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M. Jorge Peñarrubia, Chercheur, Royal Observatory, Edinburgh Rapporteur
M. Mark Vogelsberger, Professeur, Massachusetts Institute of Technology Examinateur
M. Pierre Salati, Professeur, Université Savoie Mont Blanc Examinateur
Mme. Lia Athanassoula, Professeure, Université d’Aix-Marseille Examinatrice
M. David Valls-Gabaud, Directeur de recherche, Observatoire de Paris Membre invité
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Résumé

Cette thèse porte sur la nature de la matière noire (MN) et plus particulièrement sur le problème
de la disparité des profils de densité interne de MN dans les galaxies naines, connu sous le nom
du problème ”cusp-core”. Nous avons trouvé de nouvelles solutions à ce problème en utilisant des
simulations à haute résolution avec le code N-corps GOTHIC uniquement avec des GPUs. Nous avons
commencé par avons réétudier le problème ”cusp-core” pour une galaxie naine, Fornax, en utilisant
la distributions spatiale et de masse des amas globulaires que nous donnaient les observations afin
de contraindre le profil de MN. Ensuite, nous avons démontré au moyen de simulations N-corps sur
GPUs que les minihalos de MN, en tant que nouvelle composante des amas globulaires, résolvent à la
fois le ”timing problem”et le problème ”cusp-core”dans Fornax — dans le cas où les amas globulaires
ont été récemment accrétés par Fornax. Par ailleurs, nous avons examinés si les candidats de MN
sous la forme de trou noirs primordiaux (TNP) peuvent résoudre le problème ”cusp-core” dans les
galaxies naines de faible masse. Ce mécanisme fonctionne pour les TNPs entre 25 et 100 M¯ mais
nécessite que la masse de la population de TNPs soit plus de 1% de la masse totale de MN dans les
galaxies naines. Ensuite, nous avons démontré pour la première fois qu’en chutant, les sous-halos
de MN transfèrent de l’énergie par friction dynamique dans les centres des galaxies naines. Ce
chauffage dynamique éjecte alors le trou noir central à des dizaines de parsecs, à z=1,5-3. Enfin,
nous démontrons que l’accrétion d’un satellite sur une orbite très excentrique provoque la formation
d’un coeur de MN et explique également que le trou noir central soit décentré dans M31.
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Abstract

This doctoral research focuses on the nature of the dark matter (DM) and more particularly on the
inconsistency of inner DM density profiles in dwarf galaxies, known as the cusp-core problem. We
perform simulations with the high performance collisionless N-body code GOTHIC. We provided
different solutions invoking globular clusters embedded in DM minihalos, primordial black holes
(PBHs) as DM candidates and DM subhalos sinking for this cold dark matter challenge at small
scales using high resolution fully GPU N-body simulations. We have found new resolutions of the
core-cusp problem for dwarf galaxies.

First, we have re-investigated the Fornax cusp-core problem using observational results on the
spatial and mass distributions of globular clusters in order to put constraints on the dark matter
profile. We model Fornax using high resolution N-body simulations with entirely live systems, i.e.
self-gravitating systems composed of stars and dark matter, which account correctly for dynamical
friction and tidal effects between Fornax and the globular clusters. We test two alternative hypothe-
ses, which are a cored and a cuspy halo for Fornax by exploring a reasonable range of initial conditions
on globular clusters. For Fornax cored dark matter halo, we derive a lower limit on the core size of
rc & 0.5 kpc. Contrary to many previous works, we show also that for different initial conditions,
a cuspy halo is not ruled out in our simulations based on observations of Fornax globular clusters.
Then, fully GPU N-body simulations were designed to demonstrate that dark matter minihalos, as
a new component of globular clusters, resolve both the timing and cusp-core problems in Fornax
if the five (or six) globular clusters were recently accreted (≤ 3 Gyr ago) by Fornax. Under these
assumptions, infall of these globular clusters does not occur and no star clusters form in the centre
of Fornax in accordance with observations. We find that crossings of globular clusters that have
DM minihalos near the Fornax centre induce a cusp-to-core transition of the dark matter halo and
hence resolve the cusp-core problem in this dwarf galaxy. The dark matter core size depends on the
frequency of globular cluster crossings. Our simulations clearly demonstrate also that between the
passages, the dark matter halo can regenerate its cusp. Moreover, our models are in good agreement
with constraints on the dark matter masses of globular clusters as our clusters lose a large fraction
of their initial dark matter minihalos. These results provide circumstantial evidence for the universal
existence of dark matter halos in globular clusters.

Secondly, we have examined whether dark matter candidates in the form of PBHs can solve the
cusp-core problem in low-mass dwarf galaxies through high-resolution N-body simulations. If some
fraction of the dark matter in low-mass dwarf galaxies consists of PBHs and the rest is cold dark
matter, dynamical heating of the cold dark matter by the PBHs induces a cusp-to-core transition
in the total dark matter profile. The mechanism works for PBHs in the 25-100 M¯ mass window,
consistent with the LIGO detections, but requires a lower limit on the PBH mass fraction of 1% of
the total dwarf galaxy dark matter content. The cusp-to-core transition time-scale is between 1 and
8 Gyr. This time-scale is also a constant multiple of the relaxation time between cold dark matter
particles and PBHs, which depends on the mass, the mass fraction and the scale radius of the initial
density profile of PBHs. We conclude that dark matter cores occur naturally in halos comprised of
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cold dark matter and PBHs, without the need to invoke baryonic processes.

Then, we have demonstrated for the first time that subhalos sink and transfer energy via dynam-
ical friction into the centres of dwarf galaxies using N-body simulations. This dynamical heating
kicks any central intermediate massive black hole out to tens of parsecs, especially at early epochs
(z=1.5-3). This mechanism helps explain the observed off-center BHs in dwarf galaxies and also
predicts that off-center BHs are more common in higher mass dwarf galaxies since dynamical friction
becomes significantly weaker and BHs take more time to sink back towards the centres of their host
galaxies. One consequence of off-center BHs during early epochs of dwarf galaxies is to quench any
BH feedback.

