
NIRSpec sentivity – MOS mode

0

Se

B

(1)

1

00

1

ame

- The sensitivity of an instrument is one of the major performance indicators for NIRSpec.
 - A typical science driver for pushing NIRSpec to its limits is the ability to conduct spectroscopic deep fields.
 - NIRSpec has been designed and developed to meet a set of requirements on how deep it should be able to go for certain types of observations.
 - Subset of key configurations, long exposures...
 - Somewhat "simplified" approach.

➔ So far so good, NIRSpec is on track to meet or exceed these requirements.

NIRSpec sensitivity requirements MOS mode

 Set #1: ability to observe very faint and compact continuum sources at low spectral resolution and over the full spectral range.

Wavelength (µm)	Continuum Flux (erg s ⁻¹ cm ⁻² Hz ⁻¹)	
1.5	1.36 10 ⁻³⁰	AB=26.1
3.0	1.18 10 ⁻³⁰	AB=26.2
4.5	3.00 10 ⁻³⁰	AB=25.2

Point source **centered** in a micro-shutter. Signal to noise of **10** per spectral resolution element. Total **(integration)** time on source of **10⁴ s**.

 $AB = -2.5 \times \log_{10}(f) - 48.60$ with f in erg s⁻¹ cm⁻² Hz⁻¹

NIRSpec sensitivity requirements MOS mode

 Set #2: ability to observe very faint and compact emission-line sources at medium spectral resolution and over the full spectral range.

Wavelength (µm)	Line Flux (erg s ⁻¹ cm ⁻²)
1.2	9.8 10 ⁻¹⁹
1.6	7.4 10 ⁻¹⁹
2.0	5.2 10 ⁻¹⁹
2.7	4.2 10 ⁻¹⁹
3.4	3.2 10 ⁻¹⁹
4.5	3.2 10 ⁻¹⁹

Point source **centered** in a micro-shutter. Signal to noise of **10** per spectral resolution element. Total **(integration)** time on source of **10⁵** s.

Ð

NIRSpec sensitivity requirements MOS mode

- The usual words of caution...
 - These are only requirements and they reflect a given (simple) observation strategy.
 - Actual number reflecting that actual status of the instrument and more and more realistic observing strategy will progressively become available.
- The STScI ETC prototype
 - Available on-line (see below).
 - You will notice the same type of words of caution.

http://jwstetc.stsci.edu/etc/input/nirspec/spectroscopic/

Elements of sensitivity computation White board exercises...

- #1 Understanding the various noise regimes and how
 your signal to noise behaves in these regimes
 - "detector", "background", "photon-noise" limited.
 - life in an Universe where you cannot get exposures as long as you would like to...
 - good throughput is good news...
 - the optimization that Stephan's software will do for you.

$$S/N \equiv \frac{E(\hat{S})}{\sqrt{Var}(\hat{S})} = \frac{E(S)}{\sqrt{Var}(S) + \left(1 + \frac{1}{n_B}\right)\left(Var(B) + Var(D)\right)}}$$

Elements of sensitivity computation White board exercises...

 #1 – continuum versus emission-line / point source versus extended source