Exoplanetary atmospheres: Observations and modelling

Benjamin Charnay

ARIEL-School, Biarritz, 2019

Introduction

A diversity of exoplanets

I) Observational techniques

- Transit
- Direct imaging
- Medium/high spectral resolution
- Lessons from observations of exoplanets

II) Modelling exoplanetary atmospheres

- Radiative transfer
- Thermal structure
- Clouds & aerosols

Sara Seager

EXOPLANET ATMOSPHERES

Physical Processes

Radiative transfer + basics about physics/chemistry of exoplanetary atmospheres

An Introduction to Planetary Atmospheres

Agustin Sánchez-Lavega

Physics/chemistry/dynamics of planetary atmospheres & Solar System planets

Atmospheric evolution, habitability & early Earth

Not really a statistically significant sample

Cumulative Detections Per Year

19 Aug 2019 exoplanetarchive.ipac.caltech.edu

Discovery Year

Mass - Period Distribution

19 Aug 2019

Period [days]

Mass - Period Distribution

Occurrence rate of planets

Occ. Rate

Num. of (real) Planet

Completeness

(Number of stars for which a planet would be detected if it's there)

Planets around Sun-like stars are very common High fraction of super-Earths and mini-Neptunes

Planet formation: core accretion model

(Perri & Cameron 1974, Mizuno 1978, Bondeheimer & Pollack 1986, Pollack et al. 1996)

Planet formation: core accretion model

Planet formation: core accretion model

Atmospheres as a probe of planetary interior and formation

Metallicity = fraction of heavy elements (heavier than H and He) For Solar System atmospheres, metallicity \approx [C]/[C]_{solar} For exoplanetary atmospheres, metallicity \approx [O]/[O]_{solar}

- Metallicity decreases with planetary mass in the Solar System
- Sub-Neptunes/Neptunes planets formed in-situ should have a relatively low metallicity

\rightarrow Measuring the metallicity allows to test formation and migration mechanisms ¹²

Madhusudhan et al. (2014) ¹³

Introduction A diversity of exoplanets

I) Observational techniques

- Transit
- Direct imaging
- Medium/high spectral resolution
- Lessons from observations of exoplanets

II) Modelling exoplanetary atmospheres

- Radiative transfer
- Thermal structure
- Clouds & aerosols

Probability of transit

Prob. of full transit:
$$p_{tra} = \left(\frac{R_{\star} - R_p}{a}\right) \left(\frac{1 + esin\omega}{1 - e^2}\right)$$

Prob. of full occultation: $p_{occ} = \left(\frac{R_{\star} - R_p}{a}\right) \left(\frac{1 - esin\omega}{1 - e^2}\right)$
f $R_{\star} \gg R_p$ and $e \sim 0$: $p_{tra} = p_{occ} \approx 0.005 \left(\frac{R_{\star}}{R_{\odot}}\right) \left(\frac{a}{1 \, AU}\right)^{-1}$

Probability of transit

Interest of ultra-cool stars

Occultation depth:

$$\delta_{occ} = \frac{I_p}{I_\star} \left(\frac{R_p}{R_\star}\right)^2$$

Effect of limb darkening

Transit of Venus

Effect of limb darkening

Atmospheric characterization with photometric transit lightcurves

Measure of radius and density

Howard et al. (2013)

Measure of thermal emission and reflected light during occultations

 \rightarrow effective temperature and geometric albedo

Spectroscopy

Effect of mean molecular weight

Variation of transit depth:

$$\Delta \delta_{tra} = \frac{\pi (R_p + N_H H)^2}{\pi {R_\star}^2} - \frac{\pi R_p^2}{\pi {R_\star}^2} \approx 2N_H \delta_{tra} \left(\frac{H}{R_p}\right)$$

Scale height: $H = \frac{RT}{Mg}$; Number of scale heights: $N_H \approx 7$ (for low resolution)

→ Transit spectroscopy easier for high scale height (e.g. hot giant planets)

Spectroscopy

Effect of mean molecular weight

Variation of transit depth:

$$\Delta \delta_{tra} = \frac{\pi (R_p + N_H H)^2}{\pi {R_\star}^2} - \frac{\pi R_p^2}{\pi {R_\star}^2} \approx 2N_H \delta_{tra} \left(\frac{H}{R_p}\right)$$

Scale height: $H = \frac{RT}{Mg}$; Number of scale heights: $N_H \approx 7$ (for low resolution)

For an Sun-like star:

- Hot Jupiter (*T*=1300 K, *g*=25 m s⁻², *M*=2.3 g/mol): $\delta_{tra} \approx 0.01$, $\Delta \delta_{tra} \approx 4.10^{-4}$

- Earth-like planet (*T*=280 K, *g*=10 m s⁻², *M*=28g/mol): $\delta_{tra} \approx 10^{-4}$, $\Delta \delta_{tra} \approx 2.10^{-6}$ ²²

Spectroscopy

Effect of mean molecular weight

Variation of transit depth:

$$\Delta \delta_{tra} = \frac{\pi (R_p + N_H H)^2}{\pi {R_\star}^2} - \frac{\pi R_p^2}{\pi {R_\star}^2} \approx 2N_H \delta_{tra} \left(\frac{H}{R_p}\right)$$

Scale height: $H = \frac{RT}{Mg}$; Number of scale heights: $N_H \approx 7$ (for low resolution)

For Trappist-1 (0.015 R_s):

- Hot Jupiter (*T*=1300 K, *g*=25 m s⁻², *M*=2.3 g/mol): $\delta_{tra} \approx 0.7$, $\Delta \delta_{tra} \approx 2.10^{-2}$
- Earth-like planet (*T*=280 K, *g*=10 m s⁻², *M*=28g/mol): $\delta_{tra} \approx 6.10^{-3}$, $\Delta \delta_{tra} \approx 10^{-4}$ ²³

Spectroscopy

<u>Assumptions: hydrostatic+isothermal</u> $p(z) = p(z_0) \exp\left(-\frac{z-z_0}{H}\right)$ with $H = \frac{RT}{Mg}$

 $\frac{\text{Optical depth (cross-section independent of P \& T)}}{\tau(b,\lambda) = \sum_{i} \int_{-\infty}^{+\infty} \sigma_i(\lambda) n_i(x) dx}$ $n_i(x) = n_{i0} e^{-z/H} \text{ with } z = \sqrt{b^2 + x^2} - R_p \approx b - Rp + \frac{x^2}{2b}$

$$\tau(b,\lambda) \approx \sum_{i} \sigma_{i}(\lambda) n_{i0} e^{-(b-Rp)/H} \int_{-\infty}^{+\infty} e^{-x^{2}/2RpH} dx = \sum_{i} \sigma_{i}(\lambda) n_{i0} e^{-(b-Rp)/H} \sqrt{2\pi bH}$$

