

NIRSpec Through The Ages

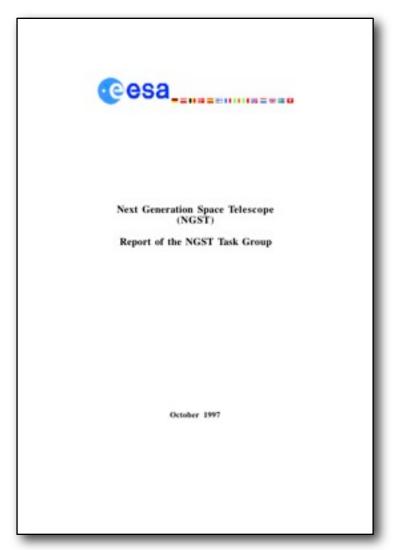
A Brief Selective History

Peter Jakobsen ESA JWST Project Scientist

In the Beginning...

- HST and Beyond 1996
- Next Generation Space Telescope 1997
- Report of the ESA NGST Task Group 1997

ESA and CSA invited to join project 1997



Primeval NIRSpec History ESA NGST Task Group (1997)

Solicited by ESA to gauge interest in community and possibilities for participation

Clear European interest in near-IR Spectroscopy from the start

Primeval NIRSpec History ESA NGST Task Group (1997)

Table of Contents

- A brief Scientific Overview
- European expertise and potential contributions to NGST
- Instrumentation for the NGST: A European perspective
- Conclusion and Recommendations

Appendix - Integral Field Spectrographs in Europe

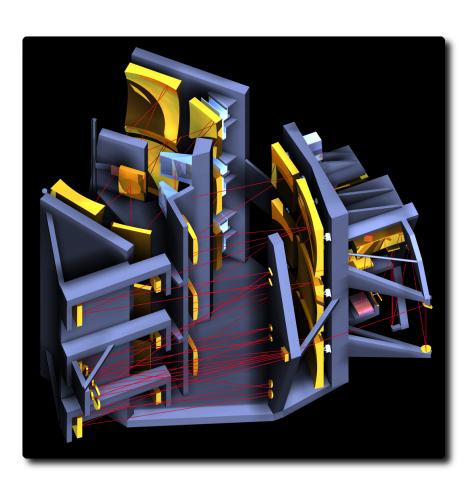
Solicited by ESA to gauge interest in community and possibilities for participation

Clear European interest in near-IR Spectroscopy from the start

Early ESA Activities (1997-1999)

- ESA Study Scientist and Manager Appointed
 - Sponsored 34th Liège Conference
 - Participated in NASA Ad Hoc SWG
 - Sponsored range of concept studies with industry and science community
 - Instruments (visible Camera, near-IR Camera, near-IR Spectrograph, mid-IR instrument)
 - Telescope Segment
- Similar competing instrument concept studies sponsored by NASA and CSA

Let a thousand blossoms bloom era



Early All-IFU Concept (circa 1999)

NIR Spectrograph Concept

Low Res Channel:

R=150 $1.25-2.5 + 2.5-5.0 \mu m$ (two octaves) 46 x 40 arcsec FOV 0.18 arcsec/pixel

Six 2k x 2k detectors

High Res Channel:

R=3000 $1.25-2.5/2.5-5.0 \mu m$ (one octave) 3.2 x 3.2 arcsec FOV 0.05 arcsec/pixel

Four 2k x 2k detectors

Dimensions: 1.4 x 1.4 x 1.0 m

Total Mass: 143 kg

Power Dissipation at 30 k: 35 mW

- Single mechanism (High Res grating flip)
- Simple "Point and Shoot" operations

Primeval NIRSpec History

Hyannis Conference (1999)

ASWG-spawned Near-IR Spectrometer Committee:

Ultimate sensitivity ⇒

Dispersive Approach

Large FOV Multiplexing ⇒

All-IFU too small FOV

High Res Single Object ⇒

IFU attractive

NIRSpec is Born

Thus Spoke ASWG (2000)

10 January, 2000

NGST Science Instrument Recommendations

John Mather (NASA/GSFC), Peter Jakobsen (ESTEC/ESA), Simon Lilly (CSA/Toronto), and Peter Stockman (STScI)

Summary of Recommendations

The following three-instrument complement provides a minimum for the NGST:

- A camera with near IR and visible filters, sensitive over 0.6 5 um
- A multi-object dispersive spectrograph (MOS) for 1 5 µm, with R~1000
- A combined camera/slit spectrograph for 5 28 µm with R~1500

At least one of following key capabilities is also highly recommended:

- An integral field spectrograph (IFS) for 1 5 µm
- A high-resolution camera, optimized for 0.6-1 µm
- An integral field spectrograph (IFS) for 5 28 µm

NIRSpec is Born

Thus Spoke ASWG (2000)

10 January, 2000

NGST Science Instrument Recommendations

John Mather (NASA/GSFC), Peter Jakobsen (ESTEC/ESA), Simon Lilly (CSA/Toronto), and Peter Stockman (STScI)

Summary of Recommendations

The following three-instrument complement provides a minimum for the NGST:

- A camera with near IR and visible filters, sensitive over 0.6 5 µm
- A multi-object dispersive spectrograph (MOS) for 1 5 µm, with R~1000
- A combined camera/slit spectrograph for 5 28 µm with R~1500

At least one of following key capabilities is also highly recommended:

- An integral field spectrograph (IFS) for 1 5 µm
- A high-resolution camera, optimized for 0.6-1 µm
- An integral field spectrograph (IFS) for 5 28 µm

Early NIRSpec History

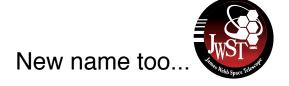
Competitive Definition Phase (2000-2003)

Ended badly (but eventually kissed and made up)

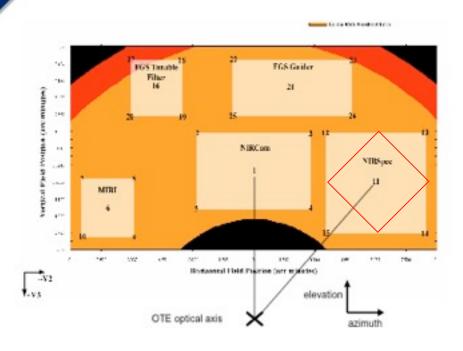
- ESA participation in NGST approved through competitive ESA "F2/F3" mission selection
- ESA/NASA negotiations successful
 - ESA provides MOS NIRSpec
 - Detectors and MSA from NASA

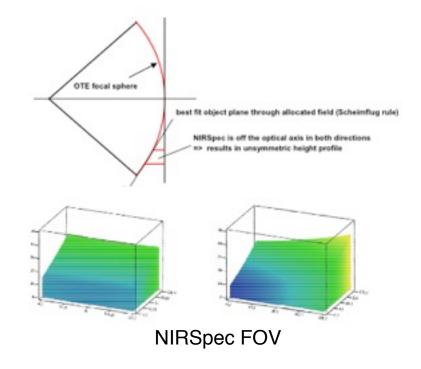
- Competitive NIRSpec Industrial Studies initiated
 - Two Industrial Consortia

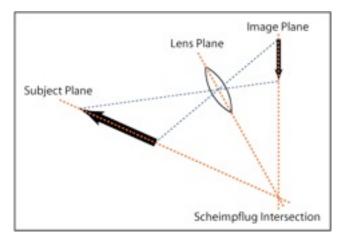
Competitive Definition Phase (2000-2003)


Ended badly (but eventually kissed and made up)

- ESA participation in NGST approved through competitive ESA "F2/F3" mission selection
- ESA/NASA negotiations successful
 - ESA provides MOS NIRSpec
 - Detectors and MSA from NASA




- Competitive NIRSpec Industrial Studies initiated
 - Two Industrial Consortia



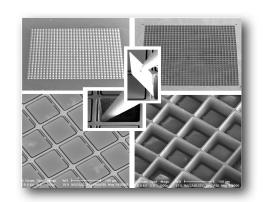
Key Moments in NIRSpec History

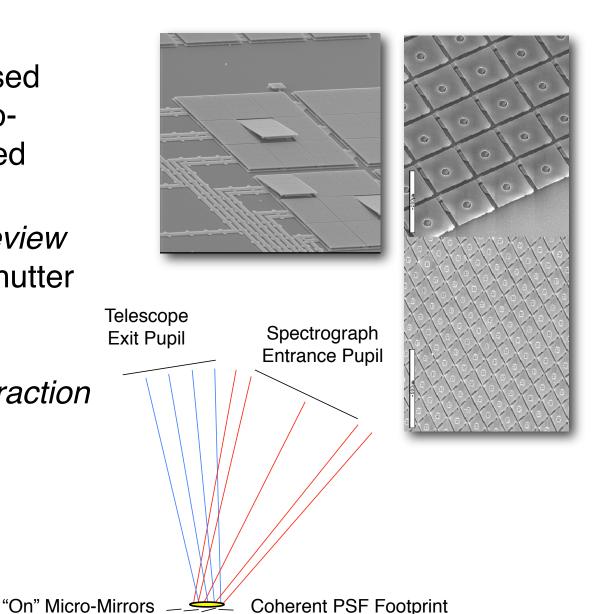
Scheimflug (circa 2000)

Theodor Scheimflug (1865-1911)

NIRSpec Foreoptics needs to image curved telescope focal plan to flat MSA surface (preferably in a telecentric manner)

Solution: Scheimflug Imaging

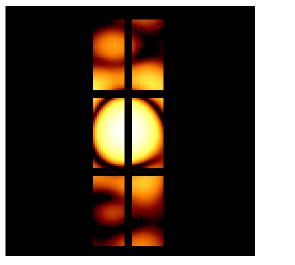

Key Moments in NIRSpec History

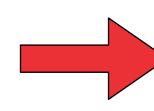

Micro-Shutters over Micro-Mirrors (2001)

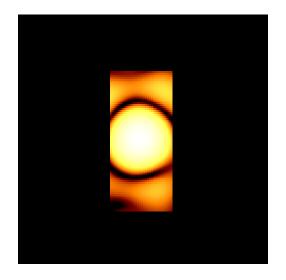
Initially both MEMS-based micro-mirrors and microshutters were considered

Independent MEMS Review Board recommended shutter over mirror technology

One consideration: Diffraction




'Fat MEMS' (2003)


Original MSA: 100 μ m x 200 μ m pitch with 20 μ m bars (Since changed to 105 μ m x 205 μ m with 28 μ m bars)

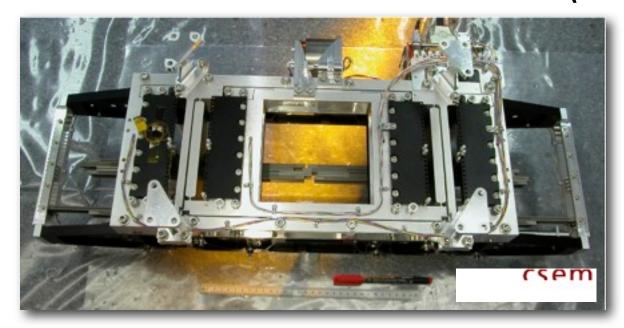
Original Platescale at MSA: 1.0 "/mm

New Platescale at MSA: 2.5 "/mm

Slit made of pattern of 80 mas x 180 mas shutters with 20 mas bars in middle

Slit made of single 200 mas x 450 mas shutter (50 mas bars)

Advantages: MSA > 4 times smaller(!) Less Diffraction in Slit


2.5 x Demagnified FOV⇒ More Compact Instrument

Price to Pay: Loss of Multiplexing Capability

Key Moments in NIRSpec History

Exclusion of Mechanical Slit Mask (2003)

Development maintained through early MEMS development Intended to be 'drop-in' back-up to MEMS-based MSA

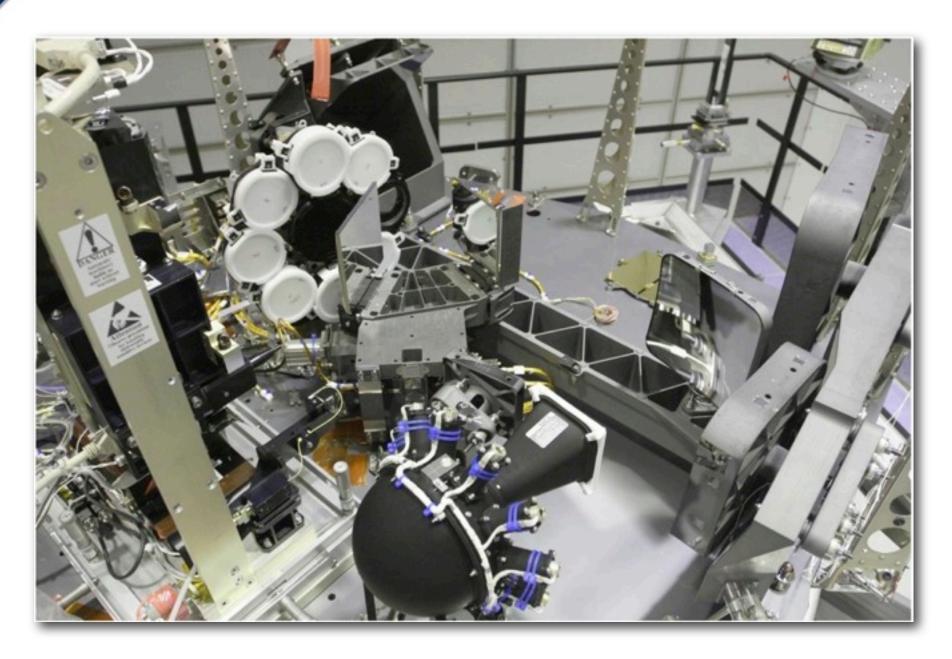
Problem: MSM is a *macroscopic* device - the MSA is *microscopic* ⇒ MSM requires larger image magnification than MSA ⇒ Different **Foreoptics**

Serious accommodation problems to start with

Following 'Fat MEMS' change only 10-15 slitlets possible

More Familiar NIRSpec History

Implementation Phase (2004-Present)


EADS/Astrium wins NIRSpec Contract

- ESA AO Released
- NIRSpec IST Appointed (ELIXIR created!)
- System Requirements Review (2004)
- Preliminary Design Review (2006)
- R=100 Prism Changed from ZnS to CaF₂
- Critical Design Review (2008)
- 1600 mas Square Aperture Introduced
- Instrument delivery now within sight...

Thirteen Years in the Making...

