

Assessment and Selection Phase Lecture P. Falkner

Elixir School 19-20 May 2011 ESTEC

Contents

- 1. Mission Design Process
- 2. Launcher
- 3. Orbits & Environment
- 4. Spacecraft Subsystems
- 5. Operations
- 6. Programmatics (Cost, Risk, Schedule)

Space Mission Elements

Ground Station

Mission Design Process

European Space Agency

Adopted from D. Moura (2009) ____

System Design / End-to-End view

Study Phase 0:

- Analysis of Mission Objectives
- Analysis of Mission Constraints
- Definition of Science Requirements
- Definition of Mission Architecture (s)
- Definition of payload / performance
- Analysis of Environment
- Iteration / Trade phase
- Cost, Risk, Schedule, Technology Development

Goal:

- feasible mission profile
- satisfying requirements <u>and</u> constraints

SMAD, p. 13 Space Mission Architecture

Launcher

- Provides access to Space
- Main trade: Performance/Cost (end-to-end view)
- Possibility of sharing launch (e.g. Herschel / Planck)
- Trade: direct transfer vs. optimisation of launcher insertion orbit
- (spacecraft design dependent)
- Attention (!): launch environment/constraints (incl. launch site)
- Soyuz Fregat-2B (~70 M€), Ariane 5 ECA (~150M€), VEGA
- Performance: SF-2B ~ 4900 kg SSO 650km
- A5 ~8000 kg SSO 800 km
- For performance => <u>see launcher user manuals (web)</u> _

Launcher	Vega	Soyuz	Ariane-5 Generic	Ariane-5 ECA		
Orbit	SSO/LEO	GTO	GTO	GTO		
Payload mass, kg	1500 (700 km)	3000	6600	10000		
SSO/LEO: Sun Synchronous Orbit/Low Earth Orbit, GTO: Geostationary Transfer Orbit						

Great

European Space Agency

$$a_D = -(1/2)\rho (C_D A/m)V^2$$

 $a_R \approx -4.5 \times 10^{-6} (1+r) A/m$

 ρ is atmospheric density, A is the satellite's cross-sectional area, m is the s/c mass, V is the satellite's velocity with respect to the atmosphere, and C_D is the drag coefficient

Solar radiation: A is the satellite cross-sectional area exposed to the Sun in m², m is the satellite mass in kg, and r is a reflection factor.

European Space Agency

P. Falkner

Target Orbit Selection

Driven by (contradicting) requirements:

- Resolution, revisit time, link budgets, visibility from ground stations, eclipse duration
- Cost of orbit acquisition and maintenance (e.g. drag, J-term perturbations, 3rd body perturbations etc...)
- Illumination conditions

Definition of the Keplerian Orbital Elements of a Satellite In an Elliptic Orbit.

Relationship Between Geometry as Viewed from the Spacecraft and from the Center of the Earth. See also Fig. 5-12.

Some Examples

Earth Orbit		Earth Trailing		L2		
XMM- Newton	48h, 7000x114000km, 39°, RD[3]	NASA Spitzer	Drift-away 0.1AU y ⁻¹	SoHO	Only libration mission by ESA, L_1 , $RD[6]$	
Integral	72 h, 9000x153000 km, 51.6°, RD[4]			Herschel	Large-amplitude orbit (quasi-halo), launch 2008, 3-axis platform, RD[7]	
Corot	900 km circular polar LEO			Planck	15° Lissajous orbit, co- launch with Herschel, spinner, RD[7]	
ISO	24 h 1000x70500 km, 5.3°, RD[5]			GAIA	15° Lissajous orbit, launch on Soyuz 2-1b from Kourou, spinner, RD[8]	
HST	600 km circular 28° LEO					

Space Environment

- Solar cycle (11-years) flares
 Solar Protons: 1 MeV to > 1 GeV
- Radiation belts of Earth electrons, protons
- Cosmic Rays
- Spacecraft charging
- Magnetic Field
- Solar Radiation Pressure
- Thermal environment
- Vacuum
- Radiation effects electronics, materials and increase noise in detectors

