2-D neutral gas kinematics and galactic winds for a sample of local LIRGs

Sara Cazzoli

Supervisor: Santiago Arribas

CSIC-Departamento de Astrofisica-Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Madrid, Spain

Outline

1 (U)LIRGs & GWs

2 Analysis

Luminous and UltraLuminous InfraRed Galaxies AND Galactic Winds

(U)LIRGs and Galactic Winds

LIRGs: $L_{lr} = L_{8-100 \mu m} = 10^{11} \cdot 10^{12} \ L_{\odot}$ & (U)LIRGs $L_{lr} \ge 10^{12} \ L_{\odot}$

(U)LIRGs and Galactic Winds

LIRGs: $L_{lr} = L_{8-100\mu m} = 10^{11} \cdot 10^{12} L_{\odot}$ & (U)LIRGs $L_{lr} \ge 10^{12} L_{\odot}$

- Intense Star Formation Activity, e.g., Da Cunha et al.2008;
- Dynamical process, the interaction triggers starburst and AGN activity with the starburst usually dominating, *e.g. Lonsdale et al.2006*;
- Low-z and high-z galaxies.

Galactic Winds: What, Why, Where

(U)LIRGs and Galactic Winds

LIRGs: $L_{lr} = L_{8-100\mu m} = 10^{11} \cdot 10^{12} L_{\odot}$ & (U)LIRGs $L_{lr} \ge 10^{12} L_{\odot}$

- Intense Star Formation Activity, e.g., Da Cunha et al.2008;
- Dynamical process, the interaction triggers starburst and AGN activity with the starburst usually dominating, *e.g. Lonsdale et al.2006*;
- Low-z and high-z galaxies.

Galactic Winds: What, Why, Where

- W Outflows energized by stellar winds and SNe ejecta;
- W Impact (feedback prescriptions):
- regulates and quench both SF and the BH activity, Veilleux 2005;
- intergalactic metals enrichment, *Heckman et al.2000*.
- W Star-forming galaxies at any redshift, *Martin et al.2012*.

(U)LIRGs and Galactic Winds

LIRGs: $L_{lr} = L_{8-100 \mu m} = 10^{11} \cdot 10^{12} L_{\odot}$ & (U)LIRGs $L_{lr} \ge 10^{12} L_{\odot}$

- Intense Star Formation Activity, e.g., Da Cunha et al.2008;
- Dynamical process, the interaction triggers starburst and AGN activity with the starburst usually dominating, *e.g. Lonsdale et al.2006*;
- Low-z and high-z galaxies.

Galactic Winds: What, Why, Where

- ${\sf W}~$ Outflows energized by stellar winds and SNe ejecta;
- W Impact (feedback prescriptions):
- regulates and quench both SF and the BH activity, Veilleux 2005;
- intergalactic metals enrichment, Heckman et al.2000.
- W Star-forming galaxies at any redshift, *Martin et al.2012*.

GWs "Strategy"

Basic Physics of GWs (Veilleux 1995)

The gas surroundings the starburst evolves with an adiabatic expansion. Later, the bubble assumes an "onion" shape (multilayer \gg multiphase).

Revealing GWs

Phase	Tracers
Warm - Ionized	H_{lpha} , λ 6563, $[S_{II}]\lambda\lambda$ 6716,6731 $/H_{lpha}$
Cold - Neutral	NaD $\lambda\lambda$ 5890,5896, <i>Fe_{ll}</i> λ 2374
Cold - Molecular	CO 4.6 µm

Strickland et al.2009

GWs cold component: Optical Abs.Line detections via NaD

- 2-D Kinematics and description of GWs;
 - Signature of blue/redshifted material in front of the continuum source;
 - Tracer of GWs extension and the mass of outflowing material;
 - !!! Faint and complex feature (physical origin: Star & Gas, IP = 5.14 eV).

GWs "Strategy"

Basic Physics of GWs (Veilleux 1995)

The gas surroundings the starburst evolves with an adiabatic expansion. Later, the bubble assumes an "onion" shape (multilayer \gg multiphase).

Revealing GWs

Phase	Tracers
Warm - Ionized	H_{lpha} , λ 6563, $[S_{II}]\lambda\lambda$ 6716,6731 $/H_{lpha}$
Cold - Neutral	NaD $\lambda\lambda$ 5890,5896, $Fe_{II}\lambda$ 2374
Cold - Molecular	CO 4.6 μ m

Strickland et al.2009

GWs cold component: Optical Abs.Line detections via NaD

- 2-D Kinematics and description of GWs;
 - Signature of blue/redshifted material in front of the continuum source;
 - Tracer of GWs extension and the mass of outflowing material;
 - !!! Faint and complex feature (physical origin: Star & Gas, IP = 5.14 eV).

