Visible-Optical to near InfraRed (VOIR) emission of electron excited H₂

Evelyne Roueff ⁽¹⁾ Hervé Abgrall ⁽¹⁾ J.M. Ajello ⁽²⁾ A. Aguilar (2) R.S. Mangina (2) G.K. James

(1) LUTh & UMR 8102, Observatoire de Paris, France(2) JPL, California Institute of Technology, USA

Electronic excitation and fluorescence

 Fluorescence from u states : essentially UV emission

 Electronic excitation : from g and u states : UV and VOIR emission
 Laboratory studies

→ Calculations

Laboratory studies at JPL

H₂ electronic emission spectrum

Theoretical challenge

- Electronic excitation of excited g Rydberg electronic states of H₂
- Possible infrared and visible cascades between g-u states, followed by VUV emission to the X ground electronic state
- knowledge of potential electronic curves and electronic couplings requested
- Extensive ab-initio studies by Wolniewicz et al. and also by Spielfiedel et al.

■ Radial coupling between sates of same symmetry $EF \, {}^{1}\Sigma_{g}^{+}, GK \, {}^{1}\Sigma_{g}^{+}, HH \, {}^{1}\Sigma_{g}^{+}, P \, {}^{1}\Sigma_{g}^{+}, O \, {}^{1}\Sigma_{g}^{+}$ $I \, {}^{1}\Pi_{g}, R \, {}^{1}\Pi_{g}$

- $J^{1}\Delta_{g}, S^{1}\Delta_{g}$
- Rotational coupling between ¹Σ⁺_g and ¹Π_g on one hand and ¹Π_g and ¹Δ_g on the other hand.
 Similar considerations for u states
 Spin-orbit couplings between singlet and triplet?

Calculation of VOIR spectrum (I)

$$\Phi_{SuJ} = \sum_{T} \Psi_{TJ} f_{STuJ}$$

• g states : 9 coupled states

• u states : 4 coupled states

$$\begin{split} \mathbf{M}_{(v_{k},v_{j},j_{k})}^{R} &= -\sqrt{J_{k}} \Big[\left\langle f_{EFv_{k},J_{k}} | M_{EF-B} | f_{Bv_{j},J_{j}} \right\rangle + \left\langle f_{EFv_{k},J_{k}} | M_{EF-B'} | f_{B'v_{j},J_{j}} \right\rangle + \left\langle f_{GKv_{k},J_{k}} | M_{GK-B} | f_{Bv_{j},J_{j}} \right\rangle \\ &+ \left\langle f_{GKv_{k},J_{k}} | M_{GK-B'} | f_{B'v_{j},J_{j}} \right\rangle + \left\langle f_{H\bar{H}v_{k},J_{k}} | M_{H\bar{H}-B} | f_{Bv_{j},J_{j}} \right\rangle + \left\langle f_{H\bar{H}v_{k},J_{k}} | M_{H\bar{H}-B'} | f_{B'v_{j},J_{j}} \right\rangle + \left\langle f_{Ov_{k},J_{k}} | M_{O-B} | f_{Bv_{j},J_{j}} \right\rangle \\ &+ \left\langle f_{Ov_{k},J_{k}} | M_{O-B'} | f_{B'v_{j},J_{j}} \right\rangle + \left\langle f_{Pv_{k},J_{k}} | M_{P-B} | f_{Bv_{j},J_{j}} \right\rangle + \left\langle f_{Pv_{k},J_{k}} | M_{P-B'} | f_{B'v_{j},J_{j}} \right\rangle \\ &+ \left\langle f_{Ov_{k},J_{k}} | M_{O-B'} | f_{B'v_{j},J_{j}} \right\rangle + \left\langle f_{Pv_{k},J_{k}} | M_{P-B} | f_{Bv_{j},J_{j}} \right\rangle + \left\langle f_{Pv_{k},J_{k}} | M_{P-B'} | f_{B'v_{j},J_{j}} \right\rangle \\ &+ \left\langle f_{J_{k}+1} [\left\langle f_{I^{+}v_{k},J_{k}} | M_{I-B'} | f_{B'v_{j},J_{j}} \right\rangle + \left\langle f_{I^{+}v_{k},J_{k}} | M_{I-B'} | f_{B'v_{j},J_{j}} \right\rangle + \left\langle f_{R^{+}v_{k},J_{k}} | M_{R-B'} | f_{B'v_{j},J_{j}} \right\rangle \\ &+ \left\langle f_{J_{k}+1} [\left\langle f_{I^{+}v_{k},J_{k}} | M_{EF-C} | f_{C^{+}v_{j},J_{j}} \right\rangle + \left\langle f_{EFv_{k},J_{k}} | M_{EF-D} | f_{D^{+}v_{j},J_{j}} \right\rangle + \left\langle f_{GKv_{k},J_{k}} | M_{GK-C} | f_{C^{+}v_{j},J_{j}} \right\rangle \\ &+ \left\langle f_{H\bar{H}v_{k},J_{k}} | M_{H\bar{H}-C} | f_{C^{+}v_{j},J_{j}} \right\rangle + \left\langle f_{H\bar{H}v_{k},J_{k}} | M_{H\bar{H}-D} | f_{D^{-}v_{j},J_{j}} \right\rangle + \left\langle f_{Ov_{k},J_{k}} | M_{O-C} | f_{C^{+}v_{j},J_{j}} \right\rangle + \left\langle f_{I^{+}v_{k},J_{k}} | M_{I-D} | f_{D^{+}v_{j},J_{j}} \right\rangle \\ &+ \left\langle f_{Pv_{k},J_{k}} | M_{P-C} | f_{C^{+}v_{j},J_{j}} \right\rangle + \left\langle f_{R^{+}v_{k},J_{k}} | M_{R-D} | f_{D^{+}v_{j},J_{j}} \right\rangle \Big] - \sqrt{\frac{(J_{k}-1)(J_{k}+1)}{J_{k}}} \Big[\left\langle f_{I^{+}v_{k},J_{k}} | M_{I-C} | f_{C^{+}v_{j},J_{j}} \right\rangle + \left\langle f_{I^{+}v_{k},J_{k}} | M_{I-D} | f_{D^{+}v_{j},J_{j}} \right\rangle \\ \\ &+ \left\langle f_{R^{+}v_{k},J_{k}} | M_{I-C} | f_{C^{+}v_{j},J_{j}} \right\rangle + \left\langle f_{R^{+}v_{k},J_{k}} | M_{R-D} | f_{D^{+}v_{j},J_{j}} \right\rangle \Big] + \left\langle f_{L^{+}v_{k},J_{k}} | M_{I-C} | f_{C^{+}v_{j},J_{j}} \right\rangle \Big], \end{split}$$

