

e L

Short Introduction to NIRSpec and its Scientific Objectives

Peter Jakobsen ESA JWST Project Scientist

First ELIXIR School, Ottobrunn, 31 May - 1 June 2010

A Pretty Picture Is Not Enough

Imaging is Astronomy - Spectroscopy is Astrophysics

Spectroscopic Diagnostics

5

а

d,

P

First ELIXIR School, Ottobrunn, 31 May - 1 June 2010

Spectroscopic Diagnostics

1

Spectroscopic Diagnostics

5

5

9

P

The Key NIRSpec Driver

- Understanding how galaxies assembled and evolved is at heart a *statistical* problem
- Need to measure ages, masses, star formation rates and abundances of many different types of galaxies at different redshift
- Need large samples spanning thousands of galaxies
- NIRSpec must be a dispersive Multi-Object Spectrograph

Level 1 Science Requirement

From JWST Program Plan:

Mission Success: L1-2: Measure the spectra of at least 2500 galaxies with spectral resolutions of approximately R=100 (over 0.6 to 5 micrometers) and R=1000 (over 1 to 5 micrometers) and to a 2 micrometer emission line flux limit of 5.2×10^{-22} Wm⁻² to enable determination of their redshift, metallicity, star formation rate, and ionization state of the intergalactic medium.

- ~2500 galaxies sorted into ~10 subclasses each sorted into ~10 redshift (time) bins
- ~25 samples per bin gives ~20% statistical sampling uncertainty per bin

• Start with Image of Field

- Start with Image of Field
- Identify Targets of Interest

- Start with Image of Field
- Identify Targets of Interest
- Mask off Remaining Field

- Start with Image of Field
- Identify Targets of Interest
- Mask off Remaining Field
- Take Dispersed Image

NIRSpec Vital Statistics

- All-Reflective Optics
- 3.4' x 3.6' FOV (9 arcmin² for MOS)
- 0.2" mas nominal slit width
- 3 slit selection devices:
 - Micro-Shutter Array
 - 3" x 3" Integral Field Unit
 - 5 high-contrast fixed slits
- 3 spectral resolutions:
 - R=100 (0.7 5.0 μ m) Redshifts, Continuum Spectra
 - R=1000 (1.0 5.0 μ m) Emission Line Diagnostics
 - R=2700 (1.0 5.0 μm) Kinematics
- 2 x 2k x 2k HgCdTe arrays

NIRSpec Optical Schematic

Telescope Focus

•

đ

đ

0

S

ebb

ames W

Slit Mask

Pupil at Disperser

Detector Array

Images the curved telescope image onto the flat MSA in a telecentric manner at a demagnification of 0.625

4

Ξ

Telescope Focus

Slit Mask

Pupil at Disperser

Detector Array

Images the curved telescope image onto the flat MSA in a telecentric manner at a demagnification of 0.625

5

Ξ

Telescope Focus

Slit Mask

Pupil at Disperser

Detector Array

- Flattens curved telescope input image
- Provides telecentric illumination of MSA over entire FOV
- Partially compensates for telescope focal position drift

- Flattens curved telescope input image
- Provides telecentric illumination of MSA

Truly a thing of beauty..

First ELIXIR School, Ottobrunn, 31 May - 1 June 2010

NIRSpec Filterwheel

Carries orderseparation filters for gratings **Refocus Mechanism Calibration Unit** Prism/Grating Filter Wheel Wheel **Telescope Focus** (1/20) Pick-off Mirror(s) MIcro-shutter Detector Array Collimator Foreoptics Camera Array (f/12.5) (f/5.67)

Telescope Focus

NIRSpec Filterwheel

Carries orderseparation filters for gratings **Refocus Mechanism Calibration Unit** Prism/Grating Filter Wheel Wheel **Telescope Focus** (1/20) Pick-off Mirror(s) MIcro-shutter Detector Array Collimator Foreoptics Camera Array (f/12.5) (f/5.67) Pupil at Disperser **Telescope Focus**

Slit Mask

Detector Array

NIRSpec Filterwheel

- 4 longpass order separation filters
- 2 finite band target acquisition filters
- 1 "clear" position
- 1 opaque position
 - Doubles as:
 - Instrument shutter
 - Calibration source reflector

NIRSpec Slitmask

Telescope Focus

đ

1

ŝ J

Ε

1

Slit Mask

Detector Array

NIRSpec Slitmask

Telescope Focus

đ

1

ŝ J

E

1

First ELIXIR School, Ottobrunn, 31 May - 1 June 2010

Detector Array

NIRSpec Slit Mask In Detail 3.6' • Micro-Shutter Arrays 4 x 365 x 171 3.4'