(U)LIRO C	Gs & GWs Analysis Example onclusions	Observations, Data & Sample 1-D Analysis 2-D Analysis	

OBSERVATIONS, DATA & SAMPLE

Observations, Data & Sample 1-D Analysis 2-D Analysis

Observations

IFS survey: 38 low redshift galaxies ($z \le 0.09$), Arribas et al.2008

Observations, Data & Sample 1-D Analysis 2-D Analysis

Observations

IFS survey: 38 low redshift galaxies (z \leq 0.09), Arribas et al.2008

- IFU VIMOS @ VLT, Le Fevre et al.2003;
- FoV: (44×44) spx \Leftrightarrow (27×27) arcsec;
- Spectral range: 5250-7400 Å "HR-Orange" with R=3400.

Data & Sample

Observations, Data & Sample 1-D Analysis 2-D Analysis

Observations

IFS survey: 38 low redshift galaxies (z \leq 0.09), Arribas et al.2008

- IFU VIMOS @ VLT, Le Fevre et al.2003;
- FoV: (44×44) spx \Leftrightarrow (27×27) arcsec;
- Spectral range: 5250-7400 Å "HR-Orange" with R=3400.

Data & Sample

- 38 1-D spatially integrated spectra, where the integration algorithm is based on a S/N optimization, *Rosales-Ortega et al. 2011*;
- 10 2-D spatially resolved spectra, IFS data: the high S/N LIRGs sample.

Observations, Data & Sample 1-D Analysis 2-D Analysis

Observations

IFS survey: 38 low redshift galaxies (z \leq 0.09), Arribas et al.2008

- IFU VIMOS @ VLT, Le Fevre et al.2003;
- FoV: (44×44) spx \Leftrightarrow (27×27) arcsec;
- Spectral range: 5250-7400 Å "HR-Orange" with R=3400.

Data & Sample

- 38 1-D spatially integrated spectra, where the the integration algorithm is based on a S/N optimization, *Rosales-Ortega et al. 2011*;
- 10 2-D spatially resolved spectra, IFS data: the high S/N LIRGs sample.

(U)LIRGs & GWs Analysis

Observations, Data & Sample 1-D Analysis 2-D Analysis

Properties of the high S/N LIRGs sample

ID	Other	α	δ	z	L _{Ir}	Nuc. Spectral	Morphology
(IRAS)	Name	(J2000)	(J2000)			Classification	Class
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
F01341-3734 (N)	ESO-297-G011	01:18:08.1	-44:27:40	0.01725	10.65	Н	INTERACTING
F01341-3734 (S)	ESO-297-G012	01:36:24.0	-37:19:14	0.01743	11.06	Н	INTERACTING
F04315-0840	NGC 1614	04:34:00.0	-08:34:46	0.01573	11.69	н	P.C. MERGER
F06076-2139		06:09:45.1	-21:40:22	0.03724	11.67	-	INTERACTING
F10409-4556	ESO 264-G036	10:43:07.0	-46:12:43	0.02071	11.26	H/L	ISOLATED
F11506-3851	ESO 320-G030	11:53:12.0	-39:07:54	0.01047	11.30	н	ISOLATED
F12115-4656	ESO 267-G030	12:14:12.6	-47:13:37	0.01792	11.11	н	ISOLATED
F13229-2934	NGC 5135	13:25:43.0	-29:49:54	0.01348	11.29	S	ISOLATED
F18093-5744 (N)	IC 4687/4686	18:13:38.6	-57:43:36	0.01722	11.57	н	INTERACTING
F22132-3705	IC 5179	22:16:10.0	-36:50:36	0.01100	11.22	Н	ISOLATED

1-D Spatially Integrated Spectra

(U)LIRGs & GWs Analysis Example Conclusions Conclusions Analysis 2-D Analysis

1-D Analysis

• Properties of Stellar and Interstellar NaD: cross-correlating our dataset and the *Indo-U.S.* stellar library (*Valdes et al. 2004*) with a penalized pixel fitting technique, (pPXF, *Cappellari et al.2004*)

Goal: Stellar and neutral gas kinematics for the whole sample (38 (U)LIRGs);

(U)LIRGs & GWs Analysis Example Conclusions Conclusions

1-D Analysis

• Properties of Stellar and Interstellar NaD: cross-correlating our dataset and the *Indo-U.S.* stellar library (*Valdes et al. 2004*) with a penalized pixel fitting technique, (pPXF, *Cappellari et al.2004*)

Goal: Stellar and neutral gas kinematics for the whole sample (38 (U)LIRGs);

(U)LIRGs & GWs Analysis Example Conclusions Conclusions Analysis 2-D Analysis

First results for the selected sample of LIRGs and comparison with literature

(U)LIRGs & GWs Analysis Example Conclusions	Observations, Data & Sample 1-D Analysis 2-D Analysis
Conclusions	

2-D Spatially Resolved data

(U)LIRGs & GWs Analysis Example Conclusions Conclusions Conclusions

2-D Analysis

Using Optical-IFS spectroscopy:

- Obtain the neutral gas structure and kinematics;
- Disentangle different contributors to NaD in each spaxels;
- Reveal (and characterize) GWs.

