

How Does A Space Project Work ?

The Final Chapter: Operations

Johannes Riedinger Herschel Mission Manager Elixir Training School 20-May-2011

European Space Agency

- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

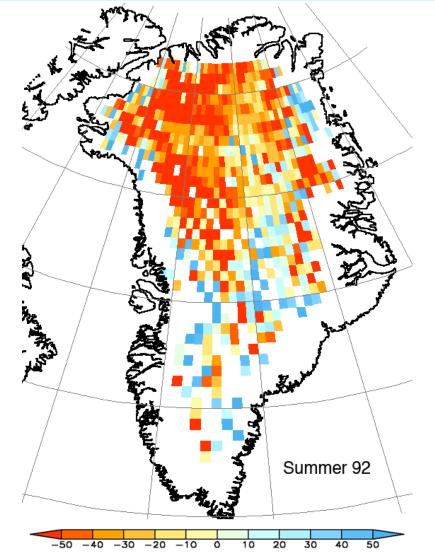
Landfall of hurricane Katrina 2005

- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

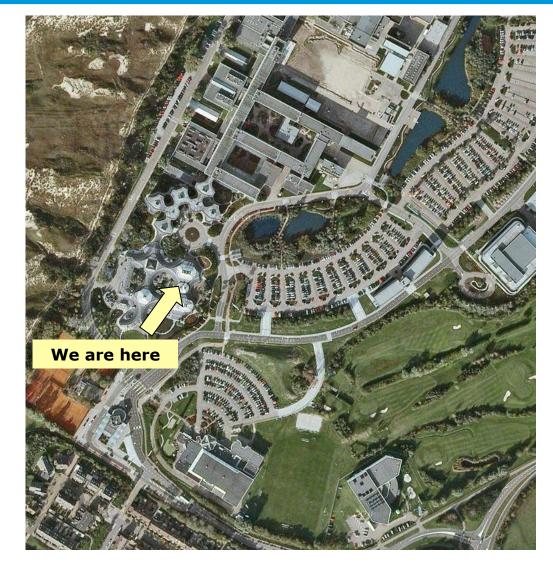
Ground truth #1 after landfall

- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- > Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

Ground truth #2 after landfall


- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

Eye of hurricane Luis 1995

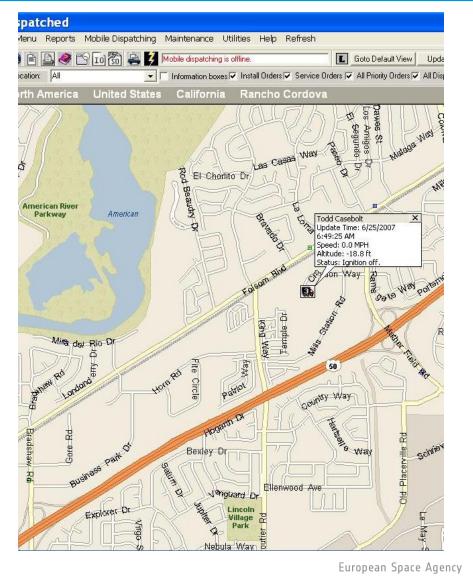


- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

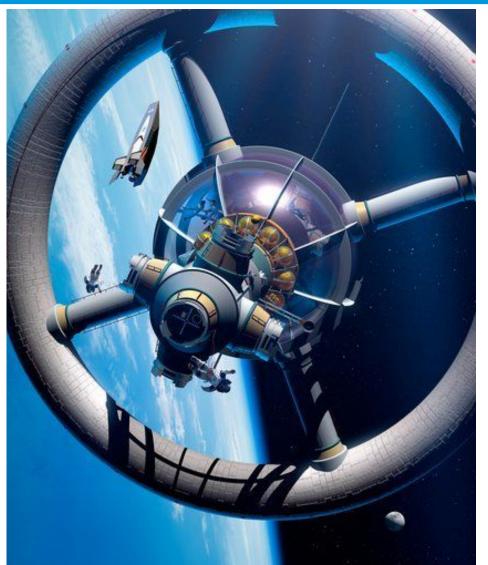
- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- > Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges



600-02264465 [RF] © www.visualphotos.com

- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- > Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