Comparison with vertical optical depth:

$$\eta = \frac{\tau_H}{\tau_V} = \sqrt{\frac{2\pi Rp}{H}}$$

Earth: $\eta \sim 75$ Jupiter: $\eta \sim 128$ HD209458b: $\eta \sim 38$

Spectroscopy

<u>Assumptions: hydrostatic+isothermal</u> $p(z) = p(z_0) \exp\left(-\frac{z-z_0}{H}\right)$ with $H = \frac{RT}{Mg}$

Optical depth (cross-section independent of P & T)

$$\tau(b,\lambda) = \sum_{i} \sigma_{i}(\lambda) n_{i0} e^{-(b-Rp)/H} \sqrt{2\pi bH}$$

Transit depth:

$$D(\lambda) = \left(\frac{R_p}{R_\star}\right)^2 + \frac{2}{R_\star^2} \int_{R_p}^{R_\star} b\left(1 - e^{-\tau(b,\lambda)}\right) db = \left(\frac{R_p + h_\lambda}{R_\star}\right)^2$$

Equivalent altitude:

$$h_{\lambda} = -Rp + \sqrt{R_p^2 + 2\int_{R_p}^{R_{\star}} b(1 - e^{-\tau(b,\lambda)})db} \approx 0.577H + Hln\left(\sqrt{2\pi HRp}\sum_i \sigma_i(\lambda)n_{i0}\right)$$
$$h_{\lambda} \approx b(\tau = 0.56) - Rp$$

see De Wit & Seager (2013) and Macdonald & Cowan (2019)

Spectroscopy

Synthetic Earth's transit spectrum

Phase curves

Courtesy Tom Louden

Phase curves

K. B. Stevenson (2014)

Open-access codes for lightcurve fitting

For transits:

Transit routines (IDL, FORTRAN): <u>https://faculty.washington.edu/agol/transit.html</u> batman (Python): <u>https://www.cfa.harvard.edu/~lkreidberg/code.html</u> STARRY (Python): <u>https://github.com/rodluger/starry</u> ExoCTK (Python): <u>https://exoctk.stsci.edu/lightcurve_fitting</u>

For secondary eclipses & phase curves:

STARRY (Python): <u>https://github.com/rodluger/starry</u> spiderman (Python): <u>https://www.cfa.harvard.edu/~lkreidberg/code.html#spiderman</u>

II) Direct imaging

Limitations

II) Direct imaging

Ingredients to overcome limitations

- □ Low resolution: $R = \frac{\lambda}{\Delta \lambda} < 1000$ (e.g. HST, ARIEL) → absorption bands
- □ Medium resolution: $R = \frac{\lambda}{\Delta \lambda} \sim 1000 10000$ (e.g. JWST, VLT/SINFONI) → strong molecular lines
- High resolution:

$$R=rac{\lambda}{\Delta\lambda}>10000$$

(e.g. VLT/CRIRES, VLT/ESPRESSO)

ightarrow resolve line shape and doppler shift

Medium resolution for direct imaging

- Distinguish planetary signal from stellar noise (speckles) thanks to intrinsic molecular lines
- Cross-correlation between the high-passing observed spectrum S_{obs} and a model spectrum S_{th}

$$CCF(V_0) = \int S_{obs}(v) \times Sth(v + v \times V_0/c) dv$$

with normalization: $\int S^2(v) dv = 1$

Wavelength-averaged image of beta Pic b with VLT-SINFONI

Medium resolution for direct imaging

- Distinguish planetary signal from stellar noise (speckles) thanks to intrinsic molecular lines
- Cross-correlation between the high-passing observed spectrum S_{obs} and a model spectrum S_{th}

$$CCF(V_0) = \int S_{obs}(v) \times Sth(v + v \times V_0/c) dv$$

with normalization: $\int S^2(v) dv = 1$

Molecular mapping of beta Pic b

High resolution for transit spectroscopy

Lessons from observations of exoplanet atmospheres

Radius & Interior

- Hot Jupiters are inflated
- Gap in the occurrence rate between super-Earths and mini-Neptunes
- Dynamics & Thermal structure
- Superrotation for strongly irradiated planets
- Stratospheric thermal inversion for the hottest planets

Clouds/haze

- Most of exoplanets are cloudy/hazy
- Inhomogeneous clouds distribution

Atmospheric composition

- Chemical disequilibrium (ex: CO/CH4)
- Low-mass planets seem to have high-mean molecular weight

Atmospheric escape

Atmospheric escape for strongly irradiated planets

Inflated hot Jupiters

- Hot Jupiters are inflated compared to 1D models
- Correlation between inflated radii and stellar flux

Inflated hot Jupiters

Explanations for inflated hot Jupiters:

Heat transfer to the adiabatic layer (10⁻⁴% - 1% of the irradiation)

1) Ohmic dissipation

Batygin & Stevenson (2010)

Superrotation + magnetic field + ionization of H and alkali metals in hot Jupiters \rightarrow **Induced currents**

Heat production: $P = \frac{J^2}{\sigma}$

2) Advection of heat from global circulation

A valley between super-Earths and mini-Neptunes

- Bimodal distribution with a gap at around 1.8 R_E
- Transition from mini-Neptunes to super-Earths with increasing instellation
 - → Photoevaporation

A valley between super-Earths and mini-Neptunes

Photoevaporation can predict the 2 peaks. The location of the valley is very sensitive to the core composition —> cores seem to be Earth-like in composition.

(Owen & Wu 2017; Jin & Mordasini 2017)

If correct: No water \rightarrow formation inside the ice line

Lessons from observations of exoplanet atmospheres

Radius & Interior

- Hot Jupiters are inflated
- Gap in the occurrence rate between super-Earths and mini-Neptunes

Dynamics & Thermal structure

- Superrotation for strongly irradiated planets
- Stratospheric thermal inversion for the hottest planets

Clouds/haze

- Most of exoplanets are cloudy/hazy
- Inhomogeneous clouds distribution

Atmospheric composition

- Chemical disequilibrium (ex: CO/CH4)
- Low-mass planets seem to have high-mean molecular weight

Atmospheric escape

Atmospheric escape for strongly irradiated planets

Superrotation for strongly irradiated planets

Thermal phase curve and temperature map of HD189733b (Knutson et al. 2007)

- Presence of an eastward super-rotating equatorial jet
- Maximum of temperature shifted east to the substellar point

Phase offset due to competition between the radiative cooling and the speed of the equatorial jet.

$$\tau_{adv} = \frac{2\pi R}{U}$$

Stratospheric thermal inversion for hot planets

Observations: fewer planets (ultra-hot) show stratospheric thermal inversion than expected

Possible explanations:

- Cold trapping of TiO/VO on the nightside ?
- High C/O ?
- Photodissociation of TiO/VO by high stellar activity ?

