<u>"Kinemetry of a sub-sample of local LIRGs using</u> <u>VLT-VIMOS integral-field spectroscopy"</u>

Enrica Bellocchi

Consejo Superior de Investigaciones Cientificas
 CAB - INTA, Torrejon de Ardoz (Madrid, Spain)
 Supervisor Santiago Arribas

ELIXIR meeting, 6/10/2011

<u>Main goals:</u>

- 2-D kinematic characterization of local (U)LIRGs sample along with their respective simulated highz galaxies; look for correlations wrt fundamental properties like Dynamical Status, L_ir, Ionization type, etc.
- Find out kinematic criteria able to distinguish between "disk" or "merger" systems (e.g., Shapiro et al. 2008). This is relevant to constrain different galaxy evolutionary scenarios.

Outline of this work:

- i. <u>The sample & sub-sample</u>
- ii. <u>Data reduction *</u>
- iii. <u>Data analysis:</u>
 - 1) Line fitting & Creating maps
 - 2) Kinemetry method (Krajnović et al. 2006)
 - 3) Define different kinematic criteria distinguishing
 "disk/merger" (e.g., Shapiro et al. 2008)
 - 4) Simulations @ high-z (i.e., NIRSpec resolution)
 - 5) Results

i. The whole sample & VLT/VIMOS IFU observations

- 38 local (<z> ~ 0.022) (U)LIRGs observed with VIMOS @ VLT (from RBGS, <u>Sanders et al. 2003</u>)
- Different ionization types: LINERs, Seyfert, HII
- * $L_{IR} = L_{[8-1000 \ \mu m]} = 10^{11} 10^{12.4} L_{\odot}$
- Different dynamical phases (morphological types)

Sub-sample 4 LIRGs @ 70 Mpc

Morphology:

Rodriguez-Zaurin et al. 2010

<u>iii. Data analysis</u>

1) Line fitting & relative maps

 $\sigma \overset{\text{1st H}\alpha \text{ comp}}{\text{[km/sec]}}$

10

10

0

-10

-10

<u>NGC 1614</u>

arcsec

0

 $\sigma^{\text{ 2nd }\text{H}\alpha \text{ comp}} \left[\text{km/sec}\right]$

Local Observed data

z = 3 Simulated data

2) "Kinemetry" method

into the Fourier series $K(\psi, r) = A_0(r) + \Sigma_i A_i(r) \sin(i\cdot\psi) + B_i(r) \cos(i\cdot\psi)$

where Ψ is the azimuthal angle in the plane of the galaxy

 \rightarrow The results are the Fourier coefficients (A_i, B_i)

and reconstructed kinematic moment maps !

Rotational Curve !

<u>Kinemetry outputs (I)</u>

Kinemetry outputs (II)

3) Kinematic criteria

a) Shapiro et al. 2008

<u>To quantify asymmetries</u> of a system (e.g., v_{asym} , σ_{asym}) wrt an *ideal rotating disk*, to differenciate it between "disk" or "merger"

 $\rightarrow k_{avg} = high-order deviations$ $\rightarrow B_{1,v} = Rotational Curve$

<u>Our results @ low -z</u>

→ Consistency between morphology & kinematics → $\langle K_{LIM} \rangle$ = 0.135

<u>Our results @ high-z</u>

- Distorsions are smeared out @ high-z

 \rightarrow objects appear <u>more symmetric</u> than they are! $\langle K_{LIM} \rangle = 0.096$ (lower!)

b) NEW CRITERIA

(Bellocchi et al. 2011 submitted)

Instead of averaging the deviations for the number of RADII we use the number of DATA POINTS (in each ellipse) !!!

More points \rightarrow more weight!

$$v_{asym} = \sum_{n=1}^{N} \left(\frac{k_{2,n}^{\nu} + k_{3,n}^{\nu} + k_{4,n}^{\nu} + k_{5,n}^{\nu}}{4 \cdot B_{1,n}^{\nu}} \cdot P_n \right) \cdot \underbrace{\frac{1}{\sum_{n=1}^{N} P_n}}_{\sum_{n=1}^{N} P_n}$$

$$\sigma_{asym} = \sum_{n=1}^{N} \left(\frac{k_{1,n}^{\sigma} + k_{2,n}^{\sigma} + k_{3,n}^{\sigma} + k_{4,n}^{\sigma} + k_{5,n}^{\sigma}}{5 \cdot B_{1,n}^{\nu}} \cdot P_n \right) \underbrace{\sum_{n=1}^{N} P_n}_{\sum_{n=1}^{N} P_n}$$

Weigthed results @ low -z

→ WEIGHTED plane differenciates better the 2 classes LOCALLY (larger separation $\langle K_{LIM} = 0.146 \rangle$)

Results:

- \rightarrow WEIGHTED plane differenciates better the 2 classes
- → <u>LESS dependent</u> from <u>RESOLUTION</u> effects: <u>more stable!</u>

<u>Other kinematic results for the 4 LIRGs</u>

- 1. The <u>kinematic properties</u> are <u>consistent</u> with their <u>morphology</u> ("disks" reveal quite regular velocity field and centrally peaked velocity dispersion maps consistent with a single rotating disk interpretation while "mergers" show departures from this behaviour);
- 2. <u>1-D</u> kinematic based criteria (e.g., v_c/σ_c , v_{shear}/Σ parameters) seems to be more uncertain discriminator "disks/mergers";
- 3. <u>2-D kinematic based criteria</u>:
- more powerful tool to discriminate between "disks/mergers"
- We proposed new method (WEIGHTED) that seems to work better!
- K_{LIM} value could depend on the kind of systems considered.
- 4. Broad (σ ≈ 70-450 km/sec) and blue-shifted (i.e., Δv ≈ 50-150 km/s) peaked component is found in their inner regions (e.g., IRAS F04315-0840 has an outflow of 5.5 kpc², likely due to star-formation activity in a dusty environment)

 Extend this analysis to the whole sample (locally and for simulated high-z objects)

✓ Derivation of dynamical masses & discuss its consistency with the stellar masses derived in collaboration with IAP (S. Charlot)