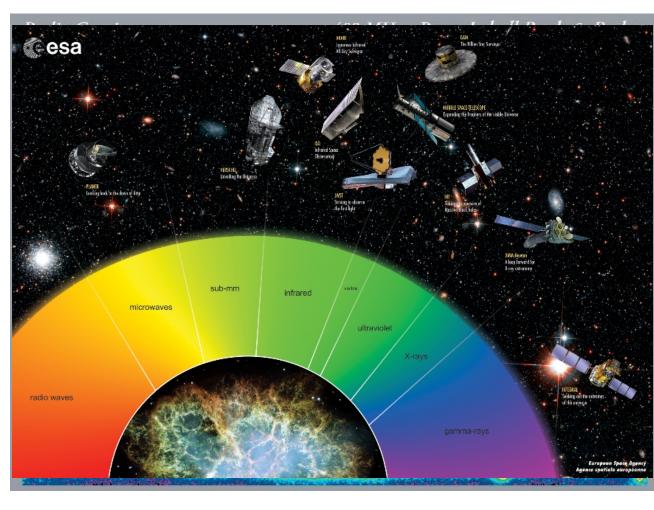


- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

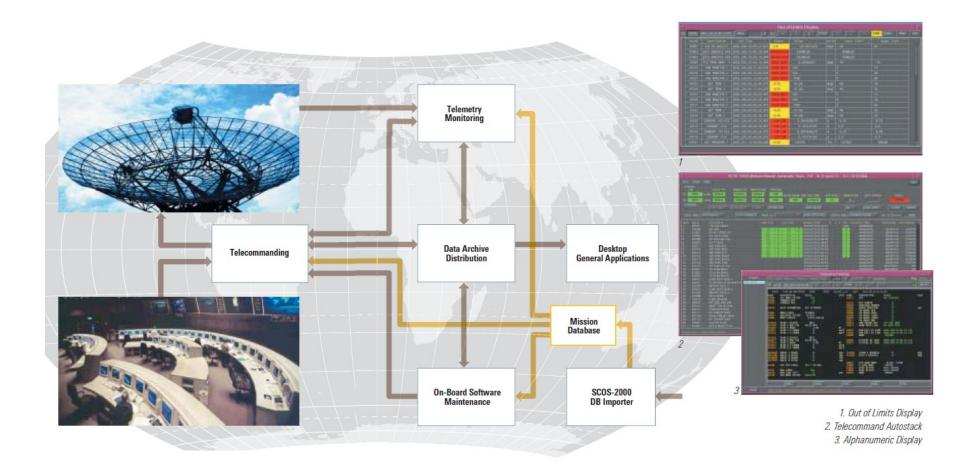
European Space Agency

- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- > Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength range

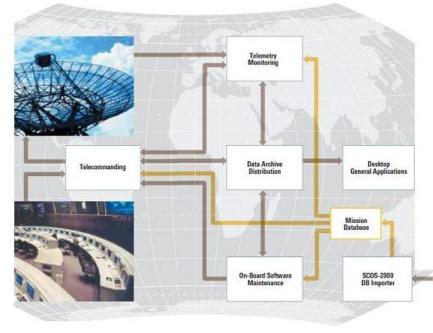


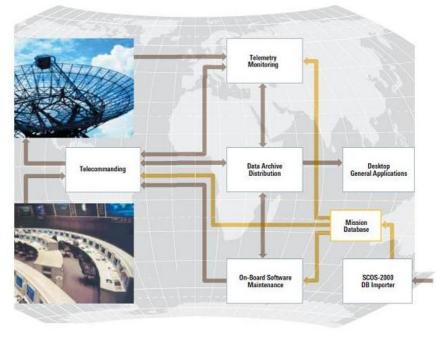
- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- > Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

- Earth Observations
 - Weather
 - Environmental monitoring
 - Map making
- > Telecommunications
 - Phone & videoconferences
 - Satellite TV
- Global Positioning Services
 - Navigation & Applications
- Manned Spaceflight
 - Science
 - Recreation
- Solar System Missions
 - Remote sensing
 - In situ measurements
- Astrophysics Missions
 - Almost all wavelength ranges