Finally, we show that M31 harbours a dark matter core. Observational data provide stringent
constraints on the initial conditions of our simulations. We demonstrate that accretion of a satellite
on a highly eccentric orbit heats up the central parts of M31, causes an outward migration of
dark matter particles, flattens the central cusp over more than a decade in scale and generates a
model-independent new dark matter profile that is well-fitted by a core. Our results imply that cores
could be a common feature of galaxies that have been initially cuspy but have accreted satellites
on eccentric orbits. We show also that the infall of a dark matter rich satellite naturally explains a
present black hole offset by sub-parsecs in M31. The heating of the central region of M31 by the
satellite via dynamical friction entails a significant black hole offset after the first pericentric passage.
After having reached its maximum offset, the massive black hole sinks towards the M31 centre due
to dynamical friction and it is determined to be offset by sub-parsecs as derived by observations.
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CHAPTER 1. INTRODUCTION

Dark matter (hereafter DM) spans our entire Universe. This dominant component is traditionally
referred to as a medium that manifests itself only through gravitational interaction with itself and
baryonic matter. However, the nature of DM is currently one of the most fundamental and elusive
mysteries in physics.

As the gravity of the baryonic matter is not sufficient to explain the evolution of the Universe
with its observed structures, cosmological models predict the existence of a collisionless and non-
relativistic matter, the so-called cold dark matter (CDM) [Peebles, 1982]. Lambda Cold Dark Matter
(ΛCDM) model describes a universe comprised primarily of CDM and a cosmological constant
Λ [Blumenthal et al., 1984] and has emerged as the prevailing cosmological theory. Within the
framework of general relativity, the CDM paradigm can provide a quantitative description of the
Universe at present and is extremely successful at explaining the Universe on large scales [Croft
et al., 2002; Spergel et al., 2003].

1.1 Distribution of dark matter

Our Universe constitutes of a large collection of potential wells, more or less deep, created by
gravitationally bound DM particles, namely halos. In the ΛCDM model, spherical infall models
link small density fluctuations in the early Universe to the final equilibrium configurations of DM
halos [Gott, 1975; Gunn & Gott, 1972]. Small perturbations in the DM density field are the first to
decouple from the Hubble flow and collapse. Surrounding collisionless DM is aggregated and falls
on to the cosmic structure until its mass greatly exceeds that of the originally overdense region,
resulting in the formation of a gravitationally self-bound structure, a virialized DM halo. The DM
structure with its total mass Mvir is bounded by the virial radius, rvir.

The spherically averaged radial distribution of mass within a DM halo is called the DM density
profile. The main prediction of these models is that the inner part of the first halos is described
asymptotically by a power-law density profile, namely cusp:

ρ∝ r α. (1.1)

The predicted slope of the inner profile, illustrated by the orange region in Figure 1.1, varies
between α=−2 and -2.25 [Bertschinger, 1985; Fillmore & Goldreich, 1984]. These analytical studies
restricted their models to collisionless DM collapsing on purely radial orbits. By regarding a virialized
DM halo as a fluid with pressure, we can predict the limit of purely radial orbits delimited by the
asymptotic central density structure with α=−2. The pressure equilibrium equation is written as:

dp

dr
=−GM(r )

r 2
ρ, (1.2)

where

M(r ) = 4π
∫ r

0
ρ(u)u2du, (1.3)

and

p = ρ

m
kT, (1.4)

with m being the DM particle mass. Assuming that the temperature T = constant, we obtain

d

dr

(
r 2 dln(ρ)

dr

)
=−4πGm

kT
r 2ρ. (1.5)

4



CHAPTER 1. INTRODUCTION

^!����
���GOTG

82+������(EVO

1IER�(1�:SPYQI�(IRWMX]�?PSK�GQƯ�A
���� ���� ���� ���� ���

^!����
���GOTG

82+������(EVO

1IER�(1�:SPYQI�(IRWMX]�?PSK�GQƯ�A
���� ���� ���� ���� ���

^!���
���GOTG

82+������(EVO

1IER�(1�:SPYQI�(IRWMX]�?PSK�GQƯ�A
���� ���� ���� ���� ����

^!����
����GOTG

82+������(EVO

1IER�(1�:SPYQI�(IRWMX]�?PSK�GQƯ�A
���� ���� ���� ���� ����

^!���
����OTG

82+������(EVO

1IER�(1�:SPYQI�(IRWMX]�?PSK�GQƯ�A
���� ���� ���� ���� ����

NFW

r -1
r -1.5

r -2

r -3

Scale 
radius

=
Slopes 

transition

Limit of vanishing velocity anisotropy

Limit of purely radial orbits

1kpc 1kpc 9 kpc

400 kpc

70 kpc

z = 0

z = 0.95z = 5.5z = 11z = 12

First halo 2 mergers 49 mergers13 mergers

95 mergers

Figure 1.1 – DM distribution in the central region: Mean DM volume density across time for a Milky
Way-like halo from the Illustris TNG simulation [Nelson et al., 2019] and normalized density profiles as a
function of the radius normalized by the DM half mass radius rm of DM halos over their evolution. We
specified the number of mergers undergone by the first halo. The predicted slope of the inner profile,
depicted by the orange region, varies between α=−2 and -2.25.

One solution to this equation is ρ∝ r α with α =−2. As the mass of this sphere diverges at large
radii, this model can only describe the central part of halos.

Subsequent analytical and numerical studies extended the prediction of the asymptotic behaviour
of first halos to a power-law density distribution with α=−1.5 by including non-radial orbits [Nusser,
2001; Sikivie et al., 1997]. N-body simulations confirmed these analytical predictions [MacMillan
et al., 2006; Vogelsberger et al., 2011; White & Zaritsky, 1992; Williams et al., 2004]. Moreover,
the assumption of isotropic velocity dispersion for the collapsed system entails the formation of inner
structures with α=−1 [Lapi & Cavaliere, 2011; Lu et al., 2006; Subramanian, 2000; Teyssier et al.,
1997]. The range of α predicted by these post-analytical models is represented by the blue region
in Figure 1.1.