Spacecraft Subsystems

- Structures & Mechanism
- Propulsion
- AOCS
- Thermal
- Power
- Data Handling
- Communication (TT&C)
- Payload

Important: Interrelation of Subsystems

Structures

Distinguish:

- Primary structures (carrying s/c major loads)
- Secondary structures (carrying equipment) & appendages
- Structure need to provide stiffness in all mission modes (most driving launch, main propulsion manoeuvres, separation of stages, pyros firing etc.) <u>at lowest possible mass</u>
- Sizing parameters: acceleration, shock, vibration, acoustic noise (large surfaces!)
- **Critical parameter**: Strength, stiffness, density, thermal characteristics (expansion, conductivity), handling (machining), cost
- Thermal deformations / co-alignment requirements
- Eigenfrequencies > launcher induced frequencies = driving stiffness

$$\sigma \equiv \frac{\text{Load}}{\text{Area}} \equiv \frac{P}{A} \qquad \qquad \mathcal{E} \equiv \frac{\Delta L}{L} \qquad \qquad \nu \equiv \frac{\mathcal{E}_{lateral}}{\mathcal{E}_{axial}} \qquad \qquad E \equiv \frac{\sigma}{\mathcal{E}}$$
Stress σ [N/m²] Strain ε Poisson's ratio Young Modulus E [N/m²]

Mechanism

Moving parts:

- Reliability is critical (lubrication in space, long storage, thermal range)
- Introduce vibrations

Examples:

- Launch lock mechanism (hold down release mechanism HDRM)
- Deployment of structure, appendages and booms (e.g. solar panel, sun shield, antennae, ...)
- Separation mechanism (separation of stages, multiple s/c,..)
- Pointing mechanism (e.g. payload, HG-antenna, panels)
- Reaction wheels
- Deployable instrument covers

Mechanism are a source of mechanical noise

- Motors and gears: e.g. Maxon
- Frangibolt® Actuator <u>http://www.tiniaerospace.com/fbt/fbfc3-20-16sr2.html</u>

HDRM

-13-

Propulsion

Provides: acceleration and torgues For: transfer, orbit insertion, attitude correction and orbit corrections

 $\begin{array}{l} \textbf{Main engines (e.g. 400 N engine, I_{sp} ~320)} \\ \bullet \text{ large delta-v, large I}_{sp}, \text{ drive propellant need} \\ \bullet \text{ chemical (solid, liquid mon-, bi-prop),} \end{array}$

- electrical (I_{sp} 3000-4500s)

RCS-thruster

- Chemical
- Electrical
- Cold gas
- Propulsion tanks + pressurant tanks
- Harness, piping

$$m_p = m_f \left[e^{\left(\Delta V / I_{sp} g \right)} - 1 \right]$$

Rocket equation: m_f=dry mass, m_p=propellant

Propulsion Technology	Typical Steady State I _{sp} (s)		
Cold Gas	30–70		
Solid	280-300		
Liquid			
Monopropellant	220-240		
Bipropellant	305-310		
Dual mode	313-322		
Hybrid	250-340		
Electric	300-3,000		

RCS Thruster

European Space Agency

P. Falkner

Delta-v budget (example)

Manoeuvre	Delta-V	Margin	Total	Source	Notes
Launcher Dispersion	35.0	5%	36.8	Mission	
Orbital Transfer	4.0	5%	4.2	Mission	
Stationkeeping	12.0	5%	12.6	Mission	
Re- or De-Orbiting	0.0		0.0	Mission	
Trajectory Margin	0.0		0.0	Mission	
Cover Ejection Compensation	0.01	100%	0.02	AOCS	Compensate for 45 N force
RW Desaturation	4.9	100%	9.9	Propulsion	Cumulative over 6 years
Field Change Manoeuvre	0.0		0.0	AOCS	Use reaction wheels (no propellant)
Step-and-Stare Manoeuvres	0.0		0.0	AOCS	Use reaction wheels (no propellant)
Safe Mode Reserve	5.0	0%	5.0	Propulsion	
TOTAL			68.45	m/s	

AOCS (attitude and orbit control system)

Stabilizes the spacecraft against external (and internal) disturbances+ Orbit control and maintenance