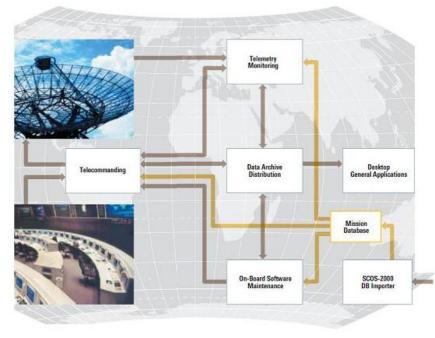

"Common" Infrastructure Across Mission Types: Ground Station and its Infrastructure

- Size of antenna: Typically 12–35 m (ESA), up to 70 m (NASA Deep Space Network)
- > Antenna size needs to increase with
 - Distance satellite-Earth (few hundred km for Low Earth Orbit, Voyager 1 spacecraft currently at 17.4 · 10⁹ km (~115 AU) → light round trip time > 32^h)
 - Decrease in spacecraft transmitter power (typically a few to a few hundred Watts)
 - Increase in data rate (e.g. Herschel 1.5 Mbit s⁻¹ in downlink, 4 kbps in uplink)
- Ground Station provides electrical (10s of kW transmission power), mechanical (move tons of mass reasonably quickly, point with high precision and stability), thermal, computer & network infrastructure

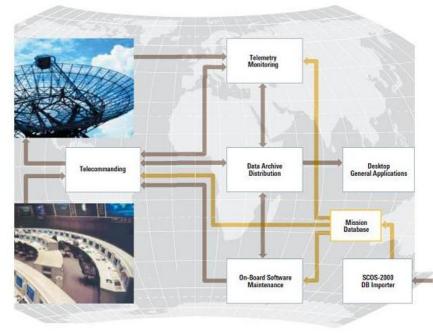




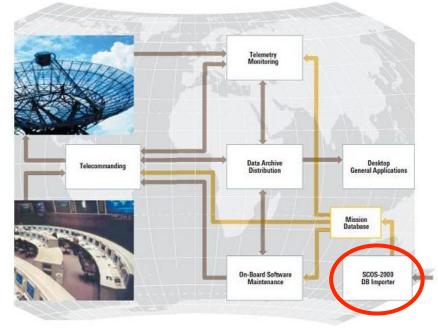
- > ESA has developed its own Mission Control Systems starting in 1974
- > Most recent offspring in this family is SCOS-2000, used by ESA and its partners
- SCOS-2000 is a generic, database driven application with mission-specific customisation
- SCOS-2000 DB Importer: Most projects maintain the DB in a commercial system (e.g. MS-Access)
- Mission Database: Contains all parameters needed for commanding (command mnemonics, their parameters, their translation to bit patterns, etc.) and for interpreting telemetry (parameter location in TM stream & length in bits, calibration curves for conversion to physical units, safety limits, parameter position on screen); mission specific
- On-Board S/W Maintenance: Conceptually, this extends telecommands (change/add functionality)
- > Data Archive Distribution: Raw data archive, distribution to internal & external users
- Desktop general applications (e.g. graphical displays of parameters, trend analysis, etc)



- > ESA has developed its own Mission Control Systems starting in 1974
- Most recent offspring in this family is SCOS-2000, used by ESA and its partners
- SCOS-2000 is a generic, database driven application with mission-specific customisation
- SCOS-2000 DB Importer: Most projects maintain the DB in a commercial system (e.g. MS-Access)
- Mission Database: Contains all parameters needed for commanding (command mnemonics, their parameters, their translation to bit patterns, etc.) and for interpreting telemetry (parameter location in TM stream & length in bits, calibration curves for conversion to physical units, safety limits, parameter position on screen); mission specific
- On-Board S/W Maintenance: Conceptually, this extends telecommands (change/add functionality)
- > Data Archive Distribution: Raw data archive, distribution to internal & external users
- Desktop general applications (e.g. graphical displays of parameters, trend analysis, etc)