Lessons from observations of exoplanet atmospheres

- Radius & Interior
- Hot Jupiters are inflated
- Gap in the occurrence rate between super-Earths and mini-Neptunes
- Dynamics & Thermal structure
- Superrotation for strongly irradiated planets
- Stratospheric thermal inversion for the hottest planets

Clouds/haze

- Most of exoplanets are cloudy/hazy
- Inhomogeneous clouds distribution
- Atmospheric composition
- Chemical disequilibrium (ex: CO/CH4)
- Low-mass planets seem to have high-mean molecular weight

Atmospheric escape

Atmospheric escape for strongly irradiated planets

Most of exoplanets are cloudy/hazy

Condensate clouds (thermodynamic phase change)

Haze (non-equilibrium chemistry)

Most of exoplanets are cloudy/hazy

Clouds are everywhere

Clouds H₂SO₄ and other heavier H₂SO₄ photochemical products like S_8 (?) Smog H_2O Farth No haze H₂O, CO₂ Mar (but lots of dust) Forms from Saturn H₂O, NH₃, NH₄SH NH₃, CH₄, H₂S, etc. photochemistry Forms from CH₄, HCN, C₄N₂, CH₄, N₂, CO, etc. C₂H₆, other organics photochemistry Forms from Uranus H₂O, NH₃, NH₄SH NH₃, CH₄, H₂S, etc. CH4, H2S Neptune photochemistry Forms from N_2 CH4, N2, CO, etc. **I**IIO photochemistry Forms from N_2 CH4, N2, CO, etc. photochemistry CH₄, NH₃, H₂O Yes. Exoplanets alkali metals, iron, All the possible kinds. silicates, other, etc.

Figure from Sarah Hörst

Inhomogeneous cloud distribution

Demory et al. (2013)

→ Evaporation at hot spot (Demory et al. 2013, Parmentier et al. 2016) → Probably thick clouds on nightside (Keating et al. 2019)

Cloud mapping of brown dwarf

Lessons from observations of exoplanet atmospheres

- Radius & Interior
- Hot Jupiters are inflated
- Gap in the occurrence rate between super-Earths and mini-Neptunes
- Dynamics & Thermal structure
- Superrotation for strongly irradiated planets
- Stratospheric thermal inversion for the hottest planets
- Clouds/haze
- Most of exoplanets are cloudy/hazy
- Inhomogeneous clouds distribution

Atmospheric composition

- Chemical disequilibrium (ex: CO/CH4)
- Low-mass planets seem to have high-mean molecular weight

Atmospheric escape

Atmospheric escape for strongly irradiated planets

Chemical disequilibrium (See Olivia's course)

Deviation from chemical equilibrium produced by mixing or photochemistry

Lacour et al. (2019)

Ex: CO-CH4 conversion in young giant planets CO + $3H_3 = CH_4 + H_2O$ CO and CH4 abundances are quenched by vertical mixing

Low-mass planets seem to have high-mean molecular weight

<u>GJ1214b</u>

K2-18b

Lessons from observations of exoplanet atmospheres

- Radius & Interior
- Hot Jupiters are inflated
- Gap in the occurrence rate between super-Earths and mini-Neptunes
- Dynamics & Thermal structure
- Superrotation for strongly irradiated planets
- Stratospheric thermal inversion for the hottest planets
- Clouds/haze
- Most of exoplanets are cloudy/hazy
- Inhomogeneous clouds distribution

Atmospheric composition

- Chemical disequilibrium (ex: CO/CH4)
- Low-mass planets seem to have high-mean molecular weight

Atmospheric escape

Atmospheric escape for strongly irradiated planets

Atmospheric escape for strongly irradiated planets

- Hydrodynamic escape by strong EUV stellar flux
- Comet-like H cloud

Futur telescopes for the characterization of exoplanetary atmospheres

Futur telescopes for the characterization of exoplanetary atmospheres

Futur NASA Great Observatory (2035-2040)

LUVOIR

HABEX

https://psg.gsfc.nasa.gov/

The tool

Atmospheres. Modeling Remote operation. About PSG. Applications. Goddard: NASA.gov

Planetary Spectrum Generator

Home | Target and geometry | Atmosphere and surface | Instrument | API | Retrieval | Help

This site provides an interface to Goddard's Planetary Spectrum Generator (PSG), which can be used to generate high-resolution spectra of planetary bodies (e.g., planets, moons, comets, exoplanets). The spectroscopic suite can be also accessed remotely via the Application Program Interface (API). When requiring help on a specific input parameter, please click on the \hat{Q} icon.

Calculation template ${\cal O}$	Last	Select toroptate =
Target and geometry ${\cal D}$	Change .	Target: trappists e for date (2010/03/08 10:08 UTI; geometry: Observatory from 12:4300 pc
Atmosphere and surface ${\cal O}$	Change	Surface pressure: 5013 mbar: Molecular weight 28.97 g/mol, Atmospheric profile Earth, US-Standard: Gases: H20.C02.03,N20.C0.CH4.02.N2; Surface temperature: 288.20 K Albedis: 0.306; Emissivity: 0.694
Instrument parameters Φ	Ohange	Wavelength range 0.2-2.5 um with a resolution of 70 RP. Molecular radiative-transfer enabled: Continuum flux module enabled: Coronographic observations:
(meta)		(Bevert) (Doverstand Config Ma) (Gerunistic Spectrics)

Exemple: GJ1214b with pure H₂O and HST as Kreidberg et al. 2014

Introduction

A diversity of exoplanets

I) Observational techniques

- Transit
- Direct imaging
- Medium/high spectral resolution
- Lessons from observations of exoplanets

