

MIRI The Mid-Infrared Instrument for the JWST

Gillian Wright, MIRI European PI

- Science in the mid-Infrared on JWST
- MIRI design overview, status and "vital statistics".
- Sensitivity, saturation and sub-arrays, operations/ dithering

Is good for studying

- **Redshifted objects:** $\lambda_{obs} = \lambda_{rest} \times (1 + z)$.
- Objects that are very dusty: $\tau_{vis} \sim 15 \times \tau_{MIR}$ (e.g., newly forming stars and centers of galaxies)
- Objects that are cool: T ~ 300 K (e.g., brown dwarfs, planets, molecular clouds)
- re-radiated light ("warm dust") from very massive stars or active galactic nuclei
- Objects rich in unique spectral features (atomic finestructure and hydrogen lines, isotopes, H₂ purerotational transitions, PAHs, crystalline and amorphous silicates, features of H₂O, CO, CH₄, CH₃OH, NH₃, OCN–, H₃+, C₂H₂, HCN, OH, ...)

'First light' objects

Identified by low signal in MIRI imager filter bands. ³⁰

First light: low metallicity hot massive stars

(V^Ln) xul⁼

10

Older galaxy: dusty, cooler. NIRSPEC MIRI

Bright for NIRCAM, too faint for MIRI = 1^{st} light object.

Galaxy Evolution with MIRI

- Mass assembly of galaxies out to z ~ 6
 - Deep images in 6-8um range provides direct measurement of rest frame red/near-IR light mass and morphology of the older stellar population
 - For z = 10 6: MIRI(λ = 5µm) <-> restframe λ : 0.5 0.7 µm
 - High redshift QSOs : New information about the central engine, correlations e.g. between bolometric luminosity, black – hole mass, accretion properties, element enrichment (as found for low z samples)

Formation and evolution of disks

 Probe transition and debris disks in scattered light and thermal emission to resolve zodiacal and kuiper belt dust structures

• Indirect evidence of exoplanets e.g. Kalas et al. (2008), Stark and Kuchner (2008) Spatially resolved spectroscopy
 Disk mineralogy

Exoplanets

- In general MIRI strengths are planet characterisation, not planet hunting transit spectroscopy
- MIRI "niche" saturn-mass planets around young M dwarfs located in nearby moving groups and associations, a class of extrasolar planets that can only be accessed with JWST.

Figure 3 Comparison of spectral observations with broadband photometry and theoretical models of the dayside atmosphere of

HD 189733b. The black points show the mean planet/star flux ratios for six second-order spectra (5–8 μ m) and four first-order spectra (7.5–14 μ m). The data have been binned by a factor of four after light-curve fitting (corresponding to two IRS resolution elements), and the plotted uncertainties reflect the standard error in the mean in each wavelength bin. The filled red circles show broadband measurements from ref. 5 at 3.6, 4.5, 5.8, 8.0, 16 and 24 μ m (error bars on this data, s.e.). The upper limit at 2.2 μ m is derived from Keck spectroscopy¹⁶. The red, blue and green traces are atmospheric model predictions for three values of a dayside–nightside heat redistribution parameter, P_m and two values of the extra upper-atmosphere opacity, κ_e . The model predictions have not been scaled in any way.

From Grillmair et al., Nature 2008.

INB

MIRI

- A 5 to 28 μm imager and spectrometer
- Flight model systems now being integrated at the Rutherford Appleton Lab
- Built by a nationally funded consortium of European Institutes and JPL
- Unlike the other JWST instruments MIRI has to be cooled to ca 7K
 - Dedicated cryocooler
 - MIRI hardware is distributed across all regions of the spacecraft.

The MIRI European Consortium

MIRI Optical System

A carbon fibre truss isolates 7 K MIRI optics from the 40 K telescope

> Light enters from the JWST telescope

For λ = 10 μ m FWHM , 0.32 arcsec 1st Dark ring diameter, 0.74 arcsec

A 10 x 10 arcsec field passes through the deck into the R ~ 3000, 4 channel integral field spectrometer 2 detectors 2 channels per detector

A 115 x 115 arcsec region of the focal plane is directed into the imager 10 bandpass filters 4 coronagraphs R ~ 100 slit spectrometer.

