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Introduction

The problem

— The environment constituents

— Problems from interactions with the environment
The solution

— Knowledge (models, measurements)

— Simulation (prediction of effects)

— Testing

Learning lessons (feedback]

The process

— What the engineers do, & when
— Standards, “tools”



The problem



What is the "Space Enuironment"
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- When we refer to space environment, we
do not normally include 2 important
“environments”:

—Thermal (a major technical issue)

— Gravity field (and microgravity conditions)
 But we also consider:

— Atmospheres (esp. Earth, Mars)

—Magnetic fields (Earth, etc.)
— [Electric fields)



Radiation



Three main sources of radiation
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Three main sources of radiation

, Cosmic Rays

rgetic Particles . magnetosheath (] Radiation BeItS
PR — High radiation dose

| - « Solar Particle
b Events

Radiation Belts .
— Sporadic but

dangerous when
they happen

Geomagnetic Field

e Galactic Cosmic
Rays

— Low flux but highly
penetrating



Three main sources of radiation

rgetic Particles
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Radiation Belt Regions y’@)

Inner belt — dominated by
e protons
\‘ / ~ CRAND
' = Cosmic Ray Albedo
Neutron Decay
Radiation ~ -static
Selt | — 100's MeV

Radiation - Outer belt — dominated by
Bt electrons

/ ‘ — Controlled by “storms”

Magnetic / — Very dynamic

Aoiks - = MEV

South Atlantic Afiomaly

(200 km from Efrth's Surface) SlOt

— Usually low intensities of
Inner Zone MeV electrons

— Occasional injections of
more particles

slet Outer Zone




500km altitude The South Atlantic Anomaly
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South Atlantic
anomaly
.
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205 km o alt, = 50 Mev proton fluxes, AFPEMIM madeal

Earth's magnetic field is
an offset tilted and distorted dipole

— Brings radiation belt down
In the South Atlantic



The Two Source Mechanisms
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High Energy Protons (Inner Belt)

Cosmic Ray Albedo Neutron Decay
Nuclear interaction in atmosphere

Some products are upward travelling
neutrons

Decay (half life ~10min) into p, e
Results in very stable population
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High Energy Electrons (Outer Belt)

Geomagnetic Storms
Geomagnetic Tail loaded

Reconnection results in earthward
propagation & acceleration

Subsequent acceleration through wave-
particle interactions

Transport through radial diffusion
Loss in storms
Results in very dynamic population



Characteristics of Particles

Which particles cause the problems?
— Penetrating; damaging => ~MeV electrons; 10's of MeV
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Characteristics of Radiation Belt Particles
electrons 0.5 - 5 MeV; protons up to 100's MeV
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- gyration period t. = 22m/(eB); radius of gyration of R, = mv?/(eB).

Characteristics of typical radiation belt particles

XKL )

Gyro Motion Bounce Motion Drift Motion

Particle
af §‘°' 1MeV 10MeV
1,0 Electron Proton
F i Range in aluminium (mm) 2 0.4
_ 1o Peak equatorial omni-directional flux 4 x 106 3.4x 105
(cm2.g1)*
- L Radial location (L) of peak flux (Earth 4.4 1.7
g radii)*
=3 3 i Radius of gyration (km)
e e @ 500km 0.6 50
@ 20000km 10 880
Gyration period (s)

7 @ 500km 10 7x 103

g "'i @ 20000km 2 x 104 0.13
é »— | Bounce period (s)

. § @ 500km 0.1 0.65
=S R @ 20000km 0.3 1.7
s 9 Longitudinal drift period (min)

"l @ 500km 10 3
¥ 2 @ 20000km 3.5 1.1
: * derived from the models discussed later

1!

