Atmospheric Dynamics of Two Eccentric Transiting Planets: GJ436b and HD17156b

Nikole K. Lewis Adam P. Showman Jonathan J. Fortney Mark S. Marley Richard S. Freedman

Motivation

- Studying weather on extrasolar planets can help us understand current observations
- Chance to test unusual atmospheric forcing regimes and broaden our understanding of atmospheric dynamics
- The goal of this study is to test the effects of eccentric orbits on the atmospheric dynamics of extrasolar planets

Transiting Extrasolar Planets

SPARC Model Atmosphere

(Substellar and Planetary Atmospheric Radiation and Circulation Model)

MITgcm

• Solves 3D primitive equations

$$\frac{d\mathbf{v}}{dt} = -\nabla\Phi - f\mathbf{k} \times \mathbf{v}$$
$$\frac{\partial\Phi}{\partial p} = -\frac{1}{\rho}$$
$$\nabla \cdot \mathbf{v} + \frac{\partial\omega}{\partial p} = 0$$
$$\frac{dT}{dt} = \frac{q}{c_p} + \frac{\omega}{\rho c_p}$$

Radiative Transfer

Cubed-sphere grid

- Based on Marley & McKay (1999) radiative transfer model
- Plane-parallel two-stream radiative transfer scheme
- Opacities determined using correlated-k method
- Heating (q) determined from the divergence of calculated wavelength-dependent radiative fluxes

GJ436b: Hot Neptune

Planetary Parameters

- $M_p = 0.071 \pm 0.006 M_J$
- $R_p = 0.437 \pm 0.035 R_J$
- a = 0.028 AU
- e = 0.15
- g = 9.22 m/s²
- $P_{orb} = 2.643904 \text{ days}$
- P_{rot} = 2.328553 days

Stellar Parameters

- M2.5 (T_{eff} ~ 3200-3700 K)
- [Fe/H] < 0.0

Credit: Jason Wright/UC Berkeley

GJ436b Ix Solar

0.24 mbar f= 22.97 deg

GJ436b Ix Solar

0.24 mbar f= 175.89 deg

GJ436b Ix Solar

60.60 mbar f= 175.89 deg

GJ436b 30x Solar

60.60 mbar f= 175.89 deg

GJ436b 30x Solar

GJ436b Zonal Mean Zonal Winds

HD17156b: Eccentric Hot Jupiter

Planetary Parameters*

- M_P = 3.09 M_J
- $R_p = 1.23 R_J$
- a = 0.1589 AU
- e = 0.6719
- g = 50.6 m/s²
- P_{orb} = 21.21747 days
- P_{rot} = 3.76797 days
- **Stellar Parameters**
- G0 (T_{eff} ~ 6079 K)
- [Fe/H] = 0.24±0.05

*Gillon et al. (2008)

Fortney et al. (2008)

HD17156b Ix Solar w/TiOVO, ~30 mbar

32.32 mbar f= 1.48 deg

HD17156b 1x Solar w/TiOVO

Conclusions

 Non-synchronous rotation favors the development of mid to high latitude jets.

• Increasing chemical abundances in the atmosphere relative to solar tends to produce strong winds near the equator and increase temperatures near the level of the photosphere.

• Weather on eccentric planets will produce light curves that will be exhibit peak flux timing different from that of non-eccentric planets.

Future Work

• Explore the effects of tidal heating on atmospheric dynamics.

• Tackle the dynamics of other transiting extrasolar planets with Spitzer multi-wavelength data.

Questions?