- 3-axis or spin stabilized ('gyroscopic stiffness')
- Analysis of pointing requirements (payload, s/c subsystems like antennae, solar panels, etc.)
 - re-pointing (\Rightarrow APE) , duration of starring (\Rightarrow RPE)
 - safe modes, transfer phase,... ⇒ all modes need to be analysed
 - see ESA pointing requirements Handbook

Sensors:

Magnetometer, sun sensor, limb sensor, star tracker, accelerometer, <u>payload</u>, GPS (if available), gyroscopes , IMU

Actuators:

thruster (hot gas, cold gas, electric) ⇒ propulsion system reaction or momentum wheels, control-moment gyros, magnetic-torquers, 'natural' perturbations, nutation dampers

Thermal

Controls spacecraft thermal environment (within operational, non-operational ranges) in various mission modes:

- Launch, transfer, science mode, safe mode, eclipse, etc...
- Driven by equipment and payload requirements
- Need careful analysis of all modes (internal dissipation and external input) under various aspect angles.

Sensors: temperature sensors

Control Components:

- Coatings, MLI, paint, radiators, sun shields, foam, heat pipes, optical reflectors, louvers, fillers, thermal insulators, cooler, cold plates, phase change devices, electrical heaters & thermostats, RHU's,....
- Using of emission (ϵ), absorption (a) values
- Requires: Geometrical Mathematical Model (GMM) and Thermal Mathematical Model (TMM) – e.g. ESATAN
- Need to understand the characteristics and dissipation of all s/c equipment

Attention (!) to: thermo-elastics (\$co-alignment), outgasing

Power

Provides: electrical power to S/C bus and payload

Solar Panel (e.g. triple-Junction cell ~28-32% eff.)

- panels need to point to the sun (dependent on orbit characteristics ⇒ pointing mechanism needed 1-2 DOF?)
- body mounted (typ. spinner) or panel type (3-axis)
- input at Earth: 1367 W/m² solar flux
- Batteries
 - Primary (up to ~300 Whr/kg) and Secondary (re-chargeable, e.g. Li-Ion ~120 Whr/kg)
 - Energy storage
 - needed for emergency (safe mode), eclipses,...
- Alternative energy sources
 - Nuclear Power (RTG, RHU's, ASGR's), ...
- Power Control and Distribution Unit (PCDU)

Simplified approach:

- 1) Define driving mode
- 2) Calculate power budget
- 3) Sizing of panels, batteries and PCDU

Data Handling & Control

Onboard Computer System and Memory

- Command Interpretation and execution
- Data Handling, Processing and Storage
- Housekeeping handling
- AOCS control algorithm
- Control functions (power, thermal, payload)
- Failure Detection Isolation and recovery (FDIR)

Communication and tracking

Provides communication (RF- or optical link) for:

- Commanding, housekeeping
- Data download
- Radio-Science
- Tracking (location (range), velocity (doppler))

Ground station to/from spacecraft

For longer slant range: X- or Ka-band (others S, UHF) Understanding of required data rates ⇒drives RF system

P. Falkner

Payload & Accommodation

- Science & Measurement requirements drive the Payload Definition
- Specific measurement principles as discussed in other lectures
 drive the instrument selection and s/c design
- Accommodation (all s/c subsystems might be affected):
 - Mass (Launcher, structure, propulsion system, etc...)
 - Power (power, cleanliness, etc.)
 - Data Rate (DHS, TT&C system, ground station, orbit)
 - Pointing requirements (AOCS and configuration, thermal)
 - Thermal ranges (op/non-op), cooling required? Active/Passive
 - Deployment needed (covers, baffles, sun shields...)?
 - Operation / commanding (complexity of modes, calibration)
 - EMC
 - Protection against heat/ radiation / stray light etc.