Calculation of VOIR spectrum (II)

$$\begin{split} \mathcal{M}^{Q}_{(v_{k},v_{j};J_{k})} &= -\sqrt{2J_{k}+1} \Big[\langle f_{I^{-}v_{k}J_{k}} | M_{I-B} | f_{Bv_{j}J_{j}} \rangle + \langle f_{I^{-}v_{k}J_{k}} | M_{I-B'} | f_{B'v_{j}J_{j}} \rangle + \langle f_{R^{-}v_{k}J_{k}} | M_{R-B} | f_{Bv_{j}J_{j}} \rangle + \langle f_{R^{-}v_{k}J_{k}} | M_{R-B'} | f_{B'v_{j}J_{j}} \rangle \Big] \\ &- \sqrt{2J_{k}+1} \Big[\langle f_{EFv_{k}J_{k}} | M_{EF-C} | f_{C^{-}v_{j}J_{j}} \rangle + \langle f_{EFv_{k}J_{k}} | M_{EF-D} | f_{D^{-}v_{j}J_{j}} \rangle + \langle f_{GKv_{k}J_{k}} | M_{GK-C} | f_{C^{-}v_{j}J_{j}} \rangle + \langle f_{GKv_{k}J_{k}} | M_{GK-D} | f_{D^{-}v_{j}J_{j}} \rangle \\ &+ \langle f_{H\tilde{H}v_{k}J_{k}} | M_{H\tilde{H}-C} | f_{C^{-}v_{j}J_{j}} \rangle + \langle f_{H\tilde{H}v_{k}J_{k}} | M_{H\tilde{H}-D} | f_{D^{-}v_{j}J_{j}} \rangle + \langle f_{Ov_{k}J_{k}} | M_{O-C} | f_{C^{-}v_{j}J_{j}} \rangle + \langle f_{Ov_{k}J_{k}} | M_{O-D} | f_{D^{-}v_{j}J_{j}} \rangle \\ &+ \langle f_{Pv_{k}J_{k}} | M_{P-C} | f_{C^{-}v_{j}J_{j}} \rangle + \langle f_{Pv_{k}J_{k}} | M_{P-D} | f_{D^{-}v_{j}J_{j}} \rangle \Big] + \sqrt{\frac{(2J_{k}+1)}{J_{k}(J_{k}+1)}} \Big[\langle f_{I^{\pm}v_{k}J_{k}} | M_{I-C} | f_{C^{\mp}v_{j}J_{j}} \rangle + \langle f_{I^{\pm}v_{k}J_{k}} | M_{I-D} | f_{D^{\mp}v_{j}J_{j}} \rangle \\ &+ \langle f_{R^{\pm}v_{k}J_{k}} | M_{R-C} | f_{C^{\mp}v_{j}J_{j}} \rangle + \langle f_{R^{\pm}v_{k}J_{k}} | M_{R-D} | f_{D^{\mp}v_{j}J_{j}} \rangle \Big] - \sqrt{\frac{(2J_{k}+1)(J_{k}+2)(J_{k}-1)}{2J_{k}(J_{k}+1)}}} \Big[\langle f_{I^{\pm}v_{k}J_{k}} | M_{J-C} | f_{C^{\mp}v_{j}J_{j}} \rangle \\ &+ \langle f_{I^{\pm}v_{k}J_{k}} | M_{J-D} | f_{D^{\mp}v_{j}J_{j}} \rangle + \langle f_{S^{\pm}v_{k}J_{k}} | M_{S-C} | f_{C^{\mp}v_{j}J_{j}} \rangle + \langle f_{S^{\pm}v_{k}J_{k}} | M_{S-D} | f_{D^{\mp}v_{j}J_{j}} \rangle \Big], \end{split}$$

$$A(v_k, v_j; J_k, J_j) = \frac{4}{3\hbar^4 c^3 (2J_k + 1)} \left(E_{v_k J_k} - E_{v_j J_j} \right)^3 \left| M^{\alpha}_{(v_k, v_j; J_k)} \right|^2,$$

same phase conventions wanted !!

Comparison theory-experiment (1)

- Results reported in Aguilar et al. 2008, ApJS 177, 388
- essential features recovered by theoretical model
- both g->u and u->g emission
- Some failures present

Comparison theory-experiment (2)

features identified unambiguously

E-F->B

in agreement with Diecke's positions and assignments

Positions and intensities well reproduced

Conclusions

 \checkmark VOIR spectrum of H₂ is a potential probe of (exo)planetary atmospheres \checkmark Experimental spectrum available from 1000 to 70 nm \checkmark Qualitative agreement with theoretical predictions \checkmark Origin of the discrepancies Assumption on the form of the emission cross section • Temperature of the sample • Possible difference of phase conventions in the potentials and couplings ✓ Work in progress, NASA support; extension to HD and