II) Modelling exoplanetary atmospheres

- Radiative transfer
- Thermal structure
- Clouds & aerosols

Definition intensity and flux

Intensity *I* = amount of energy passing through a surface
area *dS*, within a solid angle *d*Ω, per frequency interval *dv*,
per unit time (*I* in J m⁻² sr⁻¹ Hz⁻¹):
$$dE = I(x, \vec{n}, v, t) \vec{n} \cdot \vec{k} \, d\Omega \, dS \, dv \, dt$$
$$\mathbf{Moments:}$$
Mean intensity:
$$J = \int_{\Omega} I(x, \vec{n}, v, t) d\Omega$$
Flux:
$$F = \int_{\Omega} I(x, \vec{n}, v, t) \vec{n} \cdot \vec{k} \, d\Omega = \iint I(x, \theta, \varphi, v, t) cos(\theta) \sin(\theta) \, d\theta d\phi$$

Definition intensity and flux

Blackbody radiation:

$$B(T,v) = \frac{2hv}{c^2} \frac{1}{e^{hv/kT} - 1}$$

$$B(T,\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$

Flux from one hemisphere (isotropic radiation): $F_s(T, v) = \pi B(T, v)$

Total flux from one hemisphere (Stefan–Boltzmann law) : $F_s(T) = \sigma T^4$, σ =5.67×10⁻⁸ J K⁻⁴ m⁻² s⁻¹

Brightness temperature:

$$T_b = \frac{hv}{k} \frac{1}{\ln\left(1 + \frac{2\pi hv}{c^2 F_s}\right)}$$

with
$$F_{obs} = F_s \left(\frac{R_p}{Dist}\right)^2$$

Radiative transfer equation for plane-parallel

Optical depth & extinction coefficient:

$$d\tau = -k (T, P, v) \mu ds$$
$$k(T, P, v) = \sum_{i} n_i (\sigma_i^{abs} + \sigma_i^{scat})$$
Optical mean free path: $l = \frac{1}{k}$

Radiative transfer equation:

$$\mu \ \frac{dI}{d\tau} = I - S$$

Local thermodynamic Equilibrium (LTE):

T_{radiation}=T_{kinetics}
Condition: mean free path of photons ≪ length scale
of T variations (for non-LTE see Pierre's talk)

Source function

$$S_{v}(\mu,\phi) = (1-\omega_{0})B(T,v) + \frac{\omega_{0}}{4} \iint P(\mu,\mu',\phi,\phi')I(v,\mu',\phi')d\mu'd\phi'$$
Thermal emission
$$\mathcal{O}(t) = \frac{k_{scat}}{k_{scat}} \qquad Scattering$$

$$P = scattering phase function$$

$$\frac{1}{4\pi} \int_{\Omega} P(\Theta) d\Omega = 1$$
Rayleigh scattering: $P(\Theta) = \frac{3}{4}(1 + \cos^{2}\Theta)$

g: asymmetry factor
$$= \frac{1}{4\pi} \int_{\Omega} \cos \Theta P(\Theta) d\Omega$$
, $-1 \le g \le 1$
 $g = 0$ for isotropic or symmetric scattering (e.g. Rayleigh scattering)

The two-stream approximation

Case of stellar radiation with no scattering:

$$\mu \, \frac{dI}{d\tau} = I - S$$

<u>Goal:</u> to compute the total upward and downward flux

$$J_{\uparrow} \equiv \int_{0}^{2\pi} \int_{0}^{1} I \, d\mu \, d\phi,$$
$$J_{\downarrow} \equiv \int_{0}^{2\pi} \int_{-1}^{0} I \, d\mu \, d\phi,$$
$$F_{\uparrow} \equiv \int_{0}^{2\pi} \int_{0}^{1} \mu I \, d\mu \, d\phi,$$
$$F_{\downarrow} \equiv \int_{0}^{2\pi} \int_{-1}^{0} \mu I \, d\mu \, d\phi,$$

$$F^{\uparrow} = 0$$

$$F^{\downarrow} = F_s e^{-\tau/\mu_*}$$

 μ_* is related to the angle of stellar irradiation. For 1D, we use a mean value, generally $\mu_* = 1/\sqrt{3}$ or $\cos(60^\circ)$

The two-stream approximation

$$\mu \frac{dI}{d\tau} = I - S$$

<u>Goal:</u> to compute the total upward and downward flux

$$J_{\uparrow} \equiv \int_{0}^{2\pi} \int_{0}^{1} I \, d\mu \, d\phi,$$
$$J_{\downarrow} \equiv \int_{0}^{2\pi} \int_{-1}^{0} I \, d\mu \, d\phi,$$
$$F_{\uparrow} \equiv \int_{0}^{2\pi} \int_{0}^{1} \mu I \, d\mu \, d\phi,$$
$$F_{\downarrow} \equiv \int_{0}^{2\pi} \int_{-1}^{0} \mu I \, d\mu \, d\phi,$$

Case of a purely emitting atmosphere:

$$\begin{aligned} \frac{\partial F^{\uparrow}}{\partial \tau} &= J^{\uparrow} - 2\pi B\\ \frac{\partial F^{\downarrow}}{\partial \tau} &= -J^{\downarrow} + 2\pi B \end{aligned}$$

The two-stream solution consists in approximating I so that it is related to F.

We assume
$$\frac{F^{\uparrow}}{J^{\uparrow}} = \frac{F^{\downarrow}}{J^{\downarrow}} = \frac{1}{\gamma}$$
 (generally $\gamma = \sqrt{3}$)

$$\begin{aligned} \frac{\partial F^{\uparrow}}{\partial \tau} &= \gamma F^{\uparrow} - 2\pi B\\ \frac{\partial F^{\downarrow}}{\partial \tau} &= -\gamma F^{\downarrow} + 2\pi B \end{aligned}$$

The two-stream approximation

Case of a purely emitting atmosphere:

$$\frac{\partial F^{\uparrow}}{\partial \tau} = \gamma F^{\uparrow} - 2\pi B$$
$$\frac{\partial F^{\downarrow}}{\partial \tau} = -\gamma F^{\downarrow} + 2\pi B$$

Resolution:

$$F^{\uparrow}(\tau) = F^{\uparrow}_{surf} e^{-\gamma(\tau_0 - \tau)} + \int_{\tau}^{\tau_0} 2\pi B e^{-\gamma(\tau' - \tau)} d\tau'$$
$$F^{\downarrow}(\tau) = F^{\downarrow}(\tau = 0) e^{-\gamma\tau} + \int_{0}^{\tau} 2\pi B e^{-\gamma(\tau - \tau')} d\tau'$$

