Spectrum and Opacity of CO₂. Comparison of Available Databases. Richard Freedman^{1,2} and David Schwenke² (I) SETI Institute (2) Nasa Ames Research Center

- CO2 is possibly of interest for irradiated, hot Jupiters and for extrasolar terrestrial planets
- Currently there are only a few databases available for high temperature
- New calculations are under way by David Schwenke to produce an improved and expanded version of the CO₂ linelist

A comparison of 3 different dipole moment functions for CO_2

- Hitran intensities are reproduced using the current Hitran database
- Two different dipole moment functions (DMF) are shown for CO₂ based on calculations by David Schwenke
- Note that the DMF from Schwenke extends to much higher wavenumbers than the current databases. This reflects the limits of the earlier potential energy surfaces
- A line list is expected by the end of 2008

Comparison of two CO₂ Spectra: Hitran 2004 vrs CDSD 2008

- Calculations are done using a Voigt profile with no adjustments (χ factor) to the far line wings
- The line widths are appropriate for "foreign" $(O_2 + N_2)$ broadening
- The Russian (CDSD) data is missing some minor isotopes present in Hitran

CO2 absorption at 750K & I Bar: Comparison of a 1991 calculation of Wattson and 2008 CDSD data

- Both calculations use a pure Voigt profile
- Assumes foreign broadening
- The Wattson data includes some bands added by Freedman at high wavenumbers
- The Hitran and Wattson data show better agreement as they share some common computational history (based on DND calculations and similar dipole moments)

Equilibrium abundances of CO_2 for an assumed solar composition

- In chemical equilibrium the most significant abundances are at moderate temperatures and low pressures
- For temperatures > ~ I200K the largest abundances are at the higher pressures
- At high temperatures the abundance is greatest at high pressures
- Non-equilibrium abundances may be quite different in certain P:T regimes

-5 -6 -7 -8 -9 -10

Comparison of absorption cross sections for CO₂ & H₂O

- Cross-sections are shown per molecule without any adjustment for the relative abundance
- The region shown is in the $CO_2~4.3~\mu\text{m}$ band

Sum of opacities of 10 molecules and alkali atoms + $CO_2 \times 100$

- For this test the relative abundance of CO₂ has been increased by a factor of 100 from the chemical equilibrium abundance
- This may be appropriate for upper regions of an exoplanet atmosphere affected by UV radiation from the central star
- This shows the raw absorption coefficients unsmoothed

Sum file smoothed to simulate an observation - resolution ~ 1200

- This plot shows more clearly the affect that enhanced CO₂ abundance can have on the total opacity
- To calculate the total optical depth multiply the absorption cross-section by the total number of particles in the line of sight
- CIA has not been included $[H_2-H_2 and H_2-H_2]$ as the total pressure is so low

Absorption coefficient of CO_2 for 4 different temperatures : 100 mb

- Classical Voigt profile was used with no adjustment for sub-Lorenztian wings of CO₂
- Only the region around the 4.3 µm band is being considered as that region is also near a minimum of H₂O absorption and is therefore suitable for a search for the presence of CO₂

CO_2 in the 4.3 μ band at 4 temperatures

- Note that it is the weaker transitions which originate from excited energy levels that increase the most in a relative sense at high temperatures
- These calculations were applied to the file of the summed opacity of all molecules and the alkali atoms to show the effect of including CO₂ at a non-equilibrium abundance

- 4.3µm wavelength region
- earth's atmosphere, however the intrinsic strength of CO_2 much greater than the 100X case show here.

• Because the 4.3 μ m band is opaque even at the operating altitude of SOFIA, observations from space will be required to observe in the

• There is another region at $\sim 1.05 \ \mu m$ which is near a minimum in the H_2O opacity that could be used to detect CO_2 if its abundance were high enough. This region is also relatively transparent in the absorption in this region is not really large enough for a detection unless the abundance greatly exceeds the equilibrium value and is

Comparison of the opacity of CO_2 and H_2O per molecule

- The 4.3µm band of CO₂ is the best placed to be detected in relation to the opacity of H₂O which is a major source of opacity
- The 4.3µm cannot be observed from the ground because the atmosphere is opaque in this band even at aircraft altitudes

A blowup of the short wavelength region

- Assuming equilibrium chemistry and solar abundances the relative abundance of CO_2 is less than that of H_2O by at least a factor of 1000 in most of the regions where it exists in any appreciable quantity
- Non-equilibrium situations may allow detection of CO₂
- Although the atmosphere is relatively transparent at ~ $1.05\mu m$ the CO₂ opacity there is still too low relative to H_2O to be important in most cases

Notes and References

- Russian CO₂ data: JQSRT 82 (2003) 165-196, CDSD-1000, the high temperature carbon dioxide spectroscopic databank, S.A. Tashkuna, V.I. Perevalova, J-L. Tebob, A.D. Bykova, N.N. Lavrentievaa
- JQSRT 48 (1992) 537-566, Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands, Rothman, L. S. and Hawkins, R.L. and Wattson, R.B. and Gamache, R.R.
- There are other articles about the techniques used by Wattson and Rothman in their calculations as applied to $CO_2 \& H_2O$

- or direct numerical diagonalization technique
- initio quantum mechanical techniques

The technique used by Wattson and Rothman is known as the DND

The methods used by D. Schwenke involve techniques closer to ab-