Disentangling Stellar and Interstellar NaD in 2-D

- The S/N in each spaxels it is not enough to do a stellar fit for each spectra (as done in the 1-D analysis) spaxels by spaxels;
- Alternatively, using the $EW_{NaD,\star}$ obtained analyzing the 1-D Integrated Spectra, we applied another criteria based on:

 $EW_{\text{NaD},\star} \sim 1/3~EW_{\text{Mglb}}$, Schwartz & Martin 2004

 \rightsquigarrow EW_{NaD,*} \leq 1.2 Å

 \implies Interstellar-dominated lines: $EW_{\it NaD} \gg$ 1.2 Å

(U)LIRGs & GWs Analysis Example Conclusions Conclusions Analysis 2-D Analysis 2-D Analysis

2-D Analysis

Using Optical-IFS spectroscopy:

- Obtain the neutral gas structure and kinematics;
- Disentangle different contributors to NaD in each spaxels;
- Reveal (and characterize) GWs.

Disentangling Stellar and Interstellar NaD in 2-D

- The S/N in each spaxels it is not enough to do a stellar fit for each spectra (as done in the 1-D analysis) spaxels by spaxels;
- Alternatively, using the $EW_{NaD,\star}$ obtained analyzing the 1-D Integrated Spectra, we applied another criteria based on:

 $EW_{\text{NaD},\star} \sim 1/3~EW_{\text{Mglb}}$, Schwartz & Martin 2004

→
$$\textit{EW}_{\textit{NaD},\star} \leq 1.2$$
 Å

 \implies Interstellar-dominated lines: $EW_{\it NaD} \gg 1.2$ Å

(U)LIRGs & GWs Analysis Example Conclusions 2-D Analysis

Line fitting technique:

- IDL L.M. least-squares fitting routine, Press 1992;
 - Single component ▷ couple of Gaussian;
 - Fixed wavelength separation, $2 \ge EW_{5890}/EW_{5896} \ge 1$, flux unconstrained.

(U)LIRGs & GWs Analysis Example Conclusions Conclusions Analysis 2-D Analysis 2-D Analysis

Line fitting technique:

- IDL L.M. least-squares fitting routine, Press 1992;
 - Single component ▷ couple of Gaussian;
 - Fixed wavelength separation, $2 \ge EW_{5890}/EW_{5896} \ge 1$, flux unconstrained.

Observations, Data & Sample 1-D Analysis 2-D Analysis

Mapping the neutral gas 2-D properties...

Kinematics

- Velocity and Velocity Dispersion patterns (e.g., Rotating disk);
- Amplitude, velocity gradients and asymmetries.

Structure

Observations, Data & Sample 1-D Analysis 2-D Analysis

Mapping the neutral gas 2-D properties...

Kinematics

- Velocity and Velocity Dispersion patterns (e.g., Rotating disk);
- Amplitude, velocity gradients and asymmetries.

Structure

- Flux → Morphology and spatial extension;
- Continuum Map;
- EW= Flux/Cont. \mapsto Where the absorption is actually interstellar or not;
- $R = EW_{5890}/EW_{5896} \mapsto Optical depth (R=1(2) \rightarrow opt. thick(thin));$

... and the comparison with those of the ionized gas

Observations, Data & Sample 1-D Analysis 2-D Analysis

Mapping the neutral gas 2-D properties...

Kinematics

- Velocity and Velocity Dispersion patterns (e.g., Rotating disk);
- Amplitude, velocity gradients and asymmetries.

Structure

- Flux \mapsto Morphology and spatial extension;
- Continuum Map;
- EW= Flux/Cont. → Where the absorption is actually interstellar or not;
- R=EW₅₈₉₀/EW₅₈₉₆ → Optical depth (R=1(2) → opt. thick(thin));

\ldots and the comparison with those of the ionized gas

- Morphology and kinematics of the ionized gas;
- Residual = (Neutral-Ionized) maps → to highlight the differences in the kinematic properties of the two gas phases.

Observations, Data & Sample 1-D Analysis 2-D Analysis

Mapping the neutral gas 2-D properties...

Kinematics

- Velocity and Velocity Dispersion patterns (e.g., Rotating disk);
- Amplitude, velocity gradients and asymmetries.