Outgoing radiation:

$$OLR = \int_0^\infty \left[F_{surf}^{\uparrow} e^{-\gamma \tau_0} + \int_0^{\tau_0} 2\pi B e^{-\gamma \tau} d\tau \right] d\nu$$

The two-stream approximation

The two-stream approximation

Case of a purely emitting atmosphere:

<u>Total flux:</u> $F(z) = \int_0^\infty F_\nu(z) d\nu = -\frac{4\pi}{3} \frac{dT}{dz} \int_0^\infty \frac{1}{k_\nu} \frac{dB}{dT} d\nu$ $F(z) = -\frac{16}{3} \frac{\sigma T^3}{k_p} \frac{dT}{dz} = -D_R \frac{dT}{dz}$ Diffusive form:

 $\frac{1}{k_R} = \frac{\int_0^\infty \left(\frac{1}{k_v}\right) \left(\frac{dB_v}{dT}\right) dv}{\int_0^\infty \left(\frac{dB_v}{dT}\right) dv} \qquad k_R \text{ is the Rosseland opacity}$

Radiative equilibrium:

 $\mu \ \frac{dI}{d\tau} = I - S$

The two-stream approximation

General case for thermal emission with scattering

$$\begin{aligned} \frac{\partial F^{\uparrow}}{\partial \tau} &= \gamma_1 F^{\uparrow} - \gamma_2 F^{\downarrow} - 2\pi (1 - \omega_0) B\\ \frac{\partial F^{\downarrow}}{\partial \tau} &= \gamma_2 F^{\uparrow} - \gamma_1 F^{\downarrow} + 2\pi (1 - \omega_0) B \end{aligned}$$

Method	γ_1	γ_2	μ_*
Eddington	$[7 - \omega_0(4 + 3g)]/4$	$-[1-\omega_0(4-3g)]/4$	1/2
Quadrature	$\sqrt{3}[1 - \omega_0(1+g)/2]$	$\sqrt{3}\omega_0(1+g)/2$	$1/\sqrt{3}$
Hemispheric mean	$2-\omega_0(1+g)$	$\omega_0(1-g)$	1/2

Quadrature for deep atmosphere & Hemisopheric mean for the upper atmosphere

See Toon et al. (1989) for the complete solution with multi-layers

 $\mu \ \frac{dI}{d\tau} = I - S$

The two-stream approximation

General case for thermal emission with scattering

$$\begin{aligned} \frac{\partial F^{\uparrow}}{\partial \tau} &= \gamma_1 F^{\uparrow} - \gamma_2 F^{\downarrow} - 2\pi (1 - \omega_0) B\\ \frac{\partial F^{\downarrow}}{\partial \tau} &= \gamma_2 F^{\uparrow} - \gamma_1 F^{\downarrow} + 2\pi (1 - \omega_0) B \end{aligned}$$

Method	γ_1	γ_2	μ_*
Eddington	$[7 - \omega_0(4 + 3g)]/4$	$-[1 - \omega_0(4 - 3g)]/4$	1/2
Quadrature	$\sqrt{3}[1 - \omega_0(1 + g)/2]$	$\sqrt{3}\omega_0(1+g)/2$	$1/\sqrt{3}$
Hemispheric mean	$2-\omega_0(1+g)$	$\omega_0(1-g)$	1/2

Quadrature for deep atmosphere & Hemispheric mean for the upper atmosphere

See Toon et al. (1989) for the complete solution with multi-layers

Methods for solving RT

1) Semi-grey analytical model

Optically thin (au < 1) Planck mean opacity

$$k_p(T, P, \nu) = \frac{\int_0^\infty k_\nu(T, P, \nu) B_\nu d\nu}{\int_0^\infty B_\nu(T, \nu) d\nu}$$

Optically thick $(\tau > 1)$ Rosseland mean opacity

with
$$k_1 \gg k_2$$

 $k_p = k_1 (\Delta \nu - \delta \nu_2) / \Delta \nu$
 $k_R = k_2 \delta \nu_2 / \Delta \nu$

Transmittance of a layer Δz :

$$T=\int e^{-k\Delta z}d\nu$$

If $k_1 \Delta z \gg 1 \& k_2 \Delta z \ll 1$: $T \approx k_2 \delta v_2 \Delta z / \Delta v = k_R \Delta z$

Methods for solving RT

1) Semi-grey analytical model

Optically thin (au < 1) Planck mean opacity

$$k_p(T, P, \nu) = \frac{\int_0^\infty k_\nu(T, P, \nu) B_\nu d\nu}{\int_0^\infty B_\nu(T, \nu) d\nu}$$

Optically thick $(\tau > 1)$ Rosseland mean opacity

Mean opacity for H₂-dominated atmosphere:

Table in Freedman et al. (2008)

Т (К)	P (dyn cm ⁻²)	$(g \text{ cm}^{-3})$	$(cm^2 g^{-1})$	(cm ² g ⁻¹)
75	3E+02	1.1277E-07	2.5619E-06	7.1083E-06
75	3E+03	1.1277E-06	2.5589E-05	6.4309E-05
75	1E+04	3.7591E-06	8.5261E-05	2.1238E-04
75	3E+04	1.1277E-05	2.5571E-04	6.3555E-04
75	1E+05	3.7591E-05	8.5211E-04	2.1167E-03
75	3E+05	1.1277E-04	2.5557E-03	6.3485E-03
75	1E+06	3.7591E-04	8.5180E-03	2.1160E-02
75	3E+06	1.1277E-03	2.5553E-02	6.3478E-02
75	1E+07	3.7591E-03	8.5176E-02	2.1159E-01
100	3E+02	8.4584E-08	4.5393E-06	2.4757E-02
100	3E+03	8.4583E-07	3.9962E-05	2.5407E-03
100	IE+04	2.8193E-06	1.2854E-04	1.0837E-03
100	3E+04	8.4582E-06	3.7709E-04	1.0589E-03
100	1E+05	2.8193E-05	1.2345E-03	2.5780E-03
100	3E+05	8.4582E-05	3.6583E-03	7.3903E-03
100	1E+06	2.8193E-04	1.2104E-02	2.4401E-02
100	3E+06	8.4582E-04	3.6260E-02	7.3044E-02
100	1E+07	2.8193E-03	1.2088E-01	2.4334E-01
100	3E+07	8.4582E-03	3.6261E-01	7.2982E-01

MEAN OPACITIES FOR [M/H] = 0.0
Methods for solving RT

1) Semi-grey analytical model

Optically thin (au < 1) Planck mean opacity

$$k_p(T, P, \nu) = \frac{\int_0^\infty k_\nu(T, P, \nu) B_\nu d\nu}{\int_0^\infty B_\nu(T, \nu) d\nu}$$

