

Chemical evolution of star forming galaxies up to z~3 "AMAZE+LSD"

Paulina Troncoso Iribarren Roberto Maiolino F. Mannucci, G. Cresci, A. Gnerucci S. Courty, L. Michel-Dansac, J. Blaizot

INAF

AMAZE Assessing the Mass-Abundance redshift[Z] Evolution

LSD Lyman-break galaxies Stellar populations and Dynamics

- Sample of 34 LBG's at z~3.3
- Metallicity measured with [OIII], [OII], H β and [NeIII] ratios.
- 26 seeing limited.
- 8 AO, diffraction limited.

SINFONI - VLT NIR - IFU

<u>Outline</u>

I Integrated properties.

- Galaxy scaling relations such as Mz, FMR, FP, etc.
 - Metallicity evolution at $z\sim3.4?$.

II Resolved properties

- Dynamics.
- Metallicity gradients.
- Resolved Σ SFR \rightarrow Gas content morphology & sizes.

III Comparison with models

- Analytical models with flows proportional to SFR (Erb08).
 - Cosmological simulation RAMSES & RAMSES-CH.

IV Summary

I) Integrated properties at z~3

Fundamental Metallicity Relation (FMR)

Mannucci et al. 2010

• Scatter 0.05 dex.

• FMR holds homogeneity 0 < z < 2.5.

"Star forming galaxies live in a slowly equilibrium between star formation, inflows and ubiquitous outflows "(Filantor +11)

Metallicity evolution at z~3.5

II) Resolved properties.

AMAZE Assessing the Mass-Abundance redshift[Z] Evolution

<u>Spatially resolved galaxies</u>

- 1) Dynamics from the brightest lines.
- 2) Lines ratios at every
 pixel → Metallicity
 gradients.
- 3) Resolved SFRs.

"Disentangle the different process of galaxy mass assembly"

Dynamics: AMAZE+LSD at z~3.4

Why do we find differences respect to the FMR? AMAZE+LSD at z~3.3

Correlation between the peak of the star formation and the part of the galaxy with lowest metallicity

Metallicity gradients resolved in 10 sources

Metallicity gradients I

Maiolino+08 calibration Maiolino+12 calibration

Metallicity gradients I

Maiolino+08 calibration Maiolino+12 calibration

Metallicity gradients II

Maiolino+08 calibration Maiolino+12 calibration

Metallicity gradients

Metallicity gradients as fingerprints of galaxy evolution! Gas role? **Gas fraction** TIME

Negative gradients, some exceptions, Werk+11, Florido+12.

z~0

Inside-out formation

μ~ 0.06

E. Pérez-CALIFA team

Negative, positive and flat gradients. Positive gradients pref. in interacting systems.

Gas content through SK law

at high -z ?

Galaxy size

- ➤3 methods: SB, Galfit & Moffat.
- Images: OIII seeing limited, OIII AO & continuum HST.

Gas content estimation: AMAZE+LSD at z~3.3

Cosmic evolution gas fraction

By inverting the SK law, and using $\Sigma_{\rm SFR}$ information from IFU data we can determine the mass of gas.

Cosmic evolution gas fraction : AMAZE+LSD at z~3.3

The evolution of the gas fraction in massive galaxies strongly resembles the evolution of the cosmic star formation rate density.

III) Chemical evolutionary models

Analytical model(Erb 2008)

How different are these galaxies respect to a closed box model?

Include \rightarrow inflows and outflows proportional to SFR.

galaxies

Preferent models: $f_i=(3-5)SFR$ $f_o=(1.5-3.5)SFR$

High gas fractions at z~2-1
 due to replenishment of
 fresh gas to young galaxies
 (Tacconi+10).

• Also at z~3.5? Gas metallicity dilute by infalls?

Hydrodynamical simulation @Lyon Observatory Stéphanie Courty, Léo Michel-Dansac Jérémy Blaizot

Mass-metallicity relation: AMAZE+LSD at z~3.3 Comparison with cosmological hydro-dynamical simulation

-RAMSES-CH Teyssier 2002, Few+12.

-Cooling, SN, Feedback.

