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What is polarisation?

Light is fully described by a vector:
F(A)=LF(A), Q(A), U(A), V(A)]

unpolarised

he degree of linear polarisation of the light is:
P(N)= VQ3*(A) + U(A)
F(A)

b
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What is polarisation?

Light is fully described by a vector:
F(A)=LF(A), Q(A), U(A), V(A)]
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partially polarised

he degree of linear polarisation of the light is:
P(N)= VQ3*(A) + U(A)
F(A)
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Sources of polarisation

Integrated over the stellar or planetary disk:

e direct starlight is usually unpolarised
o starlight reflected by a planet will usually be polarised
e thermal planetary radiation will usually be unpolarised

unpolarised

olarised
P unpolarised

10’ 0 10
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Polarimetry for detection & confirmation

L

» to the observer

O
y to the observer

The degree of polarisation of reflected starlight depends on*:

e The composition and structure of the planet’s atmosphere
e The reflection properties of the planet’s surface
e The wavelength A of the light

e The planetary phase angle a

.ﬂ i‘ iH * P does not depend on: planet’s size, distance to the star, distance to the observer!




Polarimetry for detection & confirmation

The degree of polarisation that can be observed depends
strongly on the amount of background starlight:

Resolved planets

See: Seager et al. (2000) Instrument examples: ExPo (WHT),
Instrument example: PlanetPol (Jim Hough) SPHERE (VLT), GPI (Gemini),
First detection (of HD 189733b) EPICS (ELT), ...

claimed by Berdyugina et al. [2008]

. i = i |= Star image from Lafreniére, Jayawardhana, & van Kerkwijk [2008]



Polarimetry for exoplanet charactersation
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y to the observer

The degree of polarisation of reflected starlight depends on*:

e The composition and structure of the planet’s atmosphere
e The reflection properties of the planet’s surface
e The wavelength A of the light

e The planetary phase angle a

.ﬂ i‘ iH * P does not depend on: planet’s size, distance to the star, distance to the observer!




Polarimetry for exoplanet characterisation

Exampl\é: spectrometry of a region on the Earth
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Spectrometry of a region on Earth measured by GOME on the ERS-2
satellite, for nadir viewing angles and solar zenith angles of 34°
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Polarimetry for exoplanet characterisation
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Exampl\é: spectrometry of a region on the Earth
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Spectrometry of a region on Earth measured by GOME on the ERS-2
satellite, for nadir viewing angles and solar zenith angles of 34°
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Polarimetry for exoplanet characterisation

Exampl\é\: spectropolarimetry of the Earth’s zenith sky
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Ground-based polarimetry of the cloud-free zenith sky at three
solar zenith angles 0o with the GOME BBM [from Aben et al., 1999]
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Polarimetry for exoplanet characterisation

Exampl\é\: spectropolarimetry of the Earth’s zenith sky
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Ground-based polarimetry of the cloud-free zenith sky at three
solar zenith angles 0o with the GOME BBM [from Aben et al., 1999]
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Polarimetry for exoplanet characterisation

Exa

% Polarization

e
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Phose Angle

Fic. 4. Observations of the polarization of sunlight reflected by Venus in the visgal wave-
length region and theoretical computations for ) «0.58 ym. The O's are wide-tand visual
observations by Lyot (1929) while the other observations are for an intermediate bandwidih
Elter centered at A« 088 um; the X's were obtained by Coffeen and Gebrels (1999), the +'s
by Coffcen (. Dollfus and Coffeen, 1970), and the A's (which refer 10 the contral part of the
crescent) by Veverka (1971), The theoretical curves are all for a relractive index 1.44, the size
distribution (8) with =007 and a Rayleigh contribution fx = 0.045. The different curves show
the influence of the effective radius on the polarization,

. derivation of Venus cloud particle microphysics
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Fie. 7. Observations and theoretical comnputations of the polarization of sunlight reflocted
by Venus at A =099 am. The observations were made with an intermafate bandwidth filter,
the X's being obtained by Coffeen and Gehrels (1969) in 195967 and by Coffeen (<f, Dollfus
and Coffeen, 1970) froem 1967 to March 1969, and the O's being obtained by Coffees (cf.
Dallfes and Coffeen, 1970) in May-July, 199, The theoretical curves are for spherical particles
having the size distribution (8) with b=0.07. The different theoretical curves are for various
refeactive indices, the effective particle radius being selected i cach case to yield closest
agreemwent with the observations foe all wavelengths.