However, N-body simulations showed that these first DM halos possess a markedly different
density profile that asymptotes to a power-law density distribution with α=−1.5 in the inner regions
[Anderhalden & Diemand, 2013; Angulo et al., 2017; Ishiyama, 2014; Ishiyama et al., 2010; Ogiya &
Hahn, 2018; Polisensky & Ricotti, 2015]. This cuspy profile is stable in the absence of halo mergers
(cf. blue line in Figure 1.1).

It is now established that a cuspy profile with α = −1.5 for the first halos emerges some time
after their formation. Larger halos form in a hierarchical manner. They are subsequently formed
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Figure 1.2 – Baryon impact: DM density profiles as a function of the radius normalized by the DM half
mass radius rm for a 1011 M¯ halo from the Illustris TNG simulation [Nelson et al., 2019] with and without
baryonic physics. The DM profile becomes slightly steeper due to the presence of stars and the black hole
at the galaxy centre.

by mergers of pre-existing halos and by accretion of diffuse and unbound DM. It was found that
the dynamical impact of consecutive mergers weakens as the logarithmic central density slope, α,
approaches unity [Angulo et al., 2017; Ogiya et al., 2016]. Indeed, the density profile becomes
increasingly shallower as the halo mass grows. In Figure 1.1, the snapshots of a halo from the
Illustris TNG-100 simulation at different redshifts illustrates the formation of a halo by the accretion
of unbound DM matter and hierarchical clustering of smaller halos. We specified the number of
mergers undergone by the first halo. The halo at z = 0 is similar to the Milky Way (MW) halo with
a mass of ∼ 1012 M¯.

In cosmological simulations, halo mergers gradually drive the halo density profiles towards a
central density cusp, which behaves as r−1, with a sharp decline towards their outskirts [Dubinski
& Carlberg, 1991; Frenk et al., 1988; Gelb & Bertschinger, 1994]. Their density profiles, which are
almost independent of halo mass, cosmological parameters and the power spectrum of initial fluc-
tuations, appeared to be well-described by the following form [Navarro et al., 1996, 1997, hereafter
NFW]:

ρNFW(r ) = ρ0(
r
rs

)(
1+ r

rs

)2 , (1.6)

where r is the distance from the centre of the DM halo, and ρ0 and rs represent the central density
and scale radius, respectively. Figure 1.1 depicts the universal NFW profile (red curve), which is a
double power-law that transitions from r−1 at small radii to r−3 at large radii. The scale radius marks
the transition between the two slopes in the NFW profile (cf. the grey square in Figure 1.1). As
the NFW profile appears to be the generic consequence of halo mergers and becomes more resilient,
this might explain why this density profile is universally observed in most cosmological simulations.

The formation and evolution of structures in the Universe ranging in size from dwarf galaxies all
the way up to galaxy clusters is driven by the dynamics of DM. Potential wells created by virialized

6
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Figure 1.3 – Galaxy components: Mean volume density of DM, stars and gas for a Milky Way-like galaxy
at z = 0 from the Illustris TNG-100 simulations [Nelson et al., 2019]. The most important constituent is
the DM because it is dominating the gravitational potential as the most massive part. The second most
dominant constituent is the stellar component. The lower right panel shows a stellar composite image of
stars in common filters on the James Webb Space Telescope [Gardner et al., 2006].

DM halos drive the formation and evolution of galaxies by attracting gas into their centres. Thus,
galaxies are believed to form from gas condensing at the centres of massive DM halos, where stars
form [White & Rees, 1978]. Then, galaxies consist of three constituents: DM, gas, and stars.
The DM is thus not only the dominant gravitational component but also the dominant factor in
determining the distribution of matter. In the ΛCDM model, cusps appear naturally in the inner
parts of halos with its most adequate description given by the NFW profile. Nevertheless, the DM
profile becomes slightly steeper due to the presence of stars and the black hole at the galaxy centre.
As depicted in Figure 1.2, this behaviour is confirmed in the Illustris-TNG simulations. The density of
the inner parts of the halos is higher due to the stars and a central black hole (BH). Figure 1.3 shows
that the most important constituent is the DM because it is dominating the gravitational potential
as the most massive part. The second most dominant constituent is the stellar component.
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Carina Draco Fornax Leo I

Leo II Sculptor Sextans Umi

Figure 1.4 – Dwarf galaxies of the local group: Images of the luminous matter of the eight most
common dwarf spheroidal galaxies orbiting around the MW. These systems are among the most DM-
dominated galaxies in the Universe. Their DM mass is predicted to be between 109 and 1010 M¯ [Read
et al., 2019].

About forty dwarf galaxies have been discovered in the Local Group, which encompasses our
MW galaxy and Andromeda galaxy [Mateo, 1998]. These dwarf galaxies are more than 100 times
less massive than the MW. The dwarf galaxy population of the MW exhibits various different mor-
phological types. Dwarfs can be divided into roughly two groups: dwarf spheroidals and dwarf
irregulars [McConnachie, 2012]. In this work, we focus on dwarf spheroidals only. They have char-
acteristically old stellar populations and are generally devoid of gas [Carraro, 2015]. Close to the
MW and Andromeda, one finds predominantly dwarf spheroidals. These dwarfs are among the
most DM-dominated galaxies in the Universe [Battaglia et al., 2013; Walker, 2013]. In some dwarf
spheroidals, DM constitutes 90% or more of the total mass, even at the centre of the galaxy, so
the dynamics are determined entirely by the gravitational field of the DM. Therefore, these systems
provide an excellent laboratory to study DM distribution at small scales. The eight most common
dwarf spheroidal galaxies orbiting around the MW are represented in Figure 1.4.
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CHAPTER 1. INTRODUCTION

