

Verification and science with and a point of the JWST/NIRSpec Instrument Performance Simulator

Bernhard Dorner, CRAL - Observatoire de Lyon ELIXIR annual meeting, Madrid, 05/10/2011

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° PITN-GA-2008-214227 - ELIXIR

My thesis: It's all abut the IPS...

- Verify simulator algorithms and models
 - Compare with theoretical results
 - Compare with NIRSpec calibration measurements
- Simulate future observations
- Additional developments:
 - Science data input interface
 - Data reduction pipeline

Sky input interface

- Direct placement in shutters, slits + IFU slices
- Standard file types (spectrum, image & spectrum, cube)
- IDL and python libraries
- Use short scripts to create scenes
- Needs instrument model for
 final file creation

NIRSpec IPS Pipeline Software (NIPPLS)

- Python software framework for analysis of NIRSpec data
- Extract and process spectra
- Uses instrument model in pipeline
- Initially for IPS data, but also used for measurements (still the only tool to get spectra)
- Modular and flexible for custom processing

NIPPLS standard slit workflow

Verification: software and model

- Simulation approach (IPS functionality is tested before delivery)
- Coordinate transforms (geometry, dispersers): spectra, images
- Throughput: Calibrated sources, relative comparisons

Coordinate transforms: Adjustment

- First cryo data from Feb 2011
- Processing with NIPPLS

World pixel x coordinate 491 and 492

- Flatfield and emission line spectra: Match in spatial and spectral direction
- Optimize key model parameters

Coordinate transforms: Adjustment

- First cryo data from Feb 2011
- Processing with NIPPLS
- Flatfield and emission line spectra: Match in spatial and spectral direction
- Optimize key model parameters

World pixel x coordinate 491 and 492

Coordinate transforms: Adjustment

1078

- First cryo data from Feb 2011
- Processing with NIPPLS
- Flatfield and emission line spectra: Match in spatial and spectral direction
- Optimize key model parameters

Target spectrum trace

Coordinate transforms: Residuals

Residual Y (pixels): 0.011 +- 0.093 Absolute residual (pixels): 0.084 +- 0.078, median: 0.063

Number of points: 593

Overall residuals: about 1/15 px

ELIXIR meeting Madrid 05/10/2011

Coordinate transforms: Residuals

Overall residuals: about 1/15 px

ELIXIR meeting Madrid 05/10/2011

Science simulations

- Multi-object spectroscopy (Camilla, Peter, Stéphane)
 - High-redshift galaxies (z=1...8) in UDF with model spectra
- Integral field spectroscopy (Enrica, Santiago)
 - Ultra-luminous infrared galaxies
- Planetary transits (Jeff Valenti)
 - Capabilities for exoplanet characterization

Realistic multi-object scenes

- Hubble UDF: Objects with band photometry and redshift
- Model galaxy spectra from simulations
- Select observable objects in shutter grid
- Find matching spectra to UDF objects
- Construct mock sky scene

Realistic multi-object scenes

- Hubble UDF: Objects with band photometry and redshift
- Model galaxy spectra from simulations
- Select observable objects in shutter grid
- Find matching spectra to UDF objects
- Construct mock sky scene

Data reduction: NIPPLS with flatfield + calibration

Simulation example: Planet host star

- HD 189733
 - ► G5, 0.81 M_{Sun}
 - ► 2MASS K_s = 5.541
 - Kurucz synthetic

- HD 189733b
 - $\bullet R = I.I4 R_{Jup}$
 - Msin i = $1.14 M_{Jup}$
 - ▶ a = 0.031 AU
 - Depth: 2.41%
 - Transit time: 60 min

Observability and exposure times

HD189733

G]1214

- G5, 19.45 pc M4.5V, 12.95 pc

Planet	NIRSpec mode	Maximum frame number n _f	Duration T _{trans} / sec	Effective exposure time t _{eff} / sec
HD189733b (eclipse)	R2700 band III	2	3456 (Knutson et al. 2007)	1145
HD189733b (transit)	R2700 band III	2	3600 (Winn et al. 2007)	1199
GJI2I4b	R2700 band I	20	2406 (Berta et al. 2010)	2056
GJI2I4b	R2700 band II	20	2406	2056
GJI2I4b	R2700 band III	38	2406	2001
GJI2I4b	R1000 band I	7	2406	1785
GJI2I4b	R1000 band II	7	2406	1785
GJI2I4b	R1000 band III	14	2406	1992

HD189733b: eclipse today

HD189733b: eclipse with NIRSpec

- IPS and NIPPLS are very useful tools for NIRSpec verification and science preparation
- Instrument model in completion and verification
- Starting final simulations in cooperation with network partners
- End of thesis: envisaged April 2012