Structure

- Flux \mapsto Morphology and spatial extension;
- Continuum Map;
- EW= Flux/Cont. → Where the absorption is actually interstellar or not;
- $R = EW_{5890}/EW_{5896} \mapsto Optical depth (R=1(2) \rightsquigarrow opt. thick(thin));$

\ldots and the comparison with those of the ionized gas

- Morphology and kinematics of the ionized gas;
- Residual = (Neutral-Ionized) maps → to highlight the differences in the kinematic properties of the two gas phases.

Sara Cazzoli (Leiden, 11·12·2012)

IFS - kinematics - GWs - low-z LIRGs

Observations, Data & Sample 1-D Analysis 2-D Analysis

IRAS F11506-3851

IRAS F11506-3851 (ESO 320-G030)

IRAS F11506-3851 (I)

General Properties: isolated SB, z= 0.018, $log(L_{ir}/L_{\odot})$ =11.30, H-II-type.

Results:

- Extension \sim 20 kpc;
- The morphology of the absorption follows that of the continuum;
- Differencies with respect that of H_a;
- Absorption dominated by neutral gas: EW₅₈₉₀ ≥ 1.2 Å:
- Optically thick gas: $\mathsf{R} \leq 1.4.$

IRAS F11506-3851 (II) - Kinematics -

Neutral gas seems to trace both a rotating disk and a GW

Rotating Disk:

•
$$V_{NaD} \ll V_{H_{lpha}}$$
,
 $\Delta V{=}105 \ kms^{-1}$

- $\langle \sigma_{NaD} \rangle \ge \langle \sigma_{H_{\alpha}} \rangle$ (90 vs 40) kms^{-1} ;
- The neutral gas is in a thicker disk than that of ionized gas.

Galactic Wind (?)

IRAS F11506-385 scenario: Rotating Disk + GW

Orientation: minor axis

- Extremely optically thick gas: $R \leq 1.3$;
- Velocities: up to -140 kms^{-1} :
- High value of σ \sim 90-130 km/s.

The End

Conclusions AND Work in Progress

The End

This 2yr-work represent a study of neutral phase GWs's signatures with the spatially resolved spectra of 10 LIRGs.

- 2-D kinematics: Neutral gas slower then ionized gas, tipically $\Delta V = V_{NaD} V_{H_{\alpha}} \sim (100-200) kms^{-1}$;
- Gas/* Neutral gas dominates the absorption over \sim 90% of the sources, (except 3 objects);
 - $\tau_{\rm gas}\,$ Neutral gas is mainly in the optically thick regime (R~1.1-1.5);
- GWs Outflows detection rate: 5/10 (+2?)

V, σ Typical values are V: (130-260)kms⁻¹, σ : (80-160)kms⁻¹; τ_{GW} N_H = (1.8-4.5) × 10²¹ cm⁻²

Work in progress: Dynamics

The End

This 2yr-work represent a study of neutral phase GWs's signatures with the spatially resolved spectra of 10 LIRGs.

- 2-D kinematics: Neutral gas slower then ionized gas, tipically $\Delta V = V_{NaD} V_{H_{\alpha}} \sim (100-200) kms^{-1}$;
- Gas/* Neutral gas dominates the absorption over \sim 90% of the sources, (except 3 objects);
 - τ_{gas} Neutral gas is mainly in the optically thick regime (R~1.1-1.5);
- GWs Outflows detection rate: 5/10 (+2?)

V, σ Typical values are V: (130-260)kms⁻¹, σ : (80-160)kms⁻¹; τ_{GW} N_H = (1.8-4.5) × 10²¹ cm⁻²

Work in progress: Dynamics

• Rate of mass losses (\dot{M}_{GW}) and efficiency: $\eta = \dot{M}_{GW}/{\sf SFR}$.

-Cazzoli et al. [in prep]-

The End

This 2yr-work represent a study of neutral phase GWs's signatures with the spatially resolved spectra of 10 LIRGs.

- 2-D kinematics: Neutral gas slower then ionized gas, tipically $\Delta V = V_{NaD} V_{H_{\alpha}} \sim (100-200) kms^{-1}$;
- Gas/* Neutral gas dominates the absorption over \sim 90% of the sources, (except 3 objects);
 - τ_{gas} Neutral gas is mainly in the optically thick regime (R~1.1-1.5);
- GWs Outflows detection rate: 5/10 (+2?)

V, σ Typical values are V: (130-260)kms⁻¹, σ : (80-160)kms⁻¹; τ_{GW} N_H = (1.8-4.5) × 10²¹ cm⁻²

Work in progress: Dynamics

• Rate of mass losses (\dot{M}_{GW}) and efficiency: $\eta = \dot{M}_{GW}/{\sf SFR}$.

-Cazzoli et al. [in prep]-

	(U)LIRGs & GWs Analysis Example Conclusions	The End	
And finally			

THE END THANKS FOR YOUR ATTENTION