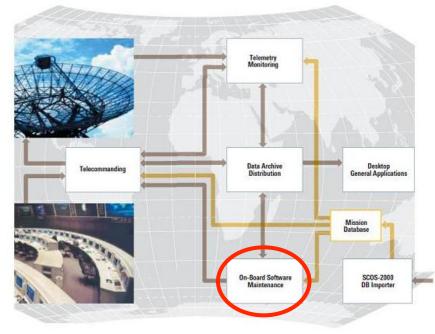


- > ESA has developed its own Mission Control Systems starting in 1974
- Most recent offspring in this family is SCOS-2000, used by ESA and its partners
- > SCOS-2000 is a generic, database driven application with mission-specific customisation
- SCOS-2000 DB Importer: Most projects maintain the DB in a commercial system (e.g. MS-Access)
- Mission Database: Contains all parameters needed for commanding (command mnemonics, their parameters, their translation to bit patterns, etc.) and for interpreting telemetry (parameter location in TM stream & length in bits, calibration curves for conversion to physical units, safety limits, parameter position on screen); mission specific
- On-Board S/W Maintenance: Conceptually, this extends telecommands (change/add functionality)
- > Data Archive Distribution: Raw data archive, distribution to internal & external users
- Desktop general applications (e.g. graphical displays of parameters, trend analysis, etc)



- > ESA has developed its own Mission Control Systems starting in 1974
- > Most recent offspring in this family is SCOS-2000, used by ESA and its partners
- SCOS-2000 is a generic, database driven application with mission-specific customisation
- SCOS-2000 DB Importer: Most projects maintain the DB in a commercial system (e.g. MS-Access)
- Mission Database: Contains all parameters needed for commanding (command mnemonics, their parameters, their translation to bit patterns, etc.) and for interpreting telemetry (parameter location in TM stream & length in bits, calibration curves for conversion to physical units, safety limits, parameter position on screen); mission specific
- On-Board S/W Maintenance: Conceptually, this extends telecommands (change/add functionality)
- > Data Archive Distribution: Raw data archive, distribution to internal & external users
- Desktop general applications (e.g. graphical displays of parameters, trend analysis, etc)

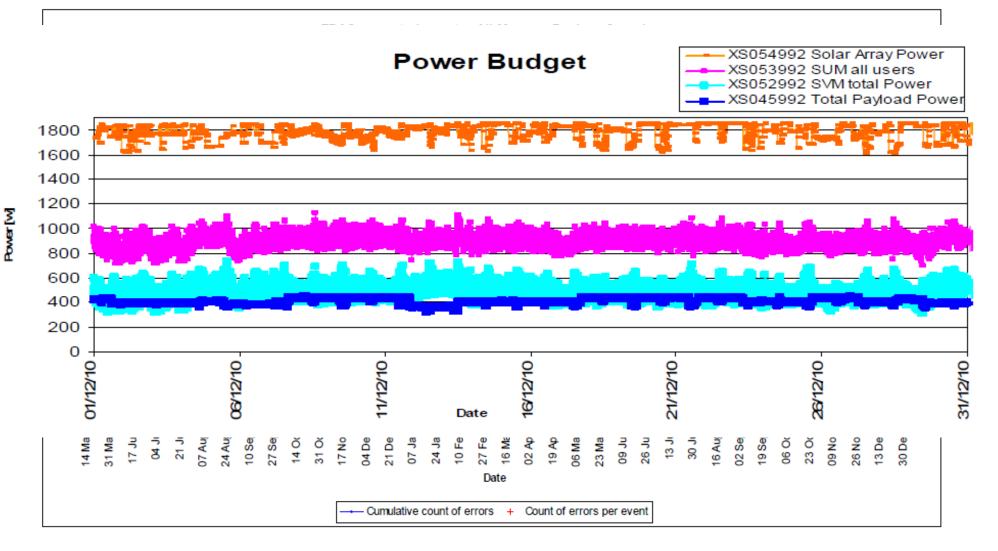
- > ESA has developed its own Mission Control Systems starting in 1974
- > Most recent offspring in this family is SCOS-2000, used by ESA and its partners
- SCOS-2000 is a generic, database driven application with mission-specific customisation
- SCOS-2000 DB Importer: Most projects maintain the DB in a commercial system (e.g. MS-Access)
- Mission Database: Contains all parameters needed for commanding (command mnemonics, their parameters, their translation to bit patterns, etc.) and for interpreting telemetry (parameter location in TM stream & length in bits, calibration curves for conversion to physical units, safety limits, parameter position on screen); mission specific
- On-Board S/W Maintenance: Conceptually, this extends telecommands (change/add functionality)
- Data Archive Distribution: Raw data archive, distribution to internal & external users
- Desktop general applications (e.g. graphical displays of parameters, trend analysis, etc)



