The Evolution of the Mass-Size relation to z = 3.5in the GOODS-North Field

Moein Mosleh

THE EVOLUTION OF THE MASS-SIZE RELATION TO Z=3.5 FOR UV-BRIGHT GALAXIES AND SUB-MM GALAXIES IN THE GOODS-NORTH FIELD

Moein Mosleh¹, Rik J. Williams², Marijn Franx¹, Mariska Kriek³

Introduction

- Galaxies at high redshift have significantly smaller sizes than the local galaxies of similar masses
- Quiescent Galaxies are significantly smaller than star-forming galaxies of similar masses
- These studies are almost bases on Photometric redshift especially at high z
- Size measurements of Sub-mm or LBG galaxies at high z are also rare

DESCRIPTION OF DATA

Using most complete spectroscopic catalog of galaxies in the GOODS-North Field. (Barger et al. 2008)

- ★ Using U band (Capak et al. 2004)
- ★ ACS Magnitudes (F435w (B), F606W (V), F775W (I), F850LP (Z))
- ★ Ks-band magnitudes from WIRCam (CFHT, 3.6 m) (6909)
- \star NUV FUV from GALEX (1016)

SIZES

- ✓ Using GALFIT (Peng et al. 2002) to fit Sersic models
- ✓ Ks-band image from Subaru 8M Telescope
- ✓ FWHM ~ 0.5"
- $\checkmark \qquad Pixel \ scale = 0.12 \ arcsec/pixel$

STELLAR MASS ESTIMATES

✓ Using FAST (Fitting and Assessment of Synthetic Templates code) (Kriek et al. 2009)

✓ Using Salpeter IMF & Solar Metallicity

✓ Masses are corrected by a factor of -0.2 dex (for consistency with a Kroupa (2001) IMF)

 \checkmark Bands: U, B, V, I, Z, Ks

Simulations

SUB-SAMPLES

♦ UV- Bright Galaxies : -

 Lyman Break Galaxies (LBGs) (2.7 < z < 3.4) Selected from Reddy et al. 2006

• BM/BX (1.4 < z < 2.7)

Selected from Reddy et al. 2006 Catalog

• GALEX/LBGs (0.6 < z < 1.4)

Selected by using (FUV-NUV) versus (NUV-F435W) color- color diagram

Sub-mm Galaxies (SMG)

Selected from samples of Chapman et al. 2005 & Pope et al. 2006

Star-forming BzK(sBzK)(1.4 < z < 3.2)

TABLE 1SUB-SAMPLES

-	Sample	Redshift	$log(M_*/M_{\odot})$	No. of Sources
-	GALEX/LBG	0.6 < z < 1.4	8.8 - 11.0	105
	BM/BX	1.4 < z < 2.7	9.8 - 10.8	41
	LBG	2.7 < z < 3.5	10.2 - 10.8	5
	SMG	0.5 < z < 3.	10.0 - 11.7	14
	sBzK	1.4 < z < 3.2	9.8 - 11.7	70

Size Evolution

Sizes of UV-Bright galaxies evolve by a median factor of 0.60±0.08 between z ~2 to z~1

Size Evolution

Stellar Mass-Size Relation

TABLE 2Best fits power law parameter for the stellar mass - size
Relation

Sample	Redshift	α	
GALEX/LBG	0.6 < z < 1.4	0.19 ± 0.05	
BM/BX	1.4 < z < 2.7	0.30 ± 0.06	
CDFs-UV Bright	2.5 < z < 3.5	0.32 ± 0.06	
sBzK	1.4 < z < 3.2	0.31 ± 0.09	

Note. Power law parameter α is defined as $r_e \propto M^{\alpha}$.

Stellar mass size relation for star forming sBzK galaxies

Color - Surface Density

 $10 < log(M_*/M_{\odot}) < 11$

Conclusion

Summary

- Quantifying the size mass evolution of galaxies without potential uncertainties of photometric redshift.
- ~ UV-Bright galaxies evolve strongly with redshift.
- \sim UV-Bright galaxies are significantly larger than quiescent galaxies. At the same mass, the median difference is 0.45 \pm 0.09.
- The LBG, BM/BX and GALEX/LBG samples show smooth evolution with redshift.
- The SMGs have half-light radii similar to UV-Bright galaxies of the same mass.

THE EVOLUTION OF THE MASS-SIZE RELATION TO Z=3.5 FOR UV-BRIGHT GALAXIES AND SUB-MM GALAXIES IN THE GOODS-NORTH FIELD

Moein Mosleh¹, Rik J. Williams², Marijn Franx¹, Mariska Kriek³

States of the st

arXiv: 1011.3042v1