Optically thick $(\tau > 1)$ Rosseland mean opacity

Mean opacity for H₂-dominated atmosphere:

Parameterization in Freedman et al. (2018)

κ_{gas}	=	KlowP	+	<i>K</i> highP

 $\frac{\log_{10}\kappa_{10wP} = c_1 \tan^{-1} (\log_{10}T - c_2) - \frac{c_3}{\log_{10}P + c_4} e^{(\log_{10}T - c_3)^2} + c_6 \operatorname{met} + c_7$

 $log_{10}\kappa_{highP} = c_8 + c_9 log_{10}T + c_{10}(log_{10}T)^2 + log_{10}P(c_{11} + c_{12}log_{10}T) + c_{13}met\left[\frac{1}{2} + \frac{1}{2}tan^{-1}\left(\frac{log_{10}T - 2.5}{0.2}\right)\right]$

Table 2 Coefficients used for opacity fit

For all T			$T < 800 { m K}$	T > 800 K	
c1	10.602	C8	-14.051	82.241	
C2	2.882	C9	3.055	-55.456	
C3	6.09×10^{-15}	C10	0.024	8.754	
C4	2.954	C11	1.877	0.7048	
C5	-2.526	C12	-0.445	-0.0414	
C6	0.843	C13	0.8321	0.8321	
C7	-5.490				

Methods for solving RT

1) Semi-grey analytical model

Only for computing the thermal structure (e.g. for retrieval or thermal evolution)

Model of Guillot et al. (2010):

Two parameters (k_{vis} and k_{ir}) for visible (stellar) and infrared (planetary) radiation

 <u>Models with sub-bands:</u> e.g. *Parmentier et al.* (2014) and *Robinson & Catling* (2012):

One parameter for visible (k_{vis}) and three parameters for infrared (k_{ir1} , k_{ir2} , $\beta = \frac{\delta v_2}{\Delta v_2}$)

74

Methods for solving RT

2) <u>Correlated-k method</u>

$$T = \int_{\nu}^{\nu + \Delta \nu} \exp[-k(\nu)\Delta z] \frac{d\nu}{\Delta \nu}$$

Going from frequency space to g-space, where g is the cumulative opacity distribution function: dg = f(k)dk

$$T \approx \sum_{i}^{N_{a}} exp[-ki\Delta z] \Delta g_{i}$$

Fast method, excellent for low and medium resolution Widely used for atmospheric models and 3D GCM

Methods for solving RT

2) <u>Correlated-k method</u>

Possibility to combine mutliple species

$$T = \int_{\nu}^{\nu+\Delta\nu} \exp[-X_1k_1(\nu) + X_2k_2(\nu)\Delta z] \frac{d\nu}{\Delta\nu}$$

We assume that k_1 and k_2 are uncorrelated

$$T = \left[\int_{\nu}^{\nu+\Delta\nu} e^{-X_1k_1(\nu)\Delta z} \frac{d\nu}{\Delta\nu}\right] \left[\int_{\nu}^{\nu+\Delta\nu} e^{-X_2k_2(\nu)\Delta z} \frac{d\nu}{\Delta\nu}\right]$$

Going from frequency space to g-space:

$$T \approx \sum_{i}^{N_g} \sum_{j}^{N_g} exp[-X_1k_{1i} + X_2k_{2j}\Delta z] \Delta g_i \Delta g_j$$

Equivalent to a single gas with: $k_{ij} = X_1 k_{1i} + X_2 k_{2j}$ and $\Delta g_{ij} = \Delta g_i \Delta g_j$

 \rightarrow ordering of increasing k_{ij} \rightarrow interpolate on g-space \rightarrow iterate with another specie

Methods for solving RT

Line-by-line models 3)

For computing accurate transmittance & spectra at medium/high resolution

Ex: LBLRTM

http://rtweb.aer.com/lblrtm_frame.html

Earth atmospheric transmittance at Mauna Kea & Dome C (computed with LBLRTM)

A first look at the greenhouse effect

Transmittance

A first look at the greenhouse effect

The efficiency of a greenhouse gas is related to how much it reduces spectral windows

<u>Question</u>: What is the strongest greenhouse gase between CO₂ and CH₄?

- 1) For current Earth's atmosphere
- 2) For a pure N₂ atmosphere

A first look at the greenhouse effect

The efficiency of a greenhouse gas is related to how much it reduces spectral windows

Question: What is the strongest greenhouse gase between CO_2 and CH_4 ?

- For current Earth's atmosphere $\rightarrow CH_4 \approx 20 \times CO_2$ 1)
- For a pure N₂ atmosphere \rightarrow CO₂ \approx 6×CH₄ 2)

A first look at the greenhouse effect

Radiative forcing of a greenhouse gas:

 $\Delta \mathbf{F} = \mathbf{ASR} - \mathbf{OLR}(\mathbf{C}) = \mathbf{OLR}(\mathbf{C}_0) - \mathbf{OLR}(\mathbf{C})$

 $\Delta FCO_2 = 5.35 \times \ln\left(\frac{C}{C_0}\right) \text{ (CO}_2 \text{ concentration C in ppm)}$ $\Delta FCH_4 = 0.036 \times \left(\sqrt{C} - \sqrt{C_0}\right) \text{ (CH}_4 \text{ concentration C in ppb)} \qquad Mhyre \text{ et al. (1998)}$

Climate sensistivity:
$$\mathbf{S} = \Delta \mathbf{T} \text{ for } \mathbf{2} \times \mathbf{CO}_{\mathbf{2}}$$

IPPC report: S=1.5-4.5 K $\rightarrow \frac{S}{\Delta F_{2} \times CO_{2}} \approx 0.8 \text{ K W}^{-1} \text{ m}^{2}$

A first look at the greenhouse effect

Radiative forcing of a greenhouse gas:

 $\Delta \mathbf{F} = \mathbf{ASR} - \mathbf{OLR}(\mathbf{C}) = \mathbf{OLR}(\mathbf{C}_0) - \mathbf{OLR}(\mathbf{C})$

 $\Delta FCO_2 = 5.35 \times \ln \left(\frac{C}{C_0}\right)$ (CO₂ concentration C in ppm)

Mhyre et al. (1998)