- > ESA has developed its own Mission Control Systems starting in 1974
- > Most recent offspring in this family is SCOS-2000, used by ESA and its partners
- SCOS-2000 is a generic, database driven application with mission-specific customisation
- SCOS-2000 DB Importer: Most projects maintain the DB in a commercial system (e.g. MS-Access)
- Mission Database: Contains all parameters needed for commanding (command mnemonics, their parameters, their translation to bit patterns, etc.) and for interpreting telemetry (parameter location in TM stream & length in bits, calibration curves for conversion to physical units, safety limits, parameter position on screen); mission specific
- On-Board S/W Maintenance: Conceptually, this extends telecommands (change/add functionality)
- > Data Archive Distribution: Raw data archive, distribution to internal & external users
- Desktop general applications (e.g. graphical displays of parameters, trend analysis, etc)

- > ESA has developed its own Mission Control Systems starting in 1974
- > Most recent offspring in this family is SCOS-2000, used by ESA and its partners
- SCOS-2000 is a generic, database driven application with mission-specific customisation
- SCOS-2000 DB Importer: Most projects maintain the DB in a commercial system (e.g. MS-Access)
- Mission Database: Contains all parameters needed for commanding (command mnemonics, their parameters, their translation to bit patterns, etc.) and for interpreting telemetry (parameter location in TM stream & length in bits, calibration curves for conversion to physical units, safety limits, parameter position on screen); mission specific
- On-Board S/W Maintenance: Conceptually, this extends telecommands (change/add functionality)
- Data Archive Distribution: Raw data archive, distribution to internal & external users
- Desktop general applications (e.g. graphical displays of parameters, trend analysis, etc)

- > ESA has developed its own Mission Control Systems starting in 1974
- > Most recent offspring in this family is SCOS-2000, used by ESA and its partners
- SCOS-2000 is a generic, database driven application with mission-specific customisation
- SCOS-2000 DB Importer: Most projects maintain the DB in a commercial system (e.g. MS-Access)
- Mission Database: Contains all parameters needed for commanding (command mnemonics, their parameters, their translation to bit patterns, etc.) and for interpreting telemetry (parameter location in TM stream & length in bits, calibration curves for conversion to physical units, safety limits, parameter position on screen); mission specific
- On-Board S/W Maintenance: Conceptually, this extends telecommands (change/add functionality)
- Image: Construction of the set of t
- > Data Archive Distribution: Raw data archive, distribution to internal & external users
- Desktop general applications (e.g. graphical displays of parameters, trend analysis, etc)


- > ESA has developed its own Mission Control Systems starting in 1974
- > Most recent offspring in this family is SCOS-2000, used by ESA and its partners
- SCOS-2000 is a generic, database driven application with mission-specific customisation
- SCOS-2000 DB Importer: Most projects maintain the DB in a commercial system (e.g. MS-Access)
- Mission Database: Contains all parameters needed for commanding (command mnemonics, their parameters, their translation to bit patterns, etc.) and for interpreting telemetry (parameter location in TM stream & length in bits, calibration curves for conversion to physical units, safety limits, parameter position on screen); mission specific
- On-Board S/W Maintenance: Conceptually, this extends telecommands (change/add functionality)
- Telecommanding

 Telecommanding

 Output output
- > Data Archive Distribution: Raw data archive, distribution to internal & external users
- Desktop general applications (e.g. graphical displays of parameters, trend analysis, etc)

"Common" Infrastructure Across Mission Types: Example of Desktop General Applications

European Space Agency

- Flight Control Team
 - Responsible for user requirements on the Mission Control System
 - Preparing Flight Control Procedures
 - Close cooperation with industry
 - User testing of Mission Control System
 - Intense rehearsal of all mission phases
- Software Support
 - Supervising development of mission-specific extensions to the standard Mission Control System
 - Acceptance testing of software deliveries
- Simulator Development
 - Modelling behaviour of all spacecraft systems in software for use by the Flight Control Team in the development of procedures & for training purposes
- Mission Analysis
 - Calculation of Launch windows; numerous constraints arise from launch, separation & orbit evolution (e.g. eclipse durations, pointing constraints)
- Science Ground Segment preparation