1.2 Structure of this thesis

The purpose of this work is to provide new solutions to the cusp-core problem, especially in dwarf
galaxies. This doctoral thesis is written in seven chapters, organized as follows. The introduction
is followed by Chapter 2, which focuses on the inconsistency of inner DM density profiles in dwarf
galaxies, known as the cusp-core problem. Our numerical approach based on high-resolution N-
body simulations on GPU is provided in Chapter 3. Our solution to the Fornax cusp-core problem
is illustrated in Chapter 4. Chapter 5 provides a second solution by invoking primordial black holes
as DM candidates. The sinking of DM subhalos in dwarf galaxies, which contributes to explain
observed off-centre BHs in dwarf galaxies, is outlined in Chapter 6 within the context of the cusp-
core problem. Chapter 7 describes our recent investigations on the shape of the DM profile and
the fate of the central black hole in Andromeda galaxy (M31) due to the infalling satellite, as the
origin of the tidal features of M31. Finally, in Chapter 8, we summarize the key aspects of the work
presented in this thesis.
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CHAPTER 2. THE CUSP-CORE PROBLEM

The theory of the formation of our Universe dominated by the DM is established, and the ΛCDM
model can now be confronted with observations. This chapter is intended to give an overview of
the current observational and theoretical status of the DM distribution at small scales. Small scales
refer to galactic or sub-galactic scales, which correspond to the inner few kpc.

2.1 The discrepancy between ΛCDM and observations

ΛCDM model is extremely successful in explaining the DM distribution of the Universe on large
scales [Tegmark et al., 2004] but also many important aspects of galaxy formation [Springel et al.,
2006; Trujillo-Gomez et al., 2011]. As shown previously, CDM simulations including only DM par-
ticles predict that DM halos should have density profiles that behave as r−1 at small radii. These
early simulations of structure formation found the universal cuspy NFW density profile in halos
ranging from dwarf galaxies to galaxy clusters [Navarro et al., 1996b]. This important result was
obtained from N-body simulations and is independent of initial conditions and cosmological param-
eters [Navarro et al., 1997]. Nevertheless, later studies show that the DM density profile does not
seem to be universal. Indeed, DM density profiles rise steeply at small radius more like ρ(r ) ∝ r−α

with α= 0.8 - 1.4 [Fukushige & Makino, 1997; Moore et al., 1998; Navarro et al., 2010]. In order
to find good probes of the DM distribution, it is essential that the dynamics of selected galaxies
are dominated by DM. The mass regime, which has been studied most extensively, is at the dwarf
galaxy scale.

2.1.1 Observed rotation curves

The DM density profile of these galaxies can be inferred by measuring the rotation of either the
gas with HI or using the stellar Hα emission line. Early measurements of the HI rotation curves
of gas-rich dwarf galaxies highlighted, for the first time, a large discrepancy between the observed
rotation velocities and those predicted by ΛCDM simulations, especially in the inner parts [Burkert,
1995; Flores & Primack, 1994; Moore, 1994]. The rotation curve Vc(R) is derived from the observed
line-of-sight velocity at any position (x, y) in the galaxy velocity field:

V(x, y) = V0 +Vc(R)sin i cosθ+Vexp(R)sin i sinθ, (2.1)

where V0, R, Vexp(R) and i are the systemic velocity, the radius in the plane of the galaxy, the expan-
sion velocity describing non-circular motions and the inclination, respectively. Assuming spherical
symmetry, the rotation curve is defined as

Vc(R) =
√

GM(R)

R
, (2.2)

where G is the gravitational constant and M(r ) corresponds to the mass within the radius R. By
inverting the previous equation, we can determine the mass inside a radial distance R. As the interior
mass M(R) is directly related to the density ρ(r ) according to the following equation:

M(R) = 4π
∫ R

0
r 2ρ(r )dr, (2.3)

it is, therefore, possible to establish the DM density profile in galaxies. For instance, the NFW mass
distribution gives rise to a DM rotation curve:

Vc(R) = V200

(
ln(1+ cx)− cx/(1+ cx)

x (ln(1+ cx)− c/(1+ c))

)
, (2.4)
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Fig. 3.—Value of the inner slope a of the mass density profiles plotted
against the radius of the innermost point. Filled circles are from the dBMR
sample; stars are from the de Blok & Bosma (2001) sample; open circles
represent the four LSB galaxies from the Verheijen (1997) sample. Overplotted
are the theoretical slopes of a pseudoisothermal halo model (dotted lines) with
core radii of 0.5 (leftmost), 1 (center), and 2 (rightmost) kpc. The solid line
represents an NFW model (NFW), the dashed line a CDM r!1.5 model (Moore
et al. 1999). Both of the latter models have parameters andc p 8 V p200

km s!1, which were chosen to fit approximately the data points in the100
lower part of the diagram.

of the UMa LSB galaxies to have steep slopes indicate sys-
tematic effects in the new LSB data? The answer to both ques-
tions is negative, as the following analysis shows.
Table 1 lists the radius in kiloparsecs, , of the innermostrin

data point of each profile. For the LSB sample, generally
kpc. For the UMa galaxies, we find larger : three ofr ! 1 rin in

the four have kpc. In Figure 3, we plot the values ofr p 1.5in
versus the inner slope a. Also drawn are the logarithmicrin

slopes as a function of radius for pseudoisothermal halos with
core radii kpc, as well as an NFW model andR p 0.5, 1, 2C

a CDM r!1.5 model (Moore et al. 1999), both of the latter
converging to a slope in the (far) outer parts. Thesea p !3
two models are chosen to have parameters andc p 8

km s!1 to match approximately the four UMa gal-V p 100200
axies. However, this choice is not critical.
Galaxies with small values of (!0.15 kpc) show clearrin

evidence of a core ( ), whereas galaxies with larger valuesa ! 0
of exhibit steeper slopes. Figure 3 shows that distributionrin
is consistent with an isothermal halo with a core radius of a
few kiloparsecs, whereas the NFW and CDM models do not
match the data at all.
Hence, only galaxies with small values of measure therin

core. Larger values sample a transition zone where the slope
is changing from (center) to (outer isothermala p 0 a p !2
regions). In the zone between ∼1 and ∼10 kpc the slopes of
the pseudoisothermal and CDM models are approximately
equal, so large values of might erroneously lead to the con-rin
clusion that measured slopes are consistent with CDM. The
four UMa galaxies (and some LSB galaxies) have in thisrin
transition zone and thus show steep slopes. We have modeled
the beam smearing or seeing effects potentially present in the
optical data (discussed in a forthcoming paper) and find that
we can strongly exclude the possibility that these affect the
results down to resolutions of ∼0".1. We thus predict that higher
spatial resolution data (with smaller values of ) will alsorin
detect cores in the less well resolved galaxies.
Similar arguments apply to the beam-smearing–corrected

H i curves in van den Bosch et al. 2000 and van den Bosch
& Swaters (2000). With values kpc these data trace notr ∼ 1in
the inner slope but instead the steep slope at the turnover of
the constant-density core.

