TRSS: A Three Reflection Sky Survey at Dome-C with active optics modified-Rumsey telescope

by Gérard R. Lemaitre

Observatoire Astronomique Marseille Provence / LAM / LOOM 2 Place Le Verrier, F-13248 Marseille CEDEX04, EU

1. Comparison of Wide Field Telescopes for Astronomical Surveys

- (A) Schmidt with refractive corrector convex FOV, 1 aspheric, length $\simeq 2F$, 3 polished surfaces.
- (B) Mersenne-Schmidt by Willstrop concave FOV, 2 aspherics, length $\simeq F$, **3 polished surfaces**.
- (C) Paraboloid and triplet-lens corrector flat FOV, 1 aspheric, length = F, 7 polished surfaces.
- (D) Ritchey-Chrétien + doublet corrector flat FOV, 2 aspherics, length $\simeq F/2$, 6 polished surfaces.
- (E) Modified-Rumsey continuous M1-M3 flat FOV, 3 aspherics, length $\simeq F/2$, 2 polished surfaces.

H

Fig. 1 - Telescopes with identical input beam aperture, focal length and field of view.

EXISTING SURVEY TELESCOPES :

- SDSS Sloan Digital Sky Survey: Design (\mathbf{D}) = 6 opt. surf., $d_1 = 2.5 \text{ m}$, f/5, FOV $2.0 \times 1.5^{\circ}$.
- VST VLT Survey Telescope: Design (**D**) = 6 opt. surf., $d_1 = 2.6 \text{ m}$, f/5, FOV $1.0 \times 1.0^{\circ}$.
- CFHT with Megacam: Design (\mathbf{C}) = 7 opt. surf., $d_1 = 3.6 \text{ m}$, f/4, FOV $1.0 \times 1.0^{\circ}$.
- Converted-MMT + Megacam: Design (**D**') = 6 opt. surf., $d_1 = 6.5 \text{ m}$, f/5, FOV $0.5 \times 0.5^{\circ}$.

PRESENTLY PROPOSED SURVEY TELESCOPE:

- \rightarrow Design (**E**) = 2 opt. surf. to polish
- \rightarrow R&T results of a prototype: MINITRUST

G.R. Lemaitre, P. Montiel, P. Joulié, K. Dohlen, P. Lanzoni, Appl. Opt., Vol. 44, No. 34, 7322-7332 (2005)

2. Optical Design of a Modified-Rumsey: MiniTrust-1 and -2

Fig. 2 - Optical scheme (on-axis beams).

Table 1. MINITRUST optical design – Aperture $450 \text{ mm} - f/5 - 1.5 \times 1.5^{\circ} \text{ FOV} - \lambda\lambda [380 - 900 \text{ nm}]$

Surface	R	z	A_4	A_6	Clear Aperture	$(\kappa \ (^{\star}))$
Primary	-2208.0	-630.000	$6.3905 10^{-12}$	$3.1327 10^{-19}$	450	(-1.5503)
Secondary	-1096.0	630.005	$2.7995 10^{-10}$	-2.418410^{-16}	Stop 200	(-3.9485)
Tertiary	-2197.2	-763.403	7.581010^{-11}	-6.915210^{-17}	180	(-7.4332)
Filter +	∞	-10.000			59×59	
fused silica	∞	-25.000			58×58	
Focus	∞				56×56	

Mirrors: $z = (1/2R)r^2 + A_4r^4 + A_6r^6$. (*) Equivalent conic constant ($\kappa = -1$ paraboloid). Sag and slope continuities of M₁-M₃ at $d_{3\max} = d_{1\min} = 180 \text{ mm}$. Dimensions: [mm]

Fig. 3 - RESIDUAL BLUR IMAGES from Table 1 parameters (2° diagonal FOV).

(Up) Thickness of (filter + detector window) = 10 mm. RMS diameter of blur images $\leq 9 \,\mu$ m. (Down) Thickness of (filter + detector window) = 5 mm. RMS diameter of blur images $\leq 5 \,\mu$ m.

 \rightarrow Sphero-chromatism of (filter + detector window) dominating.

3. Active Optics Methods

Advantages of Active Optics :

- \rightarrow generate smooth and accurate optical surfaces with elastic linear materials (Hooke's law).
- \rightarrow avoid the slope discontinuities of the optical surface i.e. cancels the high spacial frequency errors. (inherent to local polishing tools)
- \rightarrow generate non-axisymmetrical and variable-shape optics.^{1,2}

(vase form, meniscus form, tulip form, cycloid-like form, ...)

 \rightarrow provide optics of the highest intrinsic quality, then recommended for a site with excellent seeing.

FIELD DEVELOPMENTS OF ACTIVE OPTICS :

1 - Large amplitude aspherization of optics by stress polishing and/or by in situ stressing.

Stress polishing \rightarrow Schmidt plates, Keck segments, Cassegrain secondaries (THEMIS), etc In situ stressing i.e. aspherization at the telescope \rightarrow (M₂-TEMOS, M₁-segments LAMOST)

2 - In situ compensation of large telescope mirrors due their deflection in field gravity (M_2 -CFHT, M_1 -VLT).