-20 h⁻¹ Mpc Res. .4-7kpc N=512^3

@Lyon Observatory
 Stéphanie Courty,
 Léo Michel-Dansac
 Jérémy Blaizot

Mass-metallicity relation: AMAZE+LSD at z~3.3 Comparison with cosmological hydro-dynamical simulation

Fundamental metallicity relation: AMAZE+LSD at z~3.3

Comparison with cosmological hydro-dynamical simulation

Galaxy evolution on the FMR: AMAZE+LSD at z~3.3

Slope evolution of FMR and FP

Resolved properties: AMAZE+LSD at z~3.3

By "Observing a simulated galaxy" we measure the metallicity gradients and look for physical mechanisms which flattens the gradients.

Summary

CDFS4417-4414 as an ALMA case of study

CDFS4417-4414 R (") 0.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5

0.2 0.4 0.6 0.8 1.0 **Relative Intensity** -1.5-1.0-0.50.0 0.5 1.0 1.5 CO(4-3)- 0.6"

z~3.3, Mgas~10¹¹, Fco=0.5[Jy km s⁻¹] & Peak >1[mJy]

Early science

• 1hr, σ_{co} = 1mJy

 $=>2\sigma$ detection

• 10 hr, σ_{co} =0.15mJy \Rightarrow 7 σ detection

✓ Cycle 1

• 1.5 hr, σ_{co} =0.3mJy $=>2-3\sigma$ detection

✓ Full array

• 1 hr, σ_{co} =0.14mJy $=> 7\sigma$ detection

ALMA prospects: AMAZE+LSD at z~3.3

- Study the gas content and dynamics of typical star forming galaxies, which physical processes that regulates chemical evolution (SFR, gas inflows and outflows) differs from nearby galaxies (0<z<2.5).
- Prove SK-law at z~3 for typical star forming galaxies.
- Determine the dynamical mass of these galaxies through CO observations. This allows to constrain α_{CO} from independent methods, Mgas=Mdyn-M*-Mdark.
- Non detection of CO rotational numbers higher than CO(J 4-> 3)would confirm the similarity between these galaxies and nearby disks.
- Constrains for galaxy formation models
- a) evolution of cosmic molecular gas fraction (Lagos et al. 2011a,b, Obreschkow+09).
- b) α_{co} has been shown to be dependent on metallicity.
- c) gas replenishment mechanism at this early epochs.
- d) etc..

Effective yields AMAZE+ LSD: comparison with local galaxies.

P. Troncoso – ELIXIR – Leiden, November 13, 2012.

Gas content estimation: AMAZE+LSD at z~3.3

Comparison with chemical evolutionary models

Constrain the amount of inflows, outflows in the inner-outer galaxy regions.

Gas content estimation: AMAZE+LSD at z~3.3

Cosmic evolution gas density-SFR By inverting the SK law, and using Σ_{SFR} information from IFU data we can determine the mass of gas.

P. Troncoso – Metals in Tuscany 2012.

How to measure the gas metallicity:

Strong line calibrations

• R₂₃=([OIII]5007+[OIII]4959+[OII]3727)/(HB)

• [NII]6584/Hα, [NII]6584/[OII]3727, etc.

- Calibrated empirically (Kobulnicky & Zaritsky99, Pilyugin +01,+10; Pettini & Pagel 04, Liang+06). T_e, SDSS-DR3 low-Z [OIII]4636 measured (Izotov+06)
- Through photoionization models (Kewley & Dopita+02,+06; Tremonti+04; Kobulnicky+04, Dors+11). Photoinization, SDSS-DR4 (Kewley & Dopita +02)
- •Or a combination of the two (Denicolo'+02; Nagao+06; Maiolino+08).

P. Troncoso – La Sapienza- Rom, October 21.

P. Troncoso – Metals in 3D- Granada, April 18-20.

The sample selection: AMAZE+LSD.

The radiation at energies higher than the Lyman limit at 912 Å(3650 Å at z=3, U-band) is almost completely absorbed by the neutral gas around star-forming regions.

UV dropout technique: rest-frame UV star-forming selected galaxies.