4. CONCLUSIONS

Mass density profiles of LSB galaxies exhibit inner slopes
that are best described by a power law withar(r) ∼ r a p

. This result implies that halos of LSB galaxies are!0.2! 0.2
dominated by cores. This result is inconsistent with the value

predicted by CDM models. The steep slopes founda p !1.5
for some LSB galaxies arise when the innermost data point is
sampling the transition region between core and outer a p

isothermal region, not the core itself. Our data are not!2
consistent with CDM predictions but suggest that LSB galaxies
have halos that contain cores of radii of order 1 kpc.
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FIG. 14a

FIG. 14b

FIG. 14c

FIG. 14.ÈRotation curve of F583-1 compared with the form predicted
for appropriate CDM halos (Navarro et al. The solid points are the1996b).
observed rotation curve, while the open points are the rotation curve of the
dark matter with the baryonic component subtracted from the total. The
open points have been o†set slightly in R for clarity, as the baryons con-
tribute very little at any radii. Lines show the predictions of various cos-
mologies assuming (a) the value indicated by clusters,(Table 4) f

b
\ 0.09,

and (b) km s~1 (i.e., a Tully-Fisher normalization that ignoresV200\ 80
the consequences for the baryon fraction). None of the predictions are
satisfactory, so in (c) we test whether any Navarro et al. proÐle can(1996b)
Ðt the observations, regardless of cosmology. Even treating both c and V200as completely free parameters, no Ðt can be obtained. CDM predicts the
wrong shape for galaxy halo density proÐles.

& Fabian This then implies a halo mass ofWhite 1995).
Note that the maximum diskM

H
B 2.9 ] 1010 M

_
.

decomposition already implies M
H

º 2.2 ] 1010 M
_

(de
Blok & McGaugh so either this disk is observed to1997),
very near the edge of its halo, or the baryon fraction deter-
mined in clusters is not universal (° 8).

The concentration indices derived for these cases are
listed in and the results plotted in TheTable 4 Figure 14a.
results are disastrous. The SCDM model grossly over-
predicts the rate of rise of the rotation curve. The less con-
centrated OCDM and "CDM models do the same. Worse,
all predict very much the wrong asymptotic velocity, as the
halo mass appropriate for the observed baryon mass gives

km s~1 when km s~1.V200 \ 43 V
c
\ 84

Part of the problem here is the well-known failure of
CDM models to simultaneously match the observed lumi-
nosity density and the normalization of the Tully-Fisher
relation (see, e.g., et al. Baugh, & ColeHeyl 1995 ; Frenk,

Let us therefore try another approach.1996). Navarro
suggests that the Tully-Fisher relation arises(1996a)

because (though note that foundV
c
BV200 Navarro 1996b

that halo mass should not be well correlated with optical
luminosity). By adopting km s~1, we should atV200 \ 80
least come close to matching the outer portion of the rota-
tion curve. This implies a much more massive halo, M

H
B

1.2 ] 1011 and a correspondingly lower baryon frac-M
_

,
tion, f

b
\ 0.015.

This exercise again fails Only the lowest c(Fig. 14b).
model comes close to the observations, and even that pre-
dicts velocities that are too high for the dark matter. This is
especially true in the inner parts but remains true even in
the outer parts where the normalization was set. Appar-
ently, the Tully-Fisher relation does not arise from a simple
equation of with However, if it does not, why does aV

c
V200.Tully-Fisher relation with small scatter arise at all ?

Note that the shapes of the observed rotation curves are
not similar to the predicted shapes. Is it possible to Ðt the
data with at all ? The answer would appear toequation (25)
be no. gives several examples that come reason-Figure 14c
ably close by choosing c and without regard to theirV200cosmological origins. The model with c\ 12 gives a nicely
Ñat rotation curve for the outer points, but grossly over
predicts the inner rotation. Lower concentration models
can be made to Ðt the interior points, but then they get the
exterior ones wrong. gives the wrong shapeEquation (25)
and the clear prediction of CDM is simply not realized :

oCDM(R) D oobs(R) . (26)

Moreover, we do not have the freedom to Ðt c and V200freely. The virtue of the model is that these are predicted
once the cosmological parameters (especially ), P(k), and f

b
)

are stipulated. No plausible cosmology predicts (c, V200)that approximate the lowest surface brightness galaxies.
It has already been noted &(Moore 1994 ; Flores

Primack that the steep interior density distribution1994)

TABLE 4

CONCENTRATION

Model f
b
\ 0.09 V200 \ 80

SCDM . . . . . . 59 52
OCDM . . . . . . 9 8
"CDM . . . . . . 12 11

The Astronomical Journal, 141:193 (45pp), 2011 June Oh et al.

Figure 8. Inner slope of the dark matter density profile plotted against the radius
of the innermost point. The inner density slope α is measured by a least-squares
fit to the inner data point as described in the inset figure. The inner slopes of
the mass density profiles of the seven THINGS dwarf galaxies are overplotted
with earlier papers and they are consistent with previous measurements of
LSB galaxies. The pseudo-isothermal model is preferred over the NFW model
to explain the observational data. Gray symbols: open circles, de Blok et al.
(2001); triangles, de Blok & Bosma (2002); open stars, Swaters et al. (2003).
See Section 6.3 for further discussion.
(A color version of this figure is available in the online journal.)

et al. 1996, 1997). This implies that the sample galaxies show
slightly increasing or even constant density profiles toward their
centers.