Width of the optically thick band $\propto \ln(C)$

83

Resolution of the two-stream for semi-grey case with no scattering

1) Grey atmosphere heated from below

Thermal emission

$$\begin{vmatrix} \frac{\partial F^{\uparrow}}{\partial \tau} = \gamma F^{\uparrow} - 2\pi B \\ \frac{\partial F^{\downarrow}}{\partial \tau} = -\gamma F^{\downarrow} + 2\pi B \end{vmatrix}$$

• Internal flux:
$$F_{int} = \sigma T_{int}^4 = \sigma T_{eff}^4$$

• We choose $\gamma = \sqrt{3}$ in the deep atmosphere

•
$$T(\tau = 0) = T_{skin} = 2^{-1/4} T_{int}$$

Beautiful exercice: show that

$$T^{4} = \frac{3}{4} T_{int}^{4} \left(\tau + \frac{2}{3} \right)$$

Resolution of the two-stream for semi-grey case with no scattering

1) Grey atmosphere heated from below

Thermal emission

(1)
$$\frac{\partial F^{\uparrow}}{\partial \tau} = \gamma F^{\uparrow} - 2\pi B$$

(2)
$$\frac{\partial F^{\downarrow}}{\partial \tau} = -\gamma F^{\downarrow} + 2\pi B$$

• Internal flux:
$$F_{int} = \sigma T_{int}^4 = \sigma T_{eff}^4$$

• We choose $\gamma = \sqrt{3}$ in the deep atmosphere

•
$$T(\tau = 0) = T_{skin} = 2^{-1/4} T_{int}$$

$$(1)-(2) \rightarrow \frac{\partial F}{\partial \tau} = \gamma (F^{\uparrow} + F^{\downarrow}) - 4\pi B$$

$$\int d\nu \rightarrow \frac{\partial F_{tot}}{\partial \tau} = \gamma (F_{tot}^{\uparrow} + F_{tot}^{\downarrow}) - 4\sigma T^{4} = 0$$
Derivative
$$\Rightarrow 3(Ftot^{\uparrow} - F_{tot}^{\downarrow}) - 4\sigma \frac{\partial T^{4}}{\partial \tau} = 0 \qquad \Rightarrow 3T_{int}^{4} - 4\frac{\partial T^{4}}{\partial \tau} = 0$$
Integration
$$\Rightarrow T^{4} = \frac{3}{4}T_{int}^{4} \left(\tau + \frac{2}{3}\right)$$
At the ground:
$$T_{g}^{4} = \frac{3}{4}T_{int}^{4} \left(\tau + 2\right)$$

Resolution of the two-stream for semi-grey case with no scattering

2) Grey atmosphere heated from above and below

→ Model of *Guillot et al.* (2010)

• Internal flux:
$$F_{int} = \sigma T_{int}^4$$

• Stellar flux:
$$F_{ext} = \sigma T_{irr}^4$$

• Effective temperature: $T_{eff}^4 = fT_{irr}^4 + T_{int}^4$

•
$$\tau = \tau_{ir}$$
; $\gamma = k_{vis}/k_{ir}$

$$T^{4} = \frac{3}{4}T_{int}^{4}\left(\tau + \frac{2}{3}\right) + \frac{3}{4}T_{irr}^{4}f\left[\frac{2}{3} + \frac{1}{\gamma\sqrt{3}} + \left(\frac{\gamma}{\sqrt{3}} - \frac{1}{\gamma\sqrt{3}}\right)e^{-\gamma\tau\sqrt{3}}\right]$$

f = 1 at substellar point, f = 1/2 for a day-side average f = 1/4 for an average over the whole planet

$$T_{skin}^{4} = \frac{1}{2}T_{int}^{4} + \frac{3}{4}T_{irr}^{4}f\left[\frac{2}{3} + \frac{\gamma}{\sqrt{3}}\right]$$

Resolution of the two-stream for semi-grey case with no scattering

2) Grey atmosphere heated from above and below

→ Model of *Guillot et al.* (2010)

• Internal flux:
$$F_{int} = \sigma T_{int}^4$$

• Stellar flux:
$$F_{ext} = \sigma T_{irr}^4$$

• Effective temperature: $T_{eff}^4 = fT_{irr}^4 + T_{int}^4$

•
$$\tau = \tau_{ir}$$
; $\gamma = k_{vis}/k_{ir}$

$$T^{4} = \frac{3}{4}T_{int}^{4}\left(\tau + \frac{2}{3}\right) + \frac{3}{4}T_{irr}^{4}f\left[\frac{2}{3} + \frac{1}{\gamma\sqrt{3}} + \left(\frac{\gamma}{\sqrt{3}} - \frac{1}{\gamma\sqrt{3}}\right)e^{-\gamma\tau\sqrt{3}}\right]$$

For
$$\tau >>1$$
: $T_{deep}^4 = \frac{3}{4}\tau T_{int}^4 + \frac{3}{4}T_{irr}^4 f\left[\frac{2}{3} + \frac{1}{\gamma\sqrt{3}}\right]$

For inflated hot Jupiters:

Heat transfer to the deep atmosphere ($10^{-4}\% - 1\% F_{ext}$ into F_{int})

Huge change for the temperature in the deep atmosphere

Resolution of the two-stream for semi-grey case with no scattering

2) Grey atmosphere heated from above and below

→ Model of *Guillot et al.* (2010)

• Internal flux:
$$F_{int} = \sigma T_{int}^4$$

• Stellar flux:
$$F_{ext} = \sigma T_{irr}^4$$

• Effective temperature: $T_{eff}^4 = fT_{irr}^4 + T_{int}^4$

•
$$\tau = \tau_{ir}$$
; $\gamma = k_{vis}/k_{ir}$

Stratospheric thermal inversion for $\gamma>1$

$$T_{deep}^{4} = \frac{3}{4} T_{irr}^{4} f \left[\frac{2}{3} + \frac{1}{\gamma \sqrt{3}} \right]$$

88

Troposphere and convective instability

Adiabatic lapse rate

For an air parcel with no heat transfer:

Stability of an air parcel

$$\Gamma > \Gamma_d \qquad \qquad \Gamma < \Gamma_d$$

Troposphere and convective instability

<u>Question</u>: For a grey atmosphere heated from below, where is the air unstable ? 1) For $\tau \propto P$ (constant absorption)

2) For $\tau \propto P^2$ (opacity controlled by pressure-broadening or CIA)

$$T^{4} = \frac{3}{4} T_{int}^{4} \left(\tau + \frac{2}{3}\right)$$

We assume
$$\frac{R}{C_p} = \frac{2}{7}$$
 (e.g. N₂) or $\frac{R}{C_p} = \frac{2}{9}$ (e.g. CO₂)