Slot Region



MOdels Of e 1' ISS NaV GEO +?.;Mev
. . 1.E+O7—. - e s —_::2 M:z |
Radiation Belts s T : \ o
e N

)
»

provide Engineers
with Quantitative

Data -
1.E+O1f
:

Omnidirectional Flux > E (/lcm2/sec
— — — —
m m m m
+ +
o o o o
N w B [6)]

1 2 3 4 5 6 7 8 9 10 11 12

Geomagnetic L Value (Earth radii)

Based on data from - e -
1960's-1970's - /\ o electrons
\ —u—>FEreg MY

Work on-going to Tomme
AN

:

;

jonal Flux > E ﬁcmZ/sec)

but the outer belt Is z
very stormy im

update them \\
Long-term averages; v | protons
i ChTig‘HicL\dL:(EaWaji)S °

%_

N




To be Useful: Conuert Flux to Dose

Typical Annual Mission Doses (spherical Al shield)

* The ionizing dose 1-°°E+°8% e
environment is normally 4 e
1.00E+07 f?; SO
represented by the dose- B B ==
depth curve. 100E+05 *3% =
 dose as a function of S .
shield thickness in 8 " SPE
as a function of spherical  § rooeo |
shielding about a point. Nt ||
1.00E+03 - ~ |
\ / 1.00E+02
—
100B+01 e b e b b b b
0.00 200 400 6.00 800 1000 1200 14.00
/ \ Depth (mm Al)
\ Modern electronic components can

fail at a few krad (men die at 100’s)



Circular
equatorial
orbits for 1
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A Radiation Monitor Crossing the Belts for ~5 Years
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Failure of Equator-S Spacecraft
due to "killer electrons”

4 Integrated Electrons and Protons
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“Internal” electrostatic charging

MeV electrons penetrate

165 Supel,rpoaed epoi:h Gnalysis[ldnomall'ea 'rlor 1988—19;92). :
material and build up an
electrostatic charge

E ( Qwerage 1‘[ -
Thermal B U _
Blanket E 1/ =

[ 24 48 T2 a8 1290 144 168 192
Time [hours)

* Meteosat 3 (1988-1992) had many
disturbances

« On average, environment was seen to
get severe before an anomaly




11-year Solar Cycle
Variations

Flux (protons/cm?-s)

Low altitude protons:
« Controlled by the
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Other planets

- Jupiter has a very
severe radiation belt

ESA is studying a
possible mission to the
Jovian system

- Intensive work on-
going to understand
and cope with the
environment

- Saturn also has a
significant RB
environment




Three main sources of radiation
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 Solar Particle
Events
— Sporadic but

dangerous when
they happen



Solar Particle Events

Associated with energy release
on the Sun

Particles can be accelerated near
to the Sun and all the way to
Earth in the plasma “shock” wave

TIME= 1.82544 h

Often associated with “flares”

First particles can arrive in
minutes

High fluxes can last for days 2000/07/14 08:12:10

Geomagnetic field shields some
orbits




A strong solar flare triggers the largest particle storm
of this solar cycle near solar maximum

2000/07/14 10:24

A powerful flare flashes . . . A e T
anvernpAae
and hours (even days) later
4 T & ... - high-energy protons were
P f : P o8 still smacking SOHO
* Ao L . i e, _ :

0
"M

2000/07/14 10:30 £ 2000/07/14 154 2000/0%/ 14 17:06

Protons unleashed by the flare begin striking SOHO in minutes




October 1989: Example of a very large SPE

Multiple events, lasting ~10 days

GOES—7 Spoce Environment Mt:-nitDrv&E—Min Averages)
October 1989 (97.6°W)
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More Radiation Effects on SOHO

S0OHO SSR Single Event Upsets, parameter DKSSCSEF (events/minutesi2G-bit)

100.0000

Errors 1n on-
board
memory:
Single Event
Upsets

Bastille Day Event, 2000

10.0000 1

Caused by /

solar particle . jmmiu F‘

events

And /

background /
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v

COSmic rays

Courtesy ESA SOHO Team GSFC
Fleck, van Overbeek, Olive, ...