We also examine how the mass model differs when it is based
on the Hermite h3 rotation curve instead of the bulk one. For this,
we use IC 2574 which shows strong non-circular motions close
to the center. As shown in the “mass density profile” panel of
Figure A.3, the mass density profile derived using the Hermite
h3 rotation curve is found to be slightly lower than that from
the bulk rotation curve at the central regions. This is mainly due
to the lower Hermite h3 rotation velocity, resulting in smaller
velocity gradients ∂V /∂R in Equation (15) and thus smaller
densities. The measured inner density slope is α = 0.00 ± 0.19
which is similar, within the error, to that (α = 0.13 ± 0.07)
based on the bulk rotation curve. This supports earlier studies
that suggest that the effect of systematic non-circular motions
in dwarf galaxies is not enough to hide the central cusps (e.g.,
Gentile et al. 2004; Trachternach et al. 2008; van Eymeren et al.
2009).

In Figure 8, we plot the logarithmic inner density slope
α against resolution of a rotation curve. At high resolutions
(Rin < 1 kpc) the slopes of the NFW and pseudo-isothermal
halo models can be clearly distinguished but at low resolutions
(Rin ∼1 kpc) the slopes of the two models are approximately
equal (de Blok et al. 2001). Because of their proximity (∼4 Mpc)
and their highly resolved rotation curves, the innermost radius
of the rotation curves that can be probed for our galaxies is about
0.1–0.2 kpc. We also overplot the theoretical α − Rin relations
of NFW and pseudo-isothermal halo models as solid and dotted
lines, respectively. The highly resolved rotation curves of our
galaxies (i.e., Rin ∼0.2 kpc) deviate significantly from the
prediction of NFW CDM models. In particular, around Rin ∼
0.1 kpc where the predictions of the two halo models are clearly
distinct, the α−Rin trend of our galaxies is more consistent with
those of pseudo-isothermal halo models.

7. CONCLUSIONS

In this paper, we have presented high-resolution mass models
of the seven dwarf galaxies, IC 2574, NGC 2366, Ho i, Ho ii,
DDO 53, DDO 154, and M81dwB from the THINGS survey,
and examined their dark matter distribution by comparison with
classical ΛCDM simulations. The THINGS high-resolution data
significantly reduce observational systematic effects, such as
beam smearing, center offset, and non-circular motions. When
deriving the rotation curves, we used various types of velocity
fields, such as IWM, peak, single Gaussian, Hermite h3, and
bulk velocity fields, and compared the results. In particular, the
bulk velocity field was able to efficiently remove small-scale
random motions and allowed us to better determine the total
kinematics of the galaxies.

We also found that the relation between the total baryonic
mass (stars + gas) and the maximum rotation velocity of the
galaxies is roughly consistent with the BTF relation calibrated
from a larger sample of low-mass galaxies. Especially, the
inclination values derived if one takes the BTF relation at face
value are not significantly different from those derived from a
tilted-ring analysis. This implies that the BTF relation can be
used as an alternative way for deriving inclinations of galaxies
for which it is difficult to apply a tilted-ring analysis.

We derived the mass models of baryons and subtracted them
from the total kinematics. For the stellar component, we used
SINGS 3.6 µm and optical data determined by the stellar mass-
to-light ratio ϒ# for the 3.6 µm band. For the purpose of our
study, we use the 3.6 µm Spitzer images to estimate the mass
of the old stellar population in our target galaxies. Even though
this band may contain some dust emission features, we consider
it to be the best consistent tracer of the stellar masses (see
discussion in Leroy et al. 2008, de Blok et al. 2008, and Oh
et al. 2008). These therefore allow us to estimate the old stellar
population that dominates the stellar continuum emission in the
infrared regime. Although our sample dwarf galaxies are dark-
matter-dominated as indicated by their low baryonic fraction, the
population synthesis ϒ3.6

# values gave slightly better or similar
fits than not only the maximum disk but also the minimum
(+gas) disk assumptions in describing the stellar component.

With the help of the well-determined total kinematics and
the mass models of baryons, we were able to accurately
constrain the dark matter distribution in the galaxies. From
this, we found a significant discrepancy in the dark matter
distribution between the THINGS dwarf galaxies and classical
dark-matter-only cosmological simulations both in the rotation
curve shape and the inner slope α of the mass density profiles.
The rotation curves of the galaxies rise less steeply to be
consistent with the cusp feature at the centers. In addition, the
mean value of the inner slopes of the mass density profiles is α =
−0.29 ± 0.07 (and −0.27 ± 0.07 without Ho i which has a low
inclination), significantly deviating from ∼ − 1 inferred from
dark-matter-only simulations. Considering the fact that the bulk
rotation curves which show the most rapid increase compared
to the others (particularly in the inner regions) were used,
the results provide good evidence that the central dark matter
distribution in dwarf galaxies is not cusp like, as suggested by
earlier studies.

It is most likely that both the lack of resolution and the
absence of baryonic physics in the older simulations play
the dominant role in the discrepancy. In order to distinguish
the core- and cusp-like models clearly, it is indispensable for
the simulations to resolve scales smaller than 1 kpc (de Blok
et al. 2008). In addition, baryons are dynamically important in
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However, as noted earlier, the resolution of LITTLE THINGS
H I observations is not high enough to resolve the small H I disk
(∼60″ diameter) and distinguish between cusp- and core-like
DM behavior near the center of DDO 210. We note that DDO
210 has the most compact H I disk (in terms of the beam size,
e.g., Rmax H I ∼− 6.0beam

1 as given in Table 2) of the sample
galaxies. Likewise, some of our sample galaxies may still
suffer from beam smearing which is discussed in the following
section.

6. INNER DENSITY SLOPE VERSUS RESOLUTION

As in de Blok et al. (2001), for a quantitative examination of
the beam smearing effect on our sample galaxies, we plot the
inner density slopes α of the galaxies including the THINGS
sample as well as the two simulated dwarf galaxies (DG1 and
DG2) modeled by Governato et al. (2010) against the observed
radii of their innermost point Rinner in Figure 7. For the sample
dwarf galaxies from LITTLE THINGS, we use the slopes
derived assuming the model Υ⋆3.6 disk. We also show the α-
Rinner relations of the NFW and pseudo-isothermal halo models
as solid and dotted lines, respectively, derived using their
analytical formulas as given in Equations (6) and (8).