-21-

Operations

- Spacecraft and Instruments need to be controlled from Ground
- Launcher authority takes control until successful launcher insertion orbit and separation from upper/transfer stage

ESA missions:

- Mission Operations done by ESOC
 - Navigation and tracking, commissioning, control of s/c, upload of commands, monitoring of health status, planning of manoeuvres etc.
 - Organise download of data for next passes
- Science Operations done by ESAC
 - Instrument control, definition of instrument commands
- Science data distribution centres
 - Distribution of onboard data together with housekeeping to interested scientists
- Definition of observation cycles/modes

Jo not underestimate cost of mission operation and data management

Technology Development

- Technology Readiness is a key system driver
- Assessment of efforts required to reach flight status is difficult
- Assessment done according to the table below
- Non availability of Technology can be detrimental to the schedule and cost

Technology Readiness Levels (TRL):

Level	Description						
1	Basic principles observed and reported						
2	Technology concept and/or application formulated						
3	Analytical and experimental critical function and/or characteristic proof-of concept						
4	Component and/or breadboard validation in laboratory environment						
5	Component and/or breadboard validation in relevant environment						
6	System/subsystem model or prototype demonstration in a relevant environment						
	(ground or space)						
7	System prototype demonstration in a space environment						
8	Actual system completed and "flight qualified" through test and demonstration						
	(ground or space)						
9	Actual system "flight proven" through successful mission operations						

Cost, Risk and Schedule

Cost estimate is very difficult !

- <u>3 methods</u>: Bottom up approach, parametric analysis or by analogy with other missions
- Need cost model and data base with cost info
- Most difficult is the estimate on engineering cost, manpower etc. cost of technology TRL upgrade
- Cost is driven by complexity of mission

Cost at completion comprises:

- Development cost
- Procurement cost of the space segment (industrial cost)
- Test facilities cost
- Launch cost
- Mission operation cost
- Science operations cost (Data analysis, distribution and archiving)
- Agency cost and margins
- Management costs
- Payload cost
- ...

- Space missions are large investments
- Understanding and analysis of risk is important to avoid catastrophic events as much as possible
- Identification of risk followed by risk mitigation is the approach
- Make a risk Register with main risks
- Rated with likelihood (1-5) and severity (A-E)

Score	Likelihood	Definition		
Е	Maximum	Certain to occur, will occur once or more times per project.		
D	High	Will occur frequently, about 1 in 10 projects		
с	Medium	Will occur sometimes, about 1 in 100 projects		
в	Low	Will occur seldom, about 1 in 1000 projects		
А	Minimum	Will almost never occur, 1 in 10000 projects		

Risk Severity (1-5)

Severity Schedule Science Technical (ECSS-Q-30 and ECSS-Q-40) Cost Catastrophic Launch opportunity Failure leading to the Safety: Loss of system, launcher or Cost increase impossibility of fulfilling the launch facilities. result in project lost mission's scientific objectives cancellation Loss of life, life-threatening or permanently disabling injury or occupational illness; Severe detrimental environmental effects. Launch delayed Critical Failure results in a major Dependability: Loss of mission. Critical increase in (TBD) months reduction (70-90%) of mission's estimated cost Safety: Major damage to flight systems, science return major damage to ground facilities; Major damage to public or private property; Temporarily disabling but not lifethreatening injury, or temporary occupational illness; Major detrimental environmental effects. Major Launch delayed Failure results in an important Dependability: Major degradation of the Major increase in (TBD) months reduction (30-70%) of the system. estimated cost mission's science return Safety: Minor injury, minor disability, minor occupational illness. Minor system or environmental damage. Significant Launch delayed Failure results in a substantial Dependability: Minor degradation of Significant (TBD) months reduction (<30%) of the mission's system (e.g.: system is still able to increase in science return control the consequences) estimated cost Safety: Impact less than minor No/ minimal Minimum No/ minimal consequences. No/ minimal consequences. No/ minimal consequences. consequences

5

1

Mission Phases

♦ AR CDR	DoD Milestone Major Review (Control Gate) Review Launch Acceptance Review Critical Design Review	DR FRR MCR MDR ORR	Decommissioning Review Flight Readiness Review Mission Concept Review Mission Definition Review Operational Readiness Review	PRR QR SAR SDR SRR	Preliminary Requirements Review Qualification Review System Acceptance Review System Definition Review System Requirements
02.1		PDR	Preliminary Design Review	3111	Review

SMAD, p. 8