More Radiation Effects on SOHO

SOHO Solar Array Degradation, based on the average of the two section currents (PISW1 and

PISW2)
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Statistical Models

Give time-integrated

fluence for given Solar Proton Doses (1 yr, 95%)

mission durations, o Goo & Herpnetry)
: : 1.00E05 a Poir

orbits, “risk” level ;1

Fluence predictions | "™

P—

—_—

converted to dose — 3,y

Effect of | S e B w \.%
geomagnetlc S —~ —
shielding" 1.00E+01 -

1.00E+00

0.00 200 400 6.00 800 10.00 1200 14.00 16.00 18.00 20.00
Depth (mm Al)




Long Term Record of Solar Particle Events
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Highly unpredictable
Design for by making statistical assessments



Three main sources of radiation

, Cosmic Rays
rgetic Particles - .

gﬁo““ F. magnetosheath
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Radiation Belts

Geomagnetic Field

« (Galactic Cosmic
Rays
— Low flux but highly
penetrating



Galactic

Cosmic
Rays

Seen as a baseline on

particle measurements
and SEUs

Low flux of very high
energy heavy ions

Very penetrating and
lonising in matter

Geomagnetically
shielded

BAPRSLPME > 153 MEV B
T ,_'_Lﬂ,_'. T T

SOHO SER Single Event Upsets. parameter DKSSCSEF (eventsiminutes/2G-bin

N

¥i e 208

Couresy ESA FOHG Gperations Team. . Fiech |

B o e




Summary of Radiation Effects

Effect Assessment Main

Parameter Interaction

Component Ionizing Dose |lonization

Degradation

Solar Cell Non-ionizing Displacements

Degradation dose

SEU Rate Ionization

Radiation Rate Ionization

Background

Optoelectronic Non-ionizing |Displacements

Degradation dose

Astronaut Hazards |Dose Ionization

Equivalent
Internal Charging Fields Ionization




100.0

S0HO S5R Single Event Upsets, parameter DKSSCSEF (events/minutes/2G-bit)
e S a w Mote 1: Betwion Sep 13 2000 and Jun 26 2000, MU 15 was OFF

Mote 2: Betwean Dec 26 2004 and Jan 24 2006, MU 11 was OFF
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“Single-euvent” effects

* A particle crosses (“hits”) a
(small) sensitive target

* The energy deposited
causes a noticeable effect:

— lonisation charge causes
a bit to “flip” (SEU) .
e.g. SOHO memory o

— pixels of a CCD are “lit up”
by creation of free charge
e.g. SOHO CCDs

— DNA is damaged
° Component SEU is a Two basic mechanisms

growing problem

— Intensive work on component
testing at accelerators during
a project’s development

FAST CHARGED ENERGETIC
PARTICLE PROTON

DEPLETION REGION IS




SEUs on UoSAT-3 microsatellite memory

Note
latitude
effects

Time behaviour m==p

SEUs are from:

« Cosmic rays and solar ions
at high latitude

« Radiation belt proton -
nuclear reactions in the o a0 a0
South Atlantic anomaly Day of Year 1989




Manned Missions Away from LEO Risk High Doses

(prompt radiation sickness at ~100 REM (1 Sv); death at 400)
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Basic Radiation Assessment Process
- Testing Is Crucial

Select
orbit \. Specify
environment
; Select N .
component |\ T—d ¥ v "
1 Select Select
| Select /define payload solar cells
shielding \ \<
< Can it Can it
+ survive? survive?
/ . Don’t know \/\/
Can it

survive?

Test
(dose, p,
NIEL,

ions) — —

build




Models
Space Environment Information System
« Models of radiation belts, etc. a n d Too I S

— AES8
AP8 & Model packages - Mozilla Firefox M= X

File Edit View Go Bookmarks Tools Help

—_ FI u miC <:§| - I_L d @ ! : | @[ 8 http: /fwww . spenvis.oma. be/spenvis fhtbin fspenvis. exe/HERSCHELPLAMCE. IL:] @ Go @,sclar proton solar cell

CRRES ELE L] aDsL || Firewall | ) Personal | ) News | J Resources |} Rhea | ) Work | ) Merchants X54ALL Webmail & Main Page - TOS-EES || Main Page - TOS-EES

_|A

SPENVIS Project: TEST ¢output

Model packages TRep

- Have to be used Coordinate generators
together With a mOdel Radiation sources and effects
of magnetic field (right one!) Ceeer D
and Orbit generator Atmos; hee and ionosphere J

» Calculation of resulting
— Doses

— NIEL
The EppWaEn-.ﬂi-ﬂq mﬂqttiuf-:'rmamn :-ﬁth'u
— Solar array damage

fluence The models implemented in SPENVIS are combined in the packages listed abowv
. a ||st of models me model suites have to be executed in a cribed orc
— Single event effects

voordinate transformations

Clicking on a package name will expand the table with
Viodel links will not available e equired runs
nd ag aphical coordinate '|||:I Cli n the

o sets of coordinates. The model links will adapt to the

ve not b uted yet. Most models run o
rdinate g ator links and returning to this page toggles be
e of coordinates.

