EXTRACTION AND PROCESSING OF NIRSPEC Spectra with the NIPPLS

1.147

Bernhard Dorner, CRAL/MPIA

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° PITN-GA-2008-214227 - ELIXIR

Why another software?

- After Stephan's intervention: pixel-based counts/error/ quality information
- MOS design: different FOV positions can land on same pixel
- Variable dispersion, distortion, slit tilt etc.
- WANTED: regularly sampled spectra
- Needed for analysis and verification of IPS data

Electron rate per pixel (electron s-1 pixel-1

NIRSpec IPS Pipeline Software (NIPPLS)

- Python software framework for analysis of NIRSpec/IPS data
- Uses instrument model in pipeline
- Modular and flexible for custom processing
- Also used for measurements (still the only tool to get spectra)

NIPPLS standard workflow

NIPPLS IFU workflow

Software structure

Instrument model usage

- Model data available from simulation: Perfectly calibrated virtual instrument
- Module geometries
 - Focal plane elements
 - Optics and distortion
 - Dispersers
- Example: Calculate coordinates from plane to plane

Howto: Spectrograph transform

Howto: Spectral coordinates of pixels

Spectrum rectification

Spectrum rectification

- Projection into grid
- Similar to Drizzle (Fruchter & Hook 2002)
- Output as weighted average from overlaps
- Preserves spectral surface brightness
- Adjusted variance calculation for large scales

NIPPLS basic parameters

- Required:
 - Paths, exposures and type (instrument mode)
 - Aperture IDs with targets and background
- Optional:
 - Quality flags
 - Extraction intervals and methods
 - Spatial axis type (on sky or in aperture)

Extraction of measured data

- Only on-ground exposures
- Additional parameters needed
 - Instrument model (data file collection)
 - Exposure setup (external/internal lamps)
 - Grating wheel tilt calibration
- Extraction depends on model accuracy

Special features

- Quick data evaluation: irregular spectrum from detector columns
- Use shutter list from simulation scene definition
- Correct chromatic aberration in FORE:
 - Shift in spatial direction in the slit (up to 38 mas)
 - Compensate movement during rectification
 - Spectrum center has constant position on sky

Other use cases

- Quicklook of ground test exposures
- Analyze data from imaging exposures
- Verification of requirements
- Instrument model optimization
- Everything that you want to do with NIRSpec data (extension with throughput model)

- NIPPLS required for detailed NIRSpec data analysis
- Works with simulations and measurements
- Relies on a physical instrument model
- Proper sky calibration automation still missing (depends on instrument model)
- Fast and easy to use, yet highly customizable for various applications