- Flight Control Team
 - Responsible for user requirements on the Mission Control System
 - Preparing Flight Control Procedures
 - Close cooperation with industry
 - User testing of Mission Control System
 - Intense rehearsal of all mission phases
- Software Support
 - Supervising development of mission-specific extensions to the standard Mission Control System
 - Acceptance testing of software deliveries
- Simulator Development
 - Modelling behaviour of all spacecraft systems in software for use by the Flight Control Team in the development of procedures & for training purposes
- Mission Analysis
 - Calculation of Launch windows; numerous constraints arise from launch, separation & orbit evolution (e.g. eclipse durations, pointing constraints)
- Science Ground Segment preparation

- Flight Control Team
 - Responsible for user requirements on the Mission Control System
 - Preparing Flight Control Procedures
 - Close cooperation with industry
 - User testing of Mission Control System
 - Intense rehearsal of all mission phases
- Software Support
 - Supervising development of mission-specific extensions to the standard Mission Control System
 - Acceptance testing of software deliveries
- Simulator Development
 - Modelling behaviour of all spacecraft systems in software for use by the Flight Control Team in the development of procedures & for training purposes
- Mission Analysis
 - Calculation of Launch windows; numerous constraints arise from launch, separation & orbit evolution (e.g. eclipse durations, pointing constraints)
- Science Ground Segment preparation

- Flight Control Team
 - Responsible for user requirements on the Mission Control System
 - Preparing Flight Control Procedures
 - Close cooperation with industry
 - User testing of Mission Control System
 - Intense rehearsal of all mission phases
- Software Support
 - Supervising development of mission-specific extensions to the standard Mission Control System
 - Acceptance testing of software deliveries
- Simulator Development
 - Modelling behaviour of all spacecraft systems in software for use by the Flight Control Team in the development of procedures & for training purposes
- Mission Analysis
 - Calculation of Launch windows; numerous constraints arise from launch, separation & orbit evolution (e.g. eclipse durations, pointing constraints)
- Science Ground Segment preparation



- Flight Control Team
 - Responsible for user requirements on the Mission Control System
 - Preparing Flight Control Procedures
 - Close cooperation with industry
 - User testing of Mission Control System
 - Intense rehearsal of all mission phases
- Software Support
 - Supervising development of mission-specific extensions to the standard Mission Control System
 - Acceptance testing of software deliveries
- Simulator Development
 - Modelling behaviour of all spacecraft systems in software for use by the Flight Control Team in the development of procedures & for training purposes
- Mission Analysis
 - Calculation of Launch windows; numerous constraints arise from launch, separation & orbit evolution (e.g. eclipse durations, pointing constraints)
- Science Ground Segment preparation

"Common" Infrastructure Across Mission Types: Teams in Operations

- > Flight Control Team
 - Size and location very much depends on mission phase
 - Around-the-clock shift work (24/7) during critical mission phases
 - Mostly engineers
- Flight Dynamics Team
 - Separate room
 - Responsible for initial orbit determination
 - Responsible for calculating orbit maintenance manoevres
 - Responsible for satellite dynamical computations (attitude, reaction wheel speeds, gyro calibrations)
 - Mostly mathematicians
- Software Coordination Team
 - During critical mission phases physically present in the Main Control Room
 - Monitoring all computers, LAN traffic, etc.
 - Can switch to a hot-redundant systen without interruption of activities

Two big Flight Control Teams during Herschel/Planck launch in ESOC's Main Control Room

"Common" Infrastructure Across Mission Types: Teams in Operations

- > Flight Control Team
 - Size and location very much depends on mission phase
 - Around-the-clock shift work (24/7) during critical mission phases
 - Mostly engineers
- Flight Dynamics Team
 - Separate room
 - Responsible for initial orbit determination
 - Responsible for calculating orbit maintenance manoevres
 - Responsible for satellite dynamical computations (attitude, reaction wheel speeds, gyro calibrations)
 - Mostly mathematicians
- > Software Coordination Team
 - During critical mission phases physically present in the Main Control Room
 - Monitoring all computers, LAN traffic, etc.
 - Can switch to a hot-redundant systen without interruption of activities