As shown in Figure 7, most sample galaxies show significant
deviations from the predicted α-Rinner trend (solid line) of
ΛCDMNFW halos at around a Rinner of ∼0.2 kpc. Instead, they
are more consistent with those of pseudo-isothermal halo
models with different core-radii (dotted lines) as well as the
earlier results found from LSB galaxies (gray symbols) in de
Blok & Bosma (2002). However, the clear difference between

the two halo models (i.e., NFW and pseudo-isothermal) at high
resolutions (e.g., <Rinner 0.5 kpc) becomes ambiguous as the
innermost radius Rinner of a given DM density profile increases.
For example, a galaxy with a larger Rinner (i.e., low resolution)
tends to show a steeper inner slope of DM density profile. The
larger Rinner makes it lie in the region where the slopes of the
two halo models are approximately similar to each other. In
addition, as discussed in Section 4.2, the derivative

ρd d Rlog log of a DM density profile on a logarithmic scale
decreases toward the outer region of a galaxy. If the DM
density profile is affected by beam smearing, the break radius
of the profile which is determined when measuring the inner
slope tends to migrate into the outer regime where

ρd d Rlog log has a lower value. Therefore, the inner density
slope α within the break radius is most likely to be steeper than
the ones derived from well sampled profiles. This could be the
case of DDO 101 and DDO 210. In particular, DDO 101 is
most likely to be affected by the beam smearing effect as
shown in Figure 7.
Yet higher resolution velocity fields obtained with radio

interferometers or using other tracers such as integral field
mapping are required to study the effect of SN feedback on the
central cusps of the lowest mass dwarf galaxies. Such high–
resolution observations of low mass dwarf galaxies would
provide an ultimate test of the ΛCDM paradigm. Unlike
clusters of galaxies where the depth of the gravitational
potential well is deep enough to retain warm DM (WDM) as
well as CDM, there is no room for WDM in dwarf galaxies
inhabiting DM halos with much shallower potential wells.
Therefore, finding a signature of a central cusp in dwarf
galaxies will prove that there is at least some CDM in the
universe. This again highlights the cosmological importance of
low mass dwarf galaxies, not only for resolving the “cusp/core”
controversy in ΛCDM simulations but also as an indirect proof
for the existence of CDM in the universe.

7. CONCLUSION

In this paper we derive the rotation curves of 26 dwarf
galaxies culled from LITTLE THINGS, and examine their DM
distributions near the centers of the galaxies. From this, we
address the “cusp/core” problem which has been one of the
long-standing problems in ΛCDM simulations on galactic
scales. The high-resolution LITTLE THINGS H I data (∼6″
angular; ∼2.6 km s−1 spectral) complemented with optical and
Spitzer IRAC 3.6 μm images are sufficiently detailed to resolve
the central region of the sample galaxies where the cusp- and
core-like halo models are clearly distinguished.
In particular, we use the bulk velocity fields of the galaxies

extracted using the method described in Oh et al. (2008) to
correct for turbulent random non-circular gas motions. This
enables us to derive more reliable rotation curves and thus more
accurate DM distributions in the galaxies. We corrected for the
modest dynamical contribution by baryons in dwarf galaxies by
using Spitzer IRAC 3.6 μm images combined with model Υ⋆3.6

values based on stellar population synthesis models. This
allowed us to derive robust mass models of the stellar
components of the galaxies and thus better constrain their
central DM distributions.
From this, we found that the decomposed DM rotation

curves of most sample galaxies are well matched in shape to
those of core-like halos which are characterized by a linear
increase of rotation velocity in the inner region. We also derive

Figure 7. Inner slope of the dark matter density profiles α vs. the radius Rin of
the innermost point within which α is measured as described in the small figure
(de Blok et al. 2001). The α-Rin of the sample galaxies from LITTLE
THINGS, THINGS and the two simulated dwarf galaxies (DG1 and DG2:
Governato et al. 2010) as well as the previous measurements (gray symbols) of
LSB galaxies (open circles: de Blok et al. 2001; triangles: de Blok &
Bosma 2002; open stars: Swaters et al. 2003). Filled circles with arrows
indicate the galaxies of which inner density slopes are measured assuming a
“minimum disk,” giving a steeper slope. The solid and dotted lines represent
the α-Rin trends of dark-matter-only ΛCDM NFW and pseudo-isothermal halo
models, respectively. See Section 6 for more details.
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Figure 24. The derived mass density profiles of IC 2574 and NGC 2366. The long-dashed and solid lines show the NFW halo model and the pseudo-isothermal halo
model, respectively. The vertical long dash-dotted lines indicate 1 kpc radius. The filled gray circles represent the dark matter density profile derived from the bulk
rotation velocity. The inner slope of the derived dark matter density profile is denoted by α and measured by a least-squares fit (short dashed lines) to data points at
radii less than 1.2 kpc. The measured inner slopes of the mass density profiles of IC 2574 and NGC 2366 are shown in the panels.

Figure 25. The inner slope of the dark matter density profile plotted against the
radius of the innermost point. The inner slopes of the mass density profiles of
IC 2574 and NGC 2366 are overplotted with earlier work; they are consistent
with previous measurements. Open circles: de Blok et al. (2001); squares:
de Blok & Bosma (2002); open stars: Swaters et al. (2003). The pseudo-
isothermal model is preferred over the NFW model to explain the observational
data.

We have fitted NFW and pseudo-isothermal dark matter
halos to the derived rotation curves, taking into account the
contributions due to stars and gas. We found that the pseudo-
isothermal halo provides a better fit to the observations than
the NFW halo. We use the derived mass density profile to
determine the value of the inner slope. The measured slopes
are α = +0.13 ± 0.07 for IC 2574 and α = −0.32 ± 0.10
for NGC 2366, compared with the NFW model which predicts
α ∼ −1.

