometry

Detector readout

ELIXIR school EADS/Astrium 02/06/2010

ELIXIR school EADS/Astrium 02/06/2010

What: ground & space

- Ground calibration (setup described by Xavier Gnata)
 - Prepare test campaign (simulations, fake data)
 - Verification of IPS and instrument
- In orbit
 - Observation preparation and verification

Possible input for data processing

Source: CLS Broadband flatfield

NIRSpec optics: Clear filter, prism

MSA: Long slit

NIRSpec optics: Clear filter, prism

MSA: Long slit

MSA pattern

Flatfield, broadband, prism: overview

R_1021_B_FF_and_PS

PRISM 2.2 pixel per spectral resolu

Flatfield, broadband, prism: spectrum trace

Source: CLS Band I flatfield

NIRSpec optics: LP100, G140M (band I medium)

MSA: Long slit

NIRSpec optics: LP100, G140M (band I medium)

MSA: Long slit

MSA: Long slit

MSA pattern

MSA pattern

Flatfield, continuum, MR grating: I overview

Flatfield, continuum, MR grating: I overview

Flatfield, continuum, MR grating I: spectrum trace

Flatfield, continuum, MR grating I: spectrum trace

Source: CLS Argon emission lines NIRSpec optics: LP100, G140H (band I high)

MSA: Perfect all closed

NIRSpec optics: LP100, G140H (band I high)

MSA: Perfect all closed

MSA: Perfect all closed

Spectral resolution curves for G140H

Flatfield, emission lines, HR grating I: overview

Flatfield, emission lines, HR grating I: overview

Astrium 02/06/2010

Flatfield, emission lines, HR grating I: spectrum trace

Source: Galaxy spectrum at z=6 NIRSpec optics: Clear filter, prism

MSA: Perfect all closed

NIRSpec optics: Clear filter, prism

MSA: Perfect all closed

MSA: Perfect all closed

Point source, galaxy z=6, prism: overview

Point source, galaxy z=6, prism: overview

Input spectra - fov_Camilla_z6two_zod filename Zodiacal light integrated over 0.2x0.1 a The spectra - fov_Camilla_z6two_zod filename Zodiacal light integrated over 0.2x0.1 a 10¹⁰ Wavelength (in microns)

Point source, galaxy z=6, prism: spectrum collapsed

Source: Galaxy spectrum at z=2

Source: Galaxy spectrum at z=2

Source: Galaxy spectrum at z=6

Source: Galaxy spectrum at z=6

²⁰¹⁰⁻⁰⁵⁻²⁷T07:19:12.260406

Point source, MOS sky scene, prism: overview

Point source, MOS sky scene, prism: zoom

Point source, galaxy z=6, prism: 22x4 readout (902 s)

Conclusion

- IPS does realistic end-to-end simulation
- Separation of electron rates + readout allows study of different effects
- Prepare FM tests and start with science simulations