Troposphere and convective instability

<u>Question</u>: For a grey atmosphere heated from below, where is the air unstable ? 1) For $\tau \propto P$ (constant absorption)

2) For $\tau \propto P^2$ (opacity controlled by pressure-broadening or CIA)

$$\begin{bmatrix}
T^{4} = \frac{3}{4} T_{int}^{4} \left(\tau + \frac{2}{3}\right) & \text{We assume } \frac{R}{c_{p}} = \frac{2}{7} (\text{e.g. N}_{2}) \text{ or } \frac{R}{c_{p}} = \frac{2}{9} (\text{e.g. CO}_{2}) \\
\begin{bmatrix}
\frac{dlnT}{dlnP} = \frac{P}{4(\tau + \frac{2}{3})} \frac{d\tau}{dP} & 1 & \frac{dlnT}{dlnP} = \frac{\tau}{4(\tau + \frac{2}{3})} & \Rightarrow & \frac{dlnT}{dlnP} (max) = 1/4 \\
& \frac{dlnT}{dlnP} (max) < \frac{R}{c_{p}} \text{ for N}_{2} & \frac{dlnT}{dlnP} (max) > \frac{R}{c_{p}} \text{ for CO}_{2} \\
& \text{Always stable} & \text{Potentially unstable} \\
2) & \frac{dlnT}{dlnP} = \frac{\tau}{2(\tau + \frac{2}{3})} & \Rightarrow & \frac{dlnT}{dlnP} (max) = 1/2 \\
& \frac{dlnT}{dlnP} (max) < \frac{R}{c_{p}} \text{ for N}_{2} \& \text{CO}_{2} & \Rightarrow & \frac{dlnT}{dlnP} (max) = 1/2 \\
& \text{More stable} & \tau = 8/9 (N_{2}) \& 8/15 (\text{CO}_{2}) \\
& \tau \approx 1 & 91
\end{bmatrix}$$

Tropopause & stratospheric thermal inversion

No analytical general solution to the radiative-convective TP profile determination doing iterations

Tropopause generally at 0.1 bar

Cloud impact on planetary atmospheres

- Atmospheric composition/chemistry
- Radiative transfert (scattering & absorption)
- Atmospheric dynamics
- Temperature and climate

Cloud impact on planetary atmospheres

- Atmospheric composition/chemistry
- Radiative transfert (scattering & absorption)
- Atmospheric dynamics
- Temperature and climate

Clouds seen by astronomers

Clouds seen by atmospheric scientists

Cloud impact on planetary atmospheres

- Atmospheric composition/chemistry
- Radiative transfert (scattering & absorption)
- Atmospheric dynamics
- Temperature and climate

Need for atmospheric models with clouds simulated properly and self-consistently

Clouds seen by astronomers

Clouds seen by atmospheric scientists

Condensation curves

Elemental abundances from *Lodders et al.* (2003) Temperature condensation curves from *Visscher et al.* (2006, 2010)

Clausius-Clapeyron relation:

$$P_{sat} = P_{sat}(T_0)e^{-\frac{L}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)}$$

1D Cloud models

1) Model with f_{sed} from Ackerman & Marley 2001

At equilibrium :

$$\frac{\partial q_c}{\partial z} = -\frac{\partial q_s}{\partial z} - \frac{V_{sed}}{K_{zz}} q_c$$

Mixing length theory:

$$K_{zz} = \frac{H}{3} \left(\frac{L}{H}\right)^{4/3} \left(\frac{rF_{conv}}{c_p \rho_a}\right)^{1/3}$$

• q_c = mass mixing ratio of condensate

- q_s = mass mixing ratio of vapor at saturation
- V_{sed}= sedimentation speed
- K_{zz} = eddy diffusion coefficient

Ackerman & Marley 2001Mixing length: L=H

•
$$F_{conv} = \sigma T_{eff}^4$$

Assumption:
$$f_{sed} = \frac{HV_{sed}}{K_{zz}} = \text{constant}$$
 (generally $f_{sed} = 1-5$)

Above condensation: $q_c = q_{c0} \left(\frac{P}{P_0}\right)^{f_{sed}}$

1D Cloud models

2) Model with simple microphysics using timescales from Rossow 1978

e.g. BT-Settl (Allard et al. 2001) and Exo-REM (Charnay et al. 2018)

1D Cloud models

3) Models with full microphysics

e.g. Drift-Phoenix (Woitke & Helling 2003)

Opacity

We usually compute aerosol optical properties $(Q_{ext}=\sigma_{ext}/\pi r^2, \omega_0, g)$ from Mie Theory with optical indexes and assuming spherical particules

Radiative effects

- 1) Scattering of stellar radiation
- \rightarrow surface cooling by albedo effect

Cloud albedo for pure scattering cloud ($\omega_0 \rightarrow 1$) using the two-stream approximation:

$$A_c = \frac{\sqrt{3}(1-gc)\tau_c}{2+\sqrt{3}(1-gc)\tau_c}$$

Hansen & Lacis (1974)

2) Absorption of stellar flux

→ local warming & surface cooling (anti-greenhouse effect, e.g. Titan's haze)

- 3) Absorption/emission of thermal radiation
- → surface warming by greenhouse effect
- Stronger effect for upper clouds (e.g. cirrus)
- Same effect for back-scattering of thermal flux

On Earth, clouds globally have a net cooling effect

Radiative effects: absorption/emission of thermal radiation

Charnay et al. (2018)

- Clouds produce a decrease of flux in spectral windows and an increase in spectral bands (greenhouse warming).
- With thick clouds, spectrum close to a blackbody

LT transition for brown dwarfs

105

LT transition for brown dwarfs

LT transition for brown dwarfs

What's next

For strongly irradiated exoplanets, we need 3D GCM !

Current and future space telescopes for exoplanets

Spitzer
Photometry (3.6, 4.5 μm)

CHEOPS (2019)
Photometry (0.4 - 1 μm)

HST
Spectroscopy (1.1 - 1.7 μm)

JWST (2021)
Spectroscopy
(NIRISS, NIRSpec & MIRI)

Kepler
Photometry (0.4 - 0.9 μm)

PLATO (2026)
Photometry (0.5 - 1 μm)

TESS
Photometry (0.6 - 1 μm)

ARIEL (2028)
Photometry (0.5 - 0.95 μm)
Spectroscopy (0.95 - 7.95 μm)