The dark matter distributions of IC 2574 and NGC 2366
are well described by the pseudo-isothermal model (α ∼ 0)
with a sizeable central constant-density core. These results are
not affected by systematic effects due to lack of resolution or
pointing offsets, take into account the effects of noncircular
motions and use a well-constrained model for ϒ".
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Figure 2.1 – Cusp-core problem: Comparison between cores inferred from observations and NFW form
predicted by simulations over the last twenty years with their new observational data specified by orange
boxes. (a),(c),(d),(e): Inner slope α of the density profiles as a function of the radius of the innermost
point, within which α is measured. Main data are taken from Oh et al. [2011, 2015]; Swaters et al. [2003];
de Blok & Bosma [2002]; de Blok et al. [2001]. The theoretical slopes of a pseudo-isothermal halo is
over-plotted with dotted lines for a core size of 0.5 (leftmost), 1 (centre), and 2 (rightmost) kpc. The
solid line represents an NFW model [Navarro et al., 1996b]. The pseudo-isothermal model is preferred over
the NFW model to explain the observational data. (b): Rotation curve of F583-1 galaxy as a function of
the radius. The solid and open points are the observed rotation curve and the rotation curve of the DM
with the baryonic component subtracted from the total, respectively. Even for various cosmologies and
assuming both c and V200 as free parameters, CDM predictions do not fit observations. The figure is taken
from McGaugh & de Blok [1998]; Oh et al. [2008, 2011, 2015]; de Blok et al. [2001].

where x = R/R200 with the virial radius R200. The circular velocity is only characterized by the
concentration c and the virial velocity V200 = Vc(R200) [Navarro et al., 1996b]. Given the halo mass
and redshift, both halo concentrations c200 can be estimated from cosmological N-body simulations.
Indeed, the mass and concentration of halos at redshift z = 0 in ΛCDM are correlated:

log10(c200) = 0.905−0.101log10(M200h −12), (2.5)

with a scatter ∆log10(c200) = 0.1, where h is the Hubble parameter [Dutton & Macciò, 2014]. After
the data analysis, the central DM distributions in this DM-dominated galaxies were found to be
inconsistent with 1/r behavior of cuspy profiles and indicate the presence of a constant-density
core. These latter implies ρ(r ) ∝ r−α with α = 0 in the inner regions. This discrepancy between
observations and simulations led to the original small-scale problem, which has now become known
as the cusp/core problem [Flores & Primack, 1994; Moore, 1994].

Nevertheless, it was argued that baryonic processes could explain the observed cores in these
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CHAPTER 2. THE CUSP-CORE PROBLEM

galaxies [Navarro et al., 1996a]. As a proof of concept, numerous studies investigated more massive
DM dominated galaxies such as Low Surface Brightness (LSB) galaxies as the baryonic processes
were declared to be only effective in dwarf galaxies. Moreover, the stellar component yields only a
small contribution to the observed rotation curves of these DM–dominated galaxies. As shown in
Figure 2.1, the measurements in LSB galaxies eventually confirmed that the observations were still
consistent with the existence of DM cores [Côté et al., 2000; McGaugh & de Blok, 1998; de Blok &
McGaugh, 1996, 1997; de Blok et al., 1996]. Subsequent observations in the Hα line supported the
existence of DM cores in LSB galaxies [Borriello & Salucci, 2001; Marchesini et al., 2002; Salucci,
2001; Swaters et al., 2000; de Blok, 2005; de Blok & Bosma, 2002; de Blok et al., 2001]. However,
it was argued that systematic effects could be responsible of the core signature in the rotation curve
[Marchesini et al., 2002; Rhee et al., 2004; de Blok & Bosma, 2002; de Blok et al., 2003]. The
absence of a comprehensive and satisfactory resolution has also led to a wide range of different
conclusions concerning the DM inner profile [de Blok & McGaugh, 1996; van den Bosch & Swaters,
2001; van den Bosch et al., 2000]. As a consequence, the NFW form cannot be ruled out [Spekkens
et al., 2005; Swaters et al., 2003]. More recently, high-resolution velocity fields were used to derive
stronger constraints on the DM distributions in galaxies [Gentile et al., 2004; Kuzio de Naray et al.,
2008, 2009; Oh et al., 2008; Trachternach et al., 2008; Zackrisson et al., 2006; de Blok et al., 2008].
Indeed, a core profile represented by the pseudo-isothermal model is preferred over the NFW profile
to explain the observational data (see Figure 2.1). The mass distribution of the pseudo-isothermal
sphere is given by:

ρ(r ) = ρ0

1+ (r /Rc)2 . (2.6)

This density distribution leads to a circular velocity, which can be written as

Vc(R) =
√

4πGρ0R3
c

r

(
r

Rc
− tan−1

(
r

Rc

))
, (2.7)

where ρ0 and Rc are the central density and the core radius of the DM halo, respectively. Another
density profile that appears to fit also the observed rotation curves is the so-called Burkert profile
[Burkert, 1995]. This latter, which is similar to the pseudol-isothermal form, is defined as:

ρ(r ) = ρ0

(1+ r /rc) (1+ (r /rc)2)
, (2.8)

where ρ0 and rc are the central density and the core radius of the DM halo, respectively. In a nutshell,
measurements of galaxy rotation curves have revealed that the density profile of the DM halos are
not consistent with ΛCDM predictions and suggest that LSB galaxies contain DM cores with a size
of kiloparsecs. Recent surveys of nearby dwarf galaxies, THINGS and LITTLE THINGS have offered
ultra-high resolution rotation curve data [Hunter et al., 2012; Walter et al., 2008]. By reaching
the necessary resolution to alleviate some systematic effects, the logarithmic inner slopes α of their
DM halo densities were found to be high α = −0.32±0.24 [Oh et al., 2011, 2015]. These recent
measurement reinforced the disagreement with the prediction of cuspy NFW halos (see Figure 2.1).

2.1.2 Dynamical models

As most of the dwarf galaxies are devoid of gas, the kinematics of their stars must be also used to
probe their DM inner