Polarimetry of Exoplanets

Daphne Stam

S RON Netherlands Institute for Space Research Theodora Karalidi (SRON, UU) prof. Joop Hovenier (VU, UvA) prof. Christoph Keller (UU) prof. Rens Waters (UvA)

Netherlands Organisation for Scientific Research

What is polarisation?

Light is fully described by a vector: $\mathbf{F}(\lambda) = [F(\lambda), Q(\lambda), U(\lambda), V(\lambda)]$

unpolarised

The degree of linear polarisation of the light is: $P(\lambda) = \frac{\sqrt{Q^2(\lambda) + U^2(\lambda)}}{F(\lambda)}$

What is polarisation?

Light is fully described by a vector: $\mathbf{F}(\lambda) = [F(\lambda), Q(\lambda), U(\lambda), V(\lambda)]$

100% polarised

The degree of linear polarisation of the light is: $P(\lambda) = \frac{\sqrt{Q^2(\lambda) + U^2(\lambda)}}{F(\lambda)}$

What is polarisation?

Light is fully described by a vector: $\mathbf{F}(\lambda) = [F(\lambda), Q(\lambda), U(\lambda), V(\lambda)]$

partially polarised

The degree of linear polarisation of the light is: $P(\lambda) = \frac{\sqrt{Q^2(\lambda) + U^2(\lambda)}}{F(\lambda)}$

Sources of polarisation

Integrated over the stellar or planetary disk:

- direct starlight is usually unpolarised
- starlight reflected by a planet will usually be polarised
- thermal planetary radiation will usually be unpolarised

Polarimetry for detection & confirmation

The degree of polarisation of reflected starlight depends on*:

- The composition and structure of the planet's atmosphere
- The reflection properties of the planet's surface
- The wavelength λ of the light
- The planetary phase angle α

* P does not depend on: planet's size, distance to the star, distance to the observer!

Polarimetry for detection & confirmation

The degree of polarisation that can be observed depends strongly on the amount of background starlight:

See: Seager et al. (2000) Instrument example: PlanetPol (Jim Hough)

First detection (of HD 189733b) claimed by Berdyugina et al. [2008]

Instrument examples: ExPo (WHT), SPHERE (VLT), GPI (Gemini), EPICS (ELT), ...

The degree of polarisation of reflected starlight depends on*:

- The composition and structure of the planet's atmosphere
- The reflection properties of the planet's surface
- The wavelength λ of the light
- The planetary phase angle α

* P does not depend on: planet's size, distance to the star, distance to the observer!

Example: spectrometry of a region on the Earth

Spectrometry of a region on Earth measured by GOME on the ERS-2 satellite, for nadir viewing angles and solar zenith angles of 34°

Example: spectrometry of a region on the Earth

Spectrometry of a region on Earth measured by GOME on the ERS-2 satellite, for nadir viewing angles and solar zenith angles of 34°

satellite, for nadir viewing angles and solar zenith angles of 34°

Example: spectropolarimetry of the Earth's zenith sky

Ground-based polarimetry of the cloud-free zenith sky at three solar zenith angles θ_0 with the GOME BBM [from Aben et al., 1999]

Example: spectropolarimetry of the Earth's zenith sky

Ground-based polarimetry of the cloud-free zenith sky at three solar zenith angles θ_0 with the GOME BBM [from Aben et al., 1999]

Example: spectropolarimetry of the Earth's zenith sky

Solar zenith angles θ_0 with the GOME BBM [from Aben et al., 1999]

Example: derivation of Venus cloud particle microphysics

Hansen & Hovenier [1974] used ground-based polarimetry at different wavelengths across a range of phase angles to derive the size, composition, and altitude of Venus' cloud particles

Numerical simulations

Planet models:

- locally plane-parallel atmosphere
- horizontally homogeneous
- vertically inhomogeneous
- gases, aerosol, cloud particles

Radiative transfer code:

- adding-doubling algorithm
- fluxes and polarisation
- efficient disk-integration
- no Raman scattering

(for details, see e.g. Stam 2008)

San

Simulations of gaseous exoplanets

Jupiter-like horizontally homogeneous atmospheres. Planetary phase angle α =90° (Stam et al., 2004)

Simulations of gaseous exoplanets

Single scattering properties of the atmospheric particles

Polarisation

Simulations of gaseous exoplanets

Jupiter-like horizontally homogeneous atmospheres wavelength λ from 0.65 to 0.95 microns (Stam et al., 2004)

Simulations of Earth-like exoplanets

Planetary phase angle α =90°

Cloud-free planets with surfaces covered by: 100% vegetation, 100% ocean, and 30% vegetation + 70% ocean.

(see Stam et al., 2008)

Simulations of Earth-like exoplanets

Planetary phase angle α =90°

Cloud-free planets with surfaces covered by: 100% vegetation, 100% ocean, and 30% vegetation + 70% ocean. The mixed planet with cloud coverages of 20%, 60%, and 100%. (see Stam et al., 2008)

Simulations of Earth-like exoplanets

The reflected flux and degree of polarisation in and outside of the O2 A-band (0.76 microns) for completely cloudy planets with high clouds (blue), middle clouds (green), or low clouds (orange) and for different O2 mixing ratios (Stam et al., 2008)

Warning: Polarisation sensitive instruments

Many (most) spectrometers are polarisation sensitive; the measured F_m depends on F_{in} and e.g. Q_{in} of the incoming light:

 $F_{\rm m} = 0.5 \, \mathrm{a}^{\mathrm{I}} \left[(1 + \eta) \, F_{\rm in} + (1 - \eta) \, Q_{\rm in} \right]$

- a^l instrument's response to parallel polarised light
- a^r response to perpendicularly polarised light
- η the ratio a^r/a^l

GOME's polarisation sensitivity (mainly due to dispersion gratings and dichroic mirror) (see Stam et al., 2000)

Warning: Polarisation sensitive instruments

Many (most) spectrometers are polarisation sensitive; the measured F_m depends on F_{in} and e.g. Q_{in} of the incoming light:

 $F_{\rm m} = 0.5 \, \mathrm{a}^{\mathrm{I}} \left[(1 + \eta) \, F_{\rm in} + (1 - \eta) \, Q_{\rm in} \right]$

- a^l instrument's response to parallel polarised light
- a^r response to perpendicularly polarised light
- η the ratio a^r/a^l

Assuming $Q_{in}=0$ (ignoring polarisation) leads to errors in the derived flux, F_{in} :

$$\varepsilon = \frac{F_{in'} - F_{in}}{F_{in}} = \frac{(1 - \eta) Q_{in}}{(1 + \eta) F_{in}} = \frac{(1 - \eta)}{(1 + \eta)} P_{in}$$

GOME's polarisation sensitivity (mainly due to dispersion gratings and dichroic mirror) (see Stam et al., 2000)

Summary

- Polarimetry is a powerful tool to detect, confirm, and characterise exoplanets
- Polarimetry provides extra, different information about a planet; it can help to solve degeneracy problems
- Polarisation should be in your mind even when you want to focus on 'just' a spectrometer

Future work

- `Make' truly horizontally inhomogeneous planets
- Work on retrieval algorithms

