SIMULATION OF EXOPLANET TRANSIT OBSERVATIONS WITH NIRSPEC

Bernhard Dorner, CRAL/MPIA

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° PITN-GA-2008-214227 – ELIXIR

Science case: Planetary systems

- Characterization of planetary systems ("Origin of life", habitability)
- 834 planets known, 282 transiting (last week)
- Detection of absorption features in atmospheres (O₂, O₃, CO₂, H₂O, CO, CH₄, Na, K)
- Detection and spectroscopy of thermal emission from planets

Transit observations

- Typical signal levels: 1:100,000
- Successful observations with HST, Spitzer, and from ground (Charbonneau et al., 2002, 2005, Bean et al., 2010)
- NIRSpec: special square aperture SI600AI

Observation setup

- Single star (point source) in 1.6" slit
- Different NIRSpec modes (filters, dispersers)
- Subarray readout
- No dithering

Spectra shapes and locations

- PRISM: short spectrum
- Gratings: longer, multiple orders
- Spectra curved
- Slit tilt: 4–12 degrees

OTE05_MSA05_CLEAR_PRISM_25_SLIT_star_GJ1214_01_01_res_000, CLEAR, PRISM

Spectra shapes and locations

204

- PRISM: short
 spectrum
- Gratings: longer, multiple orders
- Spectra curved
- Slit tilt: 4–12 degrees

Processed science exposure

OTE05_MSA05_F100LP_G140M_25_SLIT_star_GJ1214_01_02_band1_res_000, F100LP, G140M

Spectra shapes and locations

- PRISM: short spectrum
- Gratings: longer, multiple orders
- Spectra curved
- Slit tilt: 4–12 degrees

General observation properties

- Wavelength coverage:
 - PRISM + R1000: full bands
 - R2700: detector gap lost
 - I.3I I.35 µm
 - 2.20 2.26 µm
 - 3.72 3.83 μm

- Subarray of 2048 x 32 pixel
 - Accommodate spectrum curvature
 - Reference pixels needed

Host star brightness limits

- Saturation limit: 55,000 ADU
- Subarray readout: 2048x32 pixels
- At least 2 non-saturated groups needed
- Minimum magnitudes in bands:

Resolution	J	К	L
R100	12.2	10.3	8.5
R1000	8.8	7.6	6.7
R2700	7.7	6.6	5.7

Severe restriction on observable systems

Today's transiting planets

Max + Hally - south and the so

Slit and diffraction losses

- Truncation of PSF in slit and pupil at disperser
- Random jitter in slit: <7 mas (Iσ) during I0,000 sec (requirement)
- Simple drift on very short timescales
- Expected drift during one exposure: 5 mas
- Characterize with RMS in radial distance

G235H, 2.45 µm

Slit and diffraction losses

• Relative error of throughput typically 2 ·10⁻⁵

Additional noise in transit observations

- Pointing jitter
 - Variation of throughput $\approx 2 \cdot 10^{-5}$
 - Negligible compared to shot noise
- Intra-pixel sensitivity variation, PSF stability
 - Mostly in low spatial frequencies
 - No impact expected/simulated
- Background/dark subtraction
 - ► SNR change <10⁻⁴
- Readout noise

• $\sigma_{read} \approx 20e^{-}$ per pixel, significant

left with photon and readout noise

Simulated cases

- Hot Jupiter around G5 MS star: HD189733b
 - Typical HST case (optical, UV)
- Super-Earth around M4.5 dwarf: GJ1214b
 - Ground based (optical, near IR)
- Earth-sized planet in habitable zone around M4.5 dwarf
 - So far inaccessible / not found
- No stellar activity!

Example host stars

Hot Jup.: HD189733

- G5, 19.45 pc
- 0.757 *r*_{Sun} (Torres et al. 2008)
- mag_K=5.54
- Kurucz model

Super Earth: GJ1214

- M4.5V, 12.95 pc
- 0.2064 *r*Sun (Berta et al. 2010)
- mag_K=8.78
- NextGen model

What about HD189733 again?

- Saturation only in small region
- Observability depends strongly on stellar spectrum

Effective exposure times

- Readout overhead: 2 groups per integration (reset, first read)
- Limited number of exposures: reduction of effective exposure time

Planet	NIRSpec mode	Maximum group number n _g	Duration T _{trans} / sec	Effective exposure time t _{eff} / sec	
HD189733b (eclipse)	R2700 band III	2	3456 (Knutson et al. 2007)	1151	
HD189733b (transit)	R2700 band III	2	3600 (Winn et al. 2007)	I 200	
GJI2I4b	R1000 band I	6	2406 (Berta et al. 2010)	1717	
GJI2I4b	R1000 band II	6	2406	1717	
GJI2I4b	R1000 band III	12	2406	2033	

Signals and SNR for transits

- Star count rate R, transit depth d
- Transit depths:

• Primary transit:
$$d = \frac{R_{out} - R_{in}}{R_{out}}$$

Signals and SNR for transits

• Primary transit: detection of atmosphere with effective height h around planet with radius r_{Pl} : (Kaltenegger & Traub 2009)

$$d = \frac{2r_{Pl}h}{r_{Star}^2}$$

• SNR:
$$\frac{d}{\sigma_d} = \frac{d R t_{eff}}{\sqrt{2(R t_{eff} + 2 n_{pix} n_e \sigma_{read}^2)}}$$

Simulation setup

- Star in SI600AI
- As-built instrument model, but uniform QE
- No readout, only electron rates
- Exploration of performances: Noise used in analysis
- Extraction: Sum of 16 pixels in each column

HD189733b: Primary transit

ELIXIR school III: Exoplanets with NIRSpec

HD189733b: Eclipse

GJ1214b: Atmospheric features

Earth-sized planet around M4.5V star

- Put GJ1214 at 10 pc distance
- Earth-sized planet in habitable zone
 - Semimajor axis: 0.0558 AU
 - Orbital period: 12.18 days
 - Transit duration: 1.60 h

Earth-sized planet around M4.5V star

- Atmospheric feature detection:
 - SNR in single transit
 - ► N₅: number of transits for SNR=5

• T_5 : Time needed for N_5

Molecule	Center wavelength λ / μm	Feature width Δλ / μm	Effective height <i>h</i> / km	single SNR	N5	T ₅ / years
H ₂ O	1.9	0.2	5	0.3	278.7	9.3
CO ₂	2.8	0.1	20	0.44	130.3	4.37
H ₂ O	3.3	0.25	20	0.94	28.3	0.97
CO ₂	4.3	0.4	20	0.84	35.8	1.2

Large features within reach during mission

Conclusions: Simulation and targets

- Simple simulation: only I point source
- Data exploitation directly from electron rates
- Restriction of observable stars: (almost) too sensitive!
- Only few Neptune/Earth-sized targets known

Conclusions: Analysis

- Photon and readout noise dominant
- Observation examples:
 - Hot Jupiters characterized in one observation
 - Super-Earths: On the edge with one transit
 - Earth-sized planets: Multiple visits required
- Massive improvement over current and near-future facilities