Flight Dynamics Team during Herschel/Planck launch

"Common" Infrastructure Across Mission Types: Teams in Operations

- > Flight Control Team
 - Size and location very much depends on mission phase
 - Around-the-clock shift work (24/7) during critical mission phases
 - Mostly engineers
- > Flight Dynamics Team
 - Separate room
 - Responsible for initial orbit determination
 - Responsible for calculating orbit maintenance manoevres
 - Responsible for satellite dynamical computations (attitude, reaction wheel speeds, gyro calibrations)
 - Mostly mathematicians
- Software Coordination Team
 - During critical mission phases physically present in the Main Control Room
 - Monitoring all computers, LAN traffic, etc.
 - Can switch to a hot-redundant system without interruption of activities

Software Coordination Team during Herschel/Planck launch

- > Station Controllers
 - During launch and for satellites in Low Earth Orbit, several stations are required for continuous communication (time between launch in Kourou and Malindi signal acquisition is only ~30 min)
 - Most Ground Stations operated 7 days/ week, 24 hours/day
- Canteen services around the clock during critical mission phases
- Site Security (with extra guards to restrict access to certain areas during launches)
- Public Relations

etc. etc.

Tracking Stations & Station Controllers

- > Station Controllers
 - During launch and for satellites in Low Earth Orbit, several stations are required for continuous communication (time between launch in Kourou and Malindi signal acquisition is only ~30 min)
 - Most Ground Stations operated 7 days/ week, 24 hours/day
- Canteen services around the clock during critical mission phases
- Site Security (with extra guards to restrict access to certain areas during launches)
- > Public Relations

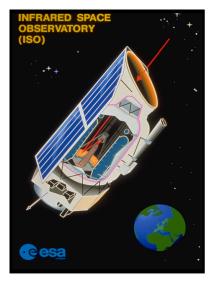
etc. etc.

Canteen Services

- > Station Controllers
 - During launch and for satellites in Low Earth Orbit, several stations are required for continuous communication (time between launch in Kourou and Malindi signal acquisition is only ~30 min)
 - Most Ground Stations operated 7 days/ week, 24 hours/day
- Canteen services around the clock during critical mission phases
- Site Security (with extra guards to restrict access to certain areas during launches)
- > Public Relations

etc. etc.