Hansen & Hovenier [1974] used ground-based polarimetry at
different wavelengths across a range of phase angles to derive
the size, composition, and altitude of Venus’ cloud particles




Numerical simulations
Planet models:

e |ocally plane-parallel atmosphere
e horizontally homogeneous

e vertically inhomogeneous
e gases, aerosol, cloud particles

Radiative transfer code: v\,\,\ﬂ q
e adding-doubling algorithm

e fluxes and polarisation

o efficient disk-integration

e N0 Raman scattering

(for details, see e.g. Stam 2008)
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Simulations of gaseous exoplanets
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Jupiter-like horizontally homogeneous atmospheres.
Planetary phase angle a=90° (Stam et al., 2004)




Simulations of gaseous exoplanets

Single scatteril properties of the atmospheric particles
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Simulations of gaseous exoplanets

cloud+haze
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Jupiter-like horizontally homogeneous atmospheres
wavelength A from 0.65 to 0.95 microns (Stam et al., 2004)
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Simulations of Earth-like exoplanets
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Cloud-free planets with surfaces covered by:
100% vegetation, 100% ocean, and 30% vegetation + 70% ocean.

(see Stam et al., 2008)




Simulations of Earth-like exoplanets
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Cloud-free planets with surfaces covered by:
100% vegetation, 100% ocean, and 30% vegetation + 70% ocean.

The mixed planet with cloud coverages of 20%, 60%, and 100%.
(see Stam et al., 2008)




Simulations of Earth-like exoplanets

31 21 11%

P in the continuum

£
>
>
c
£
-
o
O
0]
<
dd
c
X
5
=

0.01 0.02 0.03 0.04 . U . . 0.01 0.02
flux in the 02 A-band P in the O2 A-band

The reflected flux and degree of polarisation in and outside of
the O2 A-band (0.76 microns) for completely cloudy planets with

high clouds (blue), middle clouds (green), or low clouds (orange)
and for different O2 mixing ratios (Stam et al., 2008)
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Warning: Polarisation sensitive instruments

Many (most) spectrometers are polarisation sensitive; the
measured Fn depends on Fi» and e.g. Qi, of the incoming light:

Fn=0.5a"[(1+n)Fn+ (1-n) Q]

a' instrument’s response to parallel polarised light

a" response to perpendicularly polarised light
n the ratio a’/a'
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GOME’s polarisation sensitivity (mainly due
to dispersion gratings and dichroic mirror)
(see Stam et al., 2000)




Warning: Polarisation sensitive instruments

Many (most) spectrometers are polarisation sensitive; the
measured Fn depends on Fi» and e.g. Qi, of the incoming light:

Fn=0.5a"[(1+n)Fn+ (1-n) Q]

a' instrument’s response to parallel polarised light

a" response to perpendicularly polarised light
n the ratio a’/a'
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Assuming Qin=0 (ignoring polarisation)
leads to errors in the derived flux, Fi':
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GOME’s polarisation sensitivity (mainly due
to dispersion gratings and dichroic mirror)
(see Stam et al., 2000)
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Summary

e Polarimetry is a powerful tool to detect, confirm, and

characterise exoplanets
e Polarimetry provides extra, different information about

a planet; it can help to solve degeneracy problems
e Polarisation should be in your mind even when you
want to focus on ‘just’ a spectrometer

Future work

e '‘Make’ truly horizontally inhomogeneous planets
e Work on retrieval algorithms
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