The model pages have deliberately been kept as concise as possible. A navigation bar is figured at the top of each SPENVIS page.
H H . The Help link in the bottom right hand corner of this bar points to context sensitive help pages, which in turn ¢ ain their own
[ ] Shleld I ng tOOIS. navigation system, including access to guidelines on model usage and background information on the space environment.
. . Please do not use your bro
— Simple geometrical input parame

buttons featured on each page.

Shleldlng For additional assistance (after consulting the help pages) and feedback, please contact
1 1 1 D.Heynderickx@ .be (SPENVIS Project Manager)
- M u Itl-layer mu Itl-mate rlal : El.gjanghngu:@g;::bs ’:-E'F‘EI‘I S »’l::;:lllc tt“jilE;!;“:_Iee”
H H + J.Wera@oma.be (SPENVIS Web Enginser) =
shielding (MULASSIS) | : =

Done

r's Back or Forward buttons (except for navigating in the help pages), as these actions do not save
rs. Full navigation between model pages is available through the menu bar at the top of each page and the action

www.spenvis.oma.be



Plasma Enuvironment
and Effects



Spacecraft Surface Charging

27 February 1982: interruption (ESR)
on Marecs-A Maritime Com. Sat.

Main anomaly & other small ones
coincident with geomagnetic “substorms”

Anomalies caused by electrostatic charging
— discharge

— large areas of dielectric thermal blankets
— large differential charging

Marecs-A and E(CS-1 satellites had power
losses on sections of solar arrays

Telstar 401 failure on 10t Jan 1997
following storm on 7t

ANIK-E1 & E2 failures in 1994 and 1996



Spacecraft Charging Anomalies

first seen in the early 1970’s

ATS-5 (weather technology satellite,
launched 1969 into GEO)

Directly observed high-level charging
of its surfaces in hot plasma environments

Around that time military and early
communications satellites in GEO

(DSCS, DSP, Intelsat, Skynet,
Symphonie) had many anomalies.

= L=




Spacecraft Electrostatic Charging Effects

208 JOInnl¥ 2V IR:373:49>
RN

\ o
o neo fnete tocere 23 1
VvV DSP LOGIC UPSETS
0 DSCS i1 RGA UPSETS
¥ INTELSAT IV

O INTELSAT 111
Fig. 1 Local time dependence of circuit upset for
several DoD and commercial satellites.

98 D.L. REASONER, W. LENNARTSSON, AND C.R. CHAPPELL \

Sustained Arc on EOS-AM1 (Terra) Q-Board (Ferguson, NASA Glenn)

T \\- Anomalies in '70's and ‘80's found
to correlate with locations of "hot
plasma”

Anomalies on solar arrays in '90's
'00’s traced to plasma interactions
too.

i
00 HOURS L. T.
Fig. 7 Local time distribution of ATS-6 spacecraft charging
events.




13% of failures Iin space power
systems are due to discharges

Array failures (other)
5% ﬁ|

Impact L | Array Mechanical
3% '||H | Failure
| 18%

Attitude or computer
failure
8%

Plasma Discharge
13%

Wiring / interconnects
15%

Darkening or Reflectors
14%
Solar cell failures
11%

Battery Failure
13%

Figure 1. Number of power-related failures, by cause



Hot Plasma and Spacecraft Charging

- A plasma is a “gas of free electric charges”
atoms — ions, electrons




- Electrons are lighter,
more mobile

Objects usually
collect more
negative
charge

Objects acquire a
negative “voltage”
sufficient to
balance currents
(~ electron energy
(in electron Volts))

l(Vp) + 1,(Vp) =0




Backscattered
electrons

Secondary

Electrons

electrons

Backscattered
10ns

lons

Secondary
electrons

Solar UV photons

Photoemission

electrons

Surface material properties
play a major role!