- 3 Variable asphericity mirrors for multi-focii telescopes selected by focus interchange (VLT Cass.–Nasmyth).
- 4 Variable curvature mirrors for field compensation and cophasing of optical telescope arrays (VLTI, GI2T).
- 5 Segments and diffraction gratings aspherized by replication techniques from active submasters.
 Aspherized gratings of many spectrographs (SOHO MISSION, OSIRIS OBSERVER)
- 6 Mirror concept with the superposition capability of aberration modes for adaptive optics systems.

4. Vase Form Mirrors and the Theory of Shells

Fig. 4 - THEORY OF SHELLS: Geometrical parameters of element rings.

 $z_{\text{Optic}} = z_{\text{Sphere}} + z_{\text{Flexure}}$ UNKNOWNS: $z_{\text{Sphere}}, z_{\text{Flexure}}, t(r)$ and p.

5. Elasticity Design of MiniTrust M₁-M₃ Substrate

Table 2 - Thickness distribution t(r) of $M_1 - M_3$ substrate - DOUBLE VASE FORM.

Zerodur: $\nu = 0.240, E = 920 \, 10^3 \, \mathrm{kgf/cm^2}$. Load $p = -0.8 \, \mathrm{kgf/cm^2}$. Dimensions [mm]

r	0	18	36	45	54	63	72	81	90-	
t(r)	12.042	12.044	12.053	12.061	12.070	12.082	12.096	12.112	12.130	
r	90	110	110^{+}	132	154	176	198	220^{-}	220	240
t(r)	30.190	30.183	20.317	20.402	20.502	20.617	20.741	20.868	68	68

Fig. 5 - Alternative Geometries for M_1 - M_3 .

Design \mathbf{A} : with cylindric outer ring

Design \mathbf{B} : with L-shaped outer ring

Fig. 6 - Rear View of M_1 - M_3 Substrate.

Fig. 7 - IN-SITU STRESSING - He-Ne Fizeau interferograms of M_1 and M_3 . Autocollimations achieved at $\sqrt{3}/2$ of clear aperture radius r_{max} with respect to a sphere. Aperture radii: $r_{1max} = 220$ and $r_{3max} = 90$ mm. From M_1 interferogram, the source is moved of 13.32 mm towards the substrate to get M_3 interferogram.

6. Elasticity Design of M₂ Substrate by Stress Polishing

Fig. 8 - TULIP FORM elasticity design of M₂ substrate.

Table 3 - Thickness distribution t(r) of M₂ substrate – TULIP FORM.

Zerodur: $\nu = 0.240, E = 920 \, 10^3 \, \text{kgf/cm}^2$. Load $p = -0.8 \, \text{kgf/cm}^2$. Dimensions [mm] Clear aperture radii $50 \le r \le 100$. Outer edge $r_{\text{ext}} = 103$. Stress $\sigma_{max} = 64 \, \text{kgf/cm}^2$.

r	30	50	50^{+}	60	70	80	85	90	95	100	103
t(r)	32.000	31.273	14.343	9.997	7.108	4.896	3.926	2.999	2.069	1.042	0.308
$z_{\rm B}$ (*)			9.318	5.471	3.173	1.641	1.044	0.512	0.200	0.000	0.000

(*) $z_{\rm B}$ represents the shape of rear surface when not stressed. This surface ends flat at the edge.

Fig. 9 - Rear View of M_2 Mirror.

Fig. 10 - Stress Polishing - He-Ne Fizeau interferograms.

 $[\,Left\,]$ Mirror shape during stressing.

 $[\mathit{Right}]$ Shape after elastic relaxation.

Entrance pupil on M_2 - Substrates - On-axis beam - Baffles.

Fig. 12 - VIEW OF MINITRUST-1.

Alignment and double-pass testing by auto-collimation on a plane mirror.

7. Interferometric Results from MiniTrust-1 Integration

Fig. 13 -MINITRUST-1OPTICAL TESTS : He-Ne wavefronts after double pass.Left : Decentering coma before M_2 set up.Right : Wavefront after M_2 set up.

FINAL DATA REDUCTION FROM MINIFIZ PHASE-SHIFT INTERFEROMETER.

Residual PtV onto the wavefront issued from double pass:

Sphe $3 = 0.06 \lambda$, Coma $3 = 0.07 \lambda$, Astm $3 = 0.42 \lambda$.

Must be divided by two for a wavefront from a star \rightarrow Sum including all aberrations:

 $\mathbf{0.280}\,\lambda_{\mathrm{He-He}}\;\mathbf{PtV}\qquad \Longleftrightarrow\qquad \mathbf{0.048}\,\lambda_{\mathrm{He-Ne}}\;\mathbf{RMS}.$

8. TRSS Proposal: A Three Reflection Sky Survey at DOME C

2-Meter Modified-Rumsey Telescope – f/ 5 – 2° diagonal FOV

Fig. 14 - Elasticity Design of M_1 - M_3 Substrate

Table 4 - Optical design of a 3-Meter Modified-Rumsey Telescope.

