STAR-FORMING GALAXIES AT Z≈8-9 FROM HST/WFC3: IMPLICATIONS FOR REIONIZATION

Silvio Lorenzoni, Andy Bunker, Stephen Wilkins, Joseph Caruana

Reionization

Gunn-Peterson effect

Lyman break technique

Data

exposure times in ksec

	Y-band	J-band	H-band
HUDF	28.1	44.8	75.8
HUDF09-2	28.1	39.3	47.7
HUDF09-1	16.8	33.7	5.6
ERS	2.6	2.6	2.6
ANDELS wide	2.7	2.1	2.1
ANDELS deep	8.1	7.4	7.7

figure from Oesch et al. (2011), arXiv:1105.2297

Candidates

CANDELS candidates

z'-drops

Y-drops

$$\phi(L)dL = \phi^* \left(\frac{L}{L^*}\right)^{\alpha} e^{(-L/L^*)} d(L/L^*)$$

$$\phi(L)dL = \phi^* \left(\frac{L}{L^*}\right)^{\alpha} e^{(-L/L^*)} d(L/L^*)$$

$$\phi(L)dL = \phi^* \left(\frac{L}{L^*}\right)^{\alpha} e^{(-L/L^*)} d(L/L^*)$$

$$\phi(M)dM = (0.4\ln 10) \phi^* 10^{0.4(\alpha+1)(M^*-M)} e^{-10^{0.4(M^*-M)}} dM$$

z ~ 7

z ~ 7

a	M* [AB mag]	ф* [Мрс-3]
-1.5	-19.75	0.00159
-1.7	-19.93	0.00119
-1.9	-20.14	0.00081
-2.1	-20.40	0.00049

z ~ 8

α	M* [AB mag]	ф* [Мрс-3]
-1.5	-19.42	0.00088
-1.7	-19.53	0.00075
-1.9	-19.66	0.00060
-2.1	-19.80	0.00046

Implications for reionization

Implications for reionization

SFR density evolution with redshift

SFR density evolution with redshift

Conclusions

LF evolution:

clear from z=3 evidence for evolution from z=6-7 to z=8-9 both in phi and M* not enough data to constrain faint end slope.

Reionization:

candidates we detect have insufficient flux for reionization, but a steep faint end slope, low metallicity population and a top heavy IMF could all be factors that might provide enough ionizing photons

Text

Luminosity dependence

Redshift evolution

Redshift evolution

UV properties of high redshift galaxies

UV properties of high redshift galaxies

Wilkins et al. (2011), MNRAS 417 717

Selection of v-, i- and z-drops with $M_{1500} < -18.5$, covering a redshift range of 4.7 < z < 7.7

Default scenario

- 100 Myr continuous star formation history
- solar metallicity (Z = 0.02)
- Salpeter IMF
- no dust

Default scenario

- 100 Myr continuous star formation history
- solar metallicity (Z = 0.02)
- Salpeter IMF
- no dust

⁽in case you didn't notice, it's over)

WFC3 exp Field ID	bosure times Y-band ^a	, in ksec (num <i>J</i> -band	ber of exposures). H-band	J_{AB} 7 σ limit
HUDF	28.1 (20)	44.8 (32)	75.8 (54)	28.65
P34	28.1(20)	39.3 (28)	47.7 (34)	28.33
P12	16.8(12)	33.7 (24)	5.6 (4)	28.22
ERS	2.6(6)	2.6(6)	2.6 (6)	27.16
			0	IT

 a Y_{098m} for the ERS fields and Y_{105w} for the $H \rm UDF/P12/P34$ fields.

Table 1. The total exposure time (in ksec) is listed for each filter, with the number of individual exposures given in parentheses. The final column gives the 7σ magnitude limit in the *J*-band.

α	M^*_{1600} [AB mag]	$\phi^* [\mathrm{Mpc}^{-3}]$	$ ho_{1600} [10^{25} { m erg s^{-1} M} \ M_{1600} < -18.5 \; ({ m SFR} > 1.5 { m M}_{\odot} { m yr}^{-1})$	$[m pc^{-3}Hz^{-1}]~(\dot{ ho_*}~[m M_\odot~yr^{-1}M_\odot/yr^{-1}) < -13~(>0.01M_\odot~yr^{-1})$	$({ m pc}^{-3}]) < -8 \; (> 10^{-4} { m M}_{\odot} { m yr}^{-1})$
$-1.5 \\ -1.7 \\ -1.9$	$-19.34 \\ -19.5 \\ -19.66$	0.00117 0.00093 0.00070	1.65 (0.0022) 1.71 (0.0022) 1.73 (0.0023)	4.61 (0.0060) 6.22 (0.0081) 9.05 (0.0119)	$\begin{array}{c} 4.88\ (\ 0.0064\)\\ 7.27\ (\ 0.0095\)\\ 13.46\ (\ 0.0176\)\end{array}$

Table 6. The best fit values of M_{1600}^* and ϕ^* for s Schechter function assuming fixed $\alpha \in \{-1.5, -1.7, -1.9\}$ together with the UV luminosity densities (and star formation rate densities in parentheses) determined by integrating the luminosity function down to various limiting absolute magnitudes.

Candidates

Figure from Oesch et al. (2011), arXiv:1105.2297

Future

Spectroscopic confirmation of candidates (ongoing)

More data (CANDELS program)