Equilibrium potential determined by
(attempt to achieve) current balance

I€+Ii ISE_I_Ib_I_Iﬂ_I_ka_I_IF

surface-to-surface
currents

“secondaries”
environment - material dependent

Currents are affected by geometrical factors:
» Shadowing from UV
« 3D electric fields features (“barriers”)
Necessitates complex 3D simulations




Material Dependence of Charging Levels
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Other Issues

* Plasma interaction issues also include:
— Electric propulsion interactions
— Scientific (plasma) instrument interference

* Analysis techniques:

— Current balance assessment
of charging levels
(can be simple, or 3D)

— Full plasma simulation codes




Meteoroids
and Space Debris



Example hole in HST solar
cell (Crater size: 4 mm)

HST Solar Arrays Retrieved
In March 2002

Spring of HST solar array
cut by impact




Meteoroids anderis _

r e

Natural meteoroids are
encountered everywhere.

Space debris mainly below 2000
km altitude and in the
geostationary ring.

Typical impact velocities are 10
km/s for debris and 20 km/s for
meteoroids.

In LEO meteoroids dominate
between 10 microns and 1 mm,
debris for larger and smaller sizes.

IIz{ough fluxes (met + deb) at 600
m:

— forD > 1 pu: 2000/ m?/year

— forD > 10 p: 200 / m?/year

— forD>100 p: 4/ mé/year

— forD > 1 mm:0.005/ m2/year



SPACE NEWS

More Orbital D

BECKY [ANNOTTA, WASHINGTON

A disintegrating former
Russian military satellite sent
500 pieces into space during
three explosions between
March and June, shortly after
shuttle astronauts observed
space debris damage to a
handrail and teol that are used
during spacewalks outside the
international space station.

While there is no way to
track where the debris that im-
pacted the space station origi-
nated, NASA officials were
closely watching pieces falling
off the Russian Electronic
Ocean Reconnaissance Satellite
(Eorsat) to make sure it did not
posc a risk to the station, said
Gene Stansbery, manager of
NASA’s Orbital Debris Program
Office at Johnson Space Center
in Texas

“The concern is [that the
Forsat] is in an orbit not too far
above space station,” Stansbery
said. “The satellite is in that or-
bit during its lifetime and when
it's finished it stares drifting
down and alternately starts de-
caying. If it's fragmenting close
to the space station then there’s
more likelihood of it hitting the
space station.”

The Eorsat, also dubbed Cos-
mos 2421, is the 50th of a satel-
lite series first launched by Rus-
sia in 1974. Stansbery said this
Eorsat is suspected to be the last
one in orbit, but Russia has not
provided information request-
ed by NASA about the satellites
— making it difficult to know

July 21, 2008

ebris Added as Russian Satellite Explodes

discovered the crater, prompt-
ing NASA 1o declare that loca-
tion an area to be avoided by
spacewalkers, said NASA
spokesman Mike Curie.

I'he crater was one suspect-
ed of causing small tears on
gloves during earlier space-
walks. Astronauts on subse-
quent missions swiped a swatch
of the glove material across the
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Hyperuelocity particle impact generates
a cloud of secondary debris

* Shielding strategy is to use
multiple walls
= “Whipple shield”



Analysis of Meteoroids and Debris Risks

Population models
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Enuironment Monitoring

* To improve knowledge of environments
« To improve understanding of effects
 To support host spacecraft

Radiation monitors
(e.g. Proba, Integral, XMM,
Galileo, Herschel, Planck...)

Microparticle monitors
(e.g. Proba, Columbus(1SS))
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What is done in the project

"lifecycle™?
Early phases:
— orbit selection,
— spacecraft/payload initial design under consideration
— environment considered in trade-offs
— establish environment specification (can iterate during project)

Development phase

— detailed analysis of problem areas (e.g. 3D radiation shielding);
— close interactions with testing activities

— assessment of “margins”

— reviews

In-flight:

— Assessment of behaviour / anomaly investigation

— Feedback; lessons learned



Space Enuironment Information System
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Avuailable Standards

ECSS-E-10-04

Space Environment (revision)
ECSS-E-10-12

Methods for Calculation of Radiation Effects
ECSS-Q-60-11

Radiation Hardness Assurance
ECSS-E-20-06

Spacecraft-Plasma Interactions



