Ground-based Secondary Eclipse detection of Ogle-Tr-56

David Sing Institut d'Astrophysique de Paris

Mercedes Lopez-Morales Carnegie Institution of Washington

Overview

• Introduction motivation & theory • Observations VLT & Magellan • Analysis & Discussion interpretation of results Conclusions

Introduction

• Revolution with Spitzer anti-transit measurements (Deming 05; Charbonneau 05; Knutson 07, ect.)

 Past ground-based attempts (Knutson 07; Deming 07; Snellen 05; Snellen & Corvino 07, ect.)
 -near-IR, difficult to do precision photometry

- Lopez-Morales & Seager (2007)
 - Significant optical flux for very-hot Jupiters Teff ~
 2500 3000 K
 - precision optical photometry easier than in near-IR

Prediction

• Lopez-Morales & Seager (2007) ; z' band

Thermal Emission or Reflected light
 f = re-radiation factor
 AB = Bond albedo

$$T_{p} = T_{*} \left(\frac{R_{*}}{a}\right)^{1/2} [f(1 - A_{\rm B})]^{1/4}$$
$$F_{p_{\rm th}} = \frac{2h\nu^{3}}{c^{2}} \frac{\pi R_{p}^{2}}{e^{h\nu/k}r_{p}} \frac{1}{D^{2}}$$

$$F_{p_{\rm ref}} = F_* \frac{2}{3} A_{\rm B} \frac{R_p^2}{a^2}$$

$$|\Delta \text{mag}| = 2.5 \log \left(1 + \frac{F_p}{F_*}\right)$$

Prediction

TABLE 1

• Lopez-Morales & Seager (2007)

Effective Temperatures of the 11 Known Transiting VHJs, for $A_{\rm B} = 0.0$ $\begin{array}{cccc} T_p(K) & T_p(K) & T_p(K) & T_p(K) \\ f = \frac{2}{3}; A_{\rm B} = 0 & f = \frac{2}{3}; A_{\rm B} = 0.3 & f = \frac{2}{3}; A_{\rm B} = 0.5 & f = \frac{1}{4}; A_{\rm B} = 0 \end{array}$ Planet 2889 ± 24 2642 ± 22 2429 ± 20 2260 ± 19 OGLE-TR-113b 1717 ± 14 1570 ± 13 1444 ± 12 1344 ± 11 OGLE-TR-132b 2615 ± 36 2199 ± 30 2046 ± 28 2392 ± 32 1372 ± 9 HD189733b 1500 ± 10 1261 ± 8 1174 ± 8 XO-2b 1682 ± 15 1415 ± 13 1316 ± 12 1539 ± 14 2225 2036 1871 Corot-exo-1b 1742 WASP-1 2177 ± 61 1991 ± 56 1831 ± 51 1704 ± 48 1615 ± 96 1478 ± 87 1358 ± 80 1264 ± 75 WASP-2 HD140926b 2226 ± 30 2036 ± 27 1872 ± 25 1742 ± 23 TrES-2 1882 ± 15 1722 ± 14 1583 ± 13 1473 ± 12 TrES-3 2100 ± 32 1921 ± 29 1766 ± 27 1643 ± 25

Prediction

• Lopez-Morales & Seager (2007)

< 0.5 mmag for Ogle-Tr-56

FIG. 2.—Expected depths of secondary transits, $|\Delta mag|$, as a function of T_p for OGLE-TR-56b (*left side*) and OGLE-TR-132b (*right side*). Filled tri-

Challenges for Ogle-Tr-56

1) Faint (V=16.56); harder to reach necessary precision; $0.01\% \Rightarrow 10^8$ photons/1 hour

2) Small signal; secondary eclipse depth of < 0.05%

3) Crowded Field toward galactic center

VLT 8.2 m

Magellan 6.5m

July 2, 2008 FORS2 camera

August 3, 2008 MagIC-E2V frame transfer

Z band

- Aperture photometry
- Remove systematic errors with
 SysRem algorithm (Tamuz et al. 05)
 multiple linear regression (xposs, yposs, fwhm, airmass)

Flidse

• ~1 mmag/min

• red-noise estimated with "prayer-bead" method

 $\sigma_{depth}^2 = \sigma_w^2 / N + \sigma_{red}^2$

 $VLT \\ \sigma_{red} = 1.1 \times 10^{-4}$

Magellan $\sigma_{red} = 4 \times 10^{-5}$

• ~1 mmag/min

• red-noise estimated with "prayer-bead" method

 $\sigma_{depth}^2 = \sigma_w^2 / N + \sigma_{red}^2$

 $VLT \\ \sigma_{red} = 1.1 \times 10^{-4}$

Magellan $\sigma_{red} = 4 \times 10^{-5}$

Thuse

0.036% lower flux for points in eclipse

VLT Eclipse Depth = $0.037\% \pm 0.016\%$ $\chi^2_v = 0.90$ Magellan Eclipse Depth = $0.036\% \pm 0.011\%$ $\chi^2_v = 0.93$ Total Eclipse Depth = $0.0363\% \pm 0.0091\%$

• Consistent with circular orbit

Black Body

- $T_{eff} = 2718 \pm 117 \text{ K}$
- Low albedo
- instant re-radiation
 f > 0.47

Non-black body Models

• Can not distinguish between models with and without TiO

Conclusions

• Ground-based secondary eclipse detected for Ogle-Tr-56

• HOT Dayside temperature; 2718±117 K

• Recirculation and Albedo are consistent with pM class planets

• Do Not have precision to distinguish between models blackbody, with/wo TiO

• Other optical wavelengths and/or near-IR needed

• Other very-hot Jupiters can be detected in z'