MIRI Cooler System

The MIRI Focal Planes (Entrance + Detector)

MIRI Imager Filters

CEA + MPIA + DIAS - CSL+ U.Stockholm F1800W Lens	Filter name (and wavelength)	Pass band Δλ (μm)	Function
	F560W	1.2	
FISUUW	F770W	2.2	
F2300C	F1000W	2.0	
P750L	F1130W	0.7	
	F1280W	2.4	Imaging
E770W	F1500W	3.0	imaging
F1280W	F1800W	3.0	
	F2100W	5.0	
	F2550W	4.0	
F1130W	F2550WR	4.0	
	P750L	5	R ~ 100 Spectroscopy
F1000W	F1065C	0.53	
F2550W	F1140C	0.57	Coronagraphy
BLANK	F1550C	0.78	Coronagraphy
F1140C	F2300C	4.6	
	FND	10	Target Acquisition
m 💎 🥙 🖤 F2550WR	FLENS	N/A	Alignment
FND F1065C	BLANK	N/A	Calibration

MIRI MRS – The SPO

- Spectrometer Pre-Optics
- Separates the 4 spectral channels x 3 sub-spectra using 9 dichroics mounted in 2 mechanisms.
- 4 IFUs image slice the fields and present them to the spectrometer cameras.
- Spectra dispersed using 12 diffraction gratings.
- Pupil and field filtering provided throughout for straylight control.

Spectral Filtering by Dichroic Chain

Grating Wheels

The MIRI 4Quadrant Phase Mask Coronagraph

- A flat 'window' with 4 panes (quadrants)
- If the star is centred on the cross at the centre of a 4QPM, half of its light is retarded by half a wavelength.

Coronagraph 4QPMs

1.0000

MIRI focal plane system

MB

- Three 1024 x 1024 Si As arrays
 - Dedicated anti-reflection coatings
 - Very good cosmetics and noise characteristics

- Photon background increases by > x1000 from short to long wavelengths.
 - Zodiacal dust
 - Straylight from Sun/Earth/etc.
 - Telescope thermal emission
 - Cosmic ray flux expected to disturb > 50 % of pixels every 1000 seconds
- Aim to achieve shot noise limited sensitivity at all wavelengths and SRPs
- Need to make optimum use of detector

Detector Readout Patterns

charge

	t _{frame} [secs]	n _{frames}
FAST – Bright and extended objects (plus sub-arrays), Long wavelength imaging)	2.7	1 to 40
SLOW – Faint Objects, Deep Imaging, MRS Spectroscopy	27.6	1 to 40

- Aim to fill the pixel capacitance
 - measure plenty of frames to beat down the effective read noise.
- SLOW mode averages 8 samples per frame to reduce the read noise
 - t_{frame} is the minimum integration time. (No true dark)
 - Can estimate the sensitivity for these basic readout patterns...

Sensitivity estimate

- Sample photocurrent with model detector (+ photometric aperture, FM estimated PCE, read noise, and FULL frame readout pattern).
- S/N = 10 in 10,000 second exposure for a faint point source

• Very sensitive, but finite detector dynamic range means that MIRI will saturate on targets which are faint on 8 m ground-based telescopes.

Target flux sensitivity limits

- Target noise dominates for target photocurrent > background + dark
- Saturation (1/8th of flux in brightest pixel at 8 microns, 80,000 el (1/3rd full well), FAST mode, FULL frame sub-array)

Imager Readout Patterns

- Extend the saturation limit using sub-arrays to trade field of view for faster frame rates.
 - For example, a 0.5 Jy source will not saturate the F1000W filter using the SUB128 subarray with its 14 x 14 arcsecond field.
 - Note the SLITLESSPRISM sub-array's specific capability for transit spectroscopy.

Sub-arrays and exoplanet imaging

 Modelling sub-array impact on S/N for exoplanet parent star imaging. (Christine Chen, STSci)

 Proposal (Anthony Boccaletti, Meudon) to use Lyot bar for > 10⁵ contrast using short wavelength filters.

Low Resolution Spectrometer

- Slit and slitless locations
 - Cusp at 5 µm in slitless spectra
 - Possible alternate slitless location (currently unsupported)

- Continuum sensitivity
 - ~3 microJansky 10 σ
 10000 sec at 7.5 μm
- Spectral Resolving Power

CEA Saclay FM Measurement (Ronayette, Nehme, Belu, Kendrew)

MIRI Medium Resolution Spectrometer

• 4 Spectral Channels with concentric fields of view

	Spatial sample	dimensions	Instantan	eous FOV				
Channel Name	Across slice (Slice width) [arcsec]	Along slice (Pixel) [arcsec]	Across slice [arcsec]	Along slice [arcsec]				
1	0.18	0.20	3.7 (21)	3.7				
2	0.28	0.20	4.5 (17)	4.7				
3	0.39	0.25	6.1 (16)	6.2				
4	0.64	0.27	7.9 (12)	7.7				