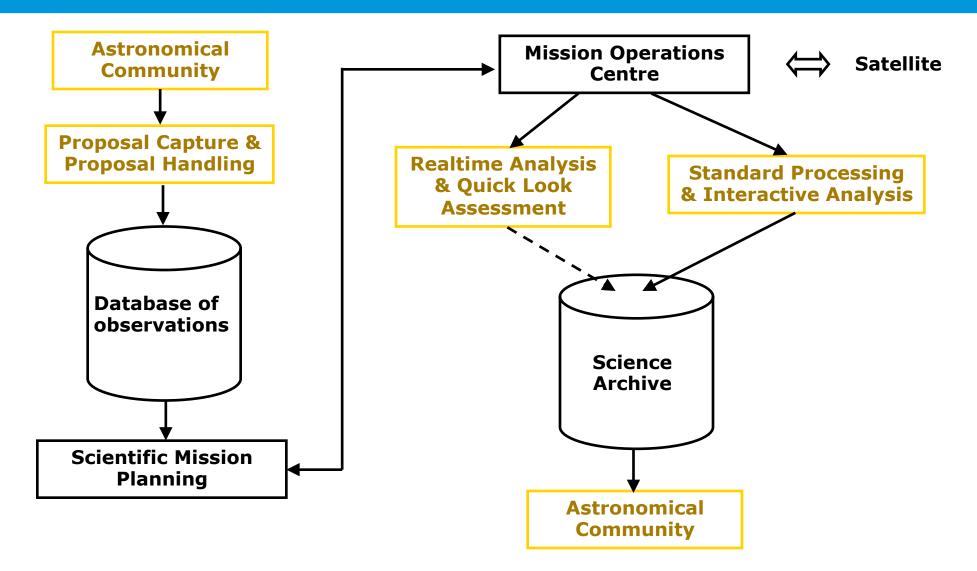
Site Security

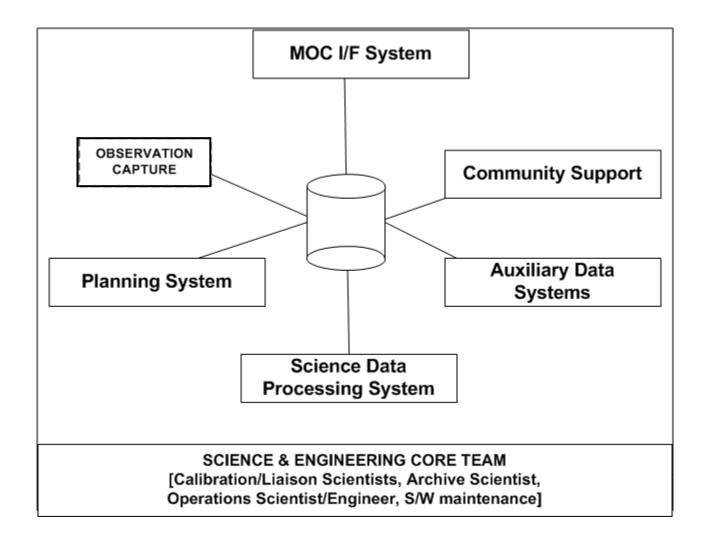

- > Station Controllers
 - During launch and for satellites in Low Earth Orbit, several stations are required for continuous communication (time between launch in Kourou and Malindi signal acquisition is only ~30 min)
 - Most Ground Stations operated 7 days/ week, 24 hours/day
- Canteen services around the clock during critical mission phases
- Site Security (with extra guards to restrict access to certain areas during launches)
- Public Relations

etc. etc.

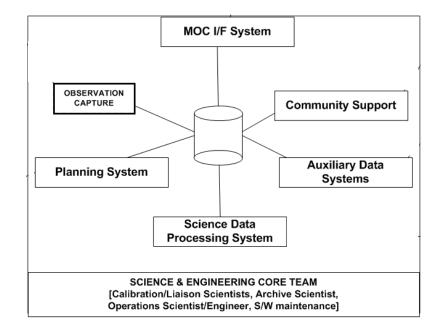
Public Relations Event Surrounding A Launch

For the rest I will restrict myself to talking about operations of a typical astrophysics observatory

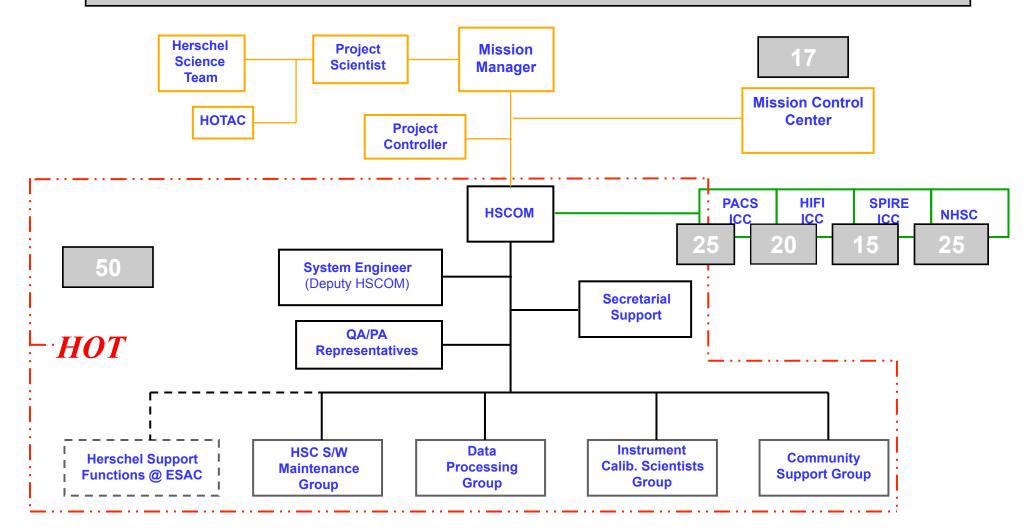



Ground Segment – Information Flow

Ground Segment – SOC High Level Components



Ground Segment – SOC Components Expanded


GENERIC SOC COMPONENTS

Organisation of the Herschel Ground Segment

Approximate number of full-time equivalents working in each area

ESA/Herschel/PACS/SPIRE/J.Fritz, U.Gent

Thank you !

European Space Agency