$f/5 - 2^{\circ}$ diagonal FOV $-\lambda\lambda$	$[300 - 1000 \mathrm{nm}]$	$-M_1-M_2$ contin	nuity of slopes	and sags at $r = 560$) mm
/ 0	L J	1 4	J 1	0	

Surface	R	z	A_4	A_6	Clear Aperture	(κ)
Primary	-13298.8	-3936.356	2.423810^{-14}	5.67410^{-23}	3000	(-1.452)
Secondary	-6577.6	3936.398	1.407410^{-12}	-3.20810^{-20}	Stop 1140	(-4.204)
Tertiary	-13204.3	-4142.356	4.544610^{-13}	-5.11610^{-21}	1100	(-9.370)
Filter +	∞	-20.000			348×348	
window	∞	-50.000			346×346	
Focus	∞				341×341	

Equation of mirrors: $z = (1/2R) r^2 + A_4 r^4 + A_6 r^6$.

Dimensions: [mm]

RMS diameter of blur images: $18 \,\mu m \equiv 0.25 \,\mathrm{arcsec} \rightarrow \mathrm{excellent \ site}$

9. Conclusions with a TRSS Telescope

Telescope features:	ightarrow compact, minimum number of optical surfaces (3)
Telescope throughput:	ightarrow optical coatings of only 2 surfaces
Completely achromatic:	\rightarrow superiority in image quality from UV to IR, RMS blur images = 1/4 arcsec = Excellent Site
Telescope optics set up:	\rightarrow no off-centering of M_3 with M_1
Supporting of optics:	$\rightarrow~$ perimeter points of $M_1\mathchar`-M_3$ substrate on $M_3~edge$
Gravity compensation :	$\rightarrow \ {\rm small} \ {\rm uniform} \ {\rm load} \ {\rm all} \ {\rm over} \ {\rm M}_1 \mbox{-} {\rm M}_3 \ {\rm substrate}$
Active optics aspherization :	$\rightarrow~$ all optics with only 2 spherically polished surfaces, i.e. Minimum Cost
	\rightarrow the best intrinsic image quality

References

ON ACTIVE OPTICS AND THREE REFLECTION TELESCOPES (TRTs):

- 1 G.R. Lemaitre, P. Montiel, P. Joulié, K. Dohlen, P. Lanzoni, Active Optics and modified-Rumsey wide field telescopes: MINITRUST demonstrators with Vase and Tulip form mirrors, Appl. Opt., Vol. 44, No. 34, 7322-7332 (2005)
- G.R. Lemaitre, P. Montiel, P. Joulié, K. Dohlen, P. Lanzoni, Active Optics and the Axi-symmetric Case: MINI-TRUST wide-field three reflection telescopes with mirrors aspherized from Tulip and Vase forms, in Astronomical Telescopes and Instrumentation - Glasgow, E. Atad-Ettedgui & P. Dierickx, SPIE Proc. 5494, 426-433 (2004)
- 3 G.R. Lemaitre, Active Optics: Vase or Meniscus multimode mirrors and degenerated monomode configurations, Meccanica, Kluwer edt., Vol. 40, 233-249 (2005)
- G.R. Lemaitre, Active Optics and the Non-Axisymmetric Case: Multimode deformable mirrors aspherized from Vase and Meniscus form, in Astronomical Telescopes and Instrumentation - Glasgow, E. Atad-Ettedgui & P. Dierickx, SPIE Proc. 5494, 101-112 (2004)
- 5 G.R. Lemaitre, Active optics and aberration correction with multimode deformable mirrors (MDMs) Vase form and Meniscus form, in *Laser Optics 2003* - Petersburg, V.E. Sherstobitov & L.N. Soms edts., SPIE Proc. 5481, 70-81 (2003).

ON TRTS AND PROPOSALS TO DOME C (COLL. IASF-ROMA – OAMP-MARSEILLE):

- 6 M. Ferrari, G.R. Lemaître, R.F. Viotti, C. La Padula, G. Comtes, M. Blanc, M. Boer, Three reflection telescope proposal as flat-field anastigmat for wide field observations at Dome C, in *Astronomie et Astrophysique au Dome C* Toulouse, EAS Pulications Series, EDP Sciences, 14, 325-330 (2005)
- R.F. Viotti M. Badiali, A. Boattini, A. Carusi, R.U. Claudi, A. Di Lellis, C.D. La Padula, M. Frutti, A. Vignatto, G.R. Lemaître, Wide field observations at Dome C, Antartica, Mem. Soc. Astron. Ital. Suppl., Italy, 2, 177-180 (2003)
- 8 C.D. La Padula, A. Carusi, R.F. Viotti, A. Vignato, G.R. Lemaître, Proposal for a mini-satellite with a wide-field TRT, Mem. Soc. Astron. Ital., Italy, 74, 63 (2003)