Calibration Sources

- Background variation zodi to telescope background not suitable calibration in many cases
- Wavelength calibration in flight will use astronomical sources

Imager - Dithering

- Purpose. Bad pixel removal, full spatial sampling (F560W), background subtraction.
- FGS/FSM (2.3 x 2.3') acquires target, telescope moves thermal path unchanged.
- Proposed imager dither patterns (all include 0.5 pixel sampling offsets)
 - 4 point box pattern. (2.5 x 2.5 pixel).
 - 12 point Reauleaux . Move around circumference of triangle, (15, 30 and 60 pixel scale sizes)
 - Cycling Gaussian. 311 points (10, 120 and 160 pixel sizes).

Low Resolution Spectrometer - Dithering

- Extended source/mapping
 - Target acquired at centre of slit.
 - User defined offsets (within FGS 2.3' x 2.3') for mapping extended sources.

Г	Γ	Γ												Τ	Т	Τ	Τ	Τ	Τ	Τ	Γ	Γ				Τ	Т		Т
													1																
														Ц															
												<u> </u>	1																

- Point source/staring
 - Target dithered along slit (15.5 pixel throw = 1.7 arcseconds)

Medium Resolution Spectrometer Dithering

• The MRS spatial sample element is set by the detector pixel in the along slice direction and the slice width in the across slice direction.

Madium Pacalutian Spactromator

• Medium Resolution Spectrometer										
	Spatial sa dimens	ample ions	FOV in a single integration							
Channel Name	Across slice Along (Slice width) slice [arcsec] (Pixel) [arcsec]		Across slice [arcsec]	Along slice [arcsec]						
1	0.18	0.20	3.7	3.7						
2	0.28	0.20	4.5	4.7						
3	0.39	0.25	6.1	6.2						
4	0.64	0.27	7.9	7.7						

• Neither dimension is well sampled in a single exposure.

MRS Dithering

- The slice width is fine tuned so that a single telescope offset (of 0.97") moves the image by n + ½ slices, where n = 1, 2, 3 and 5 (for Channel 1,2,3 and 4).
- A 2.05" along-slice offset will fully sample Channels 1, 2 and 4.

• For Channel 4 only, a 2.26" x 4.78" two point dither is proposed.

Cycle 18 release of APT includes preliminary templates for MIRI

Astronom Astronom	ner's Proposal Tools	Version 17.4.1 - Unsubmitted Proposal (JWST Antennae.apt)
Form Editor Spreadsheet Editor Orbit Planner Visit Planner	View in Aladin New Observation	Month PDF Preview Submission From Sand Warnings Image: Comparison of the state
🔻 🐥 Unsubmitted Proposal (JWST Antennae.apt)		Observation 1 of Unsubmitted Proposal (JWST Antennae.apt)
 OProposal Information Targets 1 VV-245 (Fixed Target: Equatorial) 2 VV-245-OFFSET (Fixed Target: Equa Patterns Data Requests Observations Observation 1 Observation 2 Observation 3 Observation 3 NIRCam Observations Phase II Proposal 12345 (HST Antennae.apt) Proposal Information Proposal Description P: Dr. test test Fargets Patterns Visits Visits WFC3 Antennae (01.001) 	Number: Label: Comments: Target: Instrument: Template: Subarray: Object Type: Filters:	1 Antennae Images Image the antennae at 3 different wavelengths. 1 VV-245 MIRI Image the antennae at 3 different wavelengths. Image the attribution of the attribution
	Observati 3	Antennae Image the 1 VV-245 Miki Miki Imagi FULL BRIGHT [Class edu Show: Observation
	U	✓ No errors & warnings (Click for Details)

MRS Image Reconstruction

(Adrian Glauser)

• Cube_build tool is mature and ready to support FM test analysis.

Acknowledgements

- The material presented here is the work of many people in the MIRI team !
- The MIRI development is funded by the following national and international agencies: Belgian Science Policy Office; Centre Nationale D'Etudes Spatiales; Danish National Space Centre; Deutsches Zentrum fur Luft-und Raumfahrt; Enterprise Ireland; European Space Agency; Ministerio De Education y Ciencia; NASA; Nova; Science and Technology Facilities Council; Swiss Space Office; Swedish National Space Board.
- This lecture was funded in part by the Marie Curie Initial Training Network ELIXIR of the European Commission under contract PITN-GA-2008-214227.