Dispersion

Te

Φ

0

J

Ē

P

NIRSpec Slit Mask In Detail

1

NIRSpec Collimator and Camera

Collimator feeds dispersers parallel beams

Camera reimages dispersed beams onto detector array

Telescope Focus

Slit Mask

Pupil at Disperser

Detector Array

First ELIXIR School, Ottobrunn, 31 May - 1 June 2010

NIRSpec Collimator and Camera

Collimator feeds dispersers parallel beams

Camera reimages dispersed beams onto detector array

Telescope Focus

Slit Mask

Pupil at Disperser

Detector Array

First ELIXIR School, Ottobrunn, 31 May - 1 June 2010

Nominal collimator distortion anamorphic + keystone $f_x=633 \text{ mm}$ $f_y=657 \text{ mm}$ Nominal camera distortion anamorphic + keystone $f_x=284 \text{ mm}$ $f_y=292 \text{ mm}$

By design mainly different demagnifications in dispersion and spatial direction

NIRSpec Grating Wheel

Carries NIRSpec dispersers

- six gratings (R=1000 and R=2700)
- double-pass CaF2 prism (R=100)
- flat mirror

Telescope Focus

Slit Mask

Detector Array

First ELIXIR School, Ottobrunn, 31 May - 1 June 2010 18

NIRSpec Grating Wheel

- six gratings (R=1000 and R=2700)
- double-pass CaF2 prism (R=100)
- flat mirror

Telescope Focus

Slit Mask

Detector Array

First ELIXIR School, Ottobrunn, 31 May - 1 June 2010 18

NIRSpec Gratings

Efficiency GRA 5000-8 (CIIT) at nine different messarement positions, 16.3° con. Ang

- Directly ruled on thick gold layer
- Very high efficiency
- Sadly, mounts giving problems

NIRSpec Detector Arrays

2k x 2k substrate-removed HgCdTe Arrays Controlled by custom cryogenic ASICs Operating temperatur ~39 K

Telescope Focus

Slit Mask

ASIC

Detector Array

First ELIXIR School, Ottobrunn, 31 May - 1 June 2010

NIRSpec Detector Arrays

2k x 2k substrate-removed HgCdTe Arrays Controlled by custom cryogenic ASICs Operating temperatur ~39 K

Telescope Focus

Slit Mask

Pupil at Disperser

ASIC

Detector Array

Near-IR Detectors

HgCdTe Arrays:

Format: 2k x 2k QE: >70% Total Noise: <7e in 1000s 10 (NIRCam) 2 (NIRSpec) 4 (FGS/TF) 16 in total

Cryogenic ASIC:

Controls Array Power & commands in digital signal out

Continuum Flux Sensitivities

Emission Line Sensitivities

¢

4

epp

ames

Enough with the sales pitch now a few of the ugly bits..

Bad Pixel Map Flight Detectors

Bad Shutter Map Flight MSA

First ELIXIR School, Ottobrunn, 31 May - 1 June 2010 26

Living with Bad Shutters and Pixels

 Failed Open shutters affect multiplexing much more severely than do Failed Closed shutters

Micro-Shutter Array (MSA)

The Process of Plugging

Trade each failed open shutter for 3x3 patch of failed closed ones

Close-up of MSA

0

ce Telesco

James Webb Spa

MSA Operational Configuration

Resulting Spectra on Detector

R1000 Band II

đ

9

4

00

4 Ð

Ε

9

Resulting Spectra on Detector

R1000 Band II

đ

0

0

00

G J

Ε

9

One More Thing..

Exoplanets

TF Simulation

NIRCam, FGS/TF & MIRI all carry coronographs

Exoplanets

TF Simulation

NIRCam, FGS/TF & MIRI all carry coronographs

Exoplanets

TF Simulation

NIRCam, FGS/TF & MIRI all carry coronographs

A Pretty Picture Is (Still) Not Enough

A Pretty Picture Is (Still) Not Enough

Imaging is Astronomy - Spectroscopy is Astrophysics

Nature's Coronograph

Transiting Exoplanet (Corot, Kepler, ..) Spectrum of Star

Successfully done with Spitzer....

Exoplanet Transmission Spectra

 Search for "habitability" spectral signatures from planet atmosphere during transit

Successfully done with HST.....

~10⁻⁴ - 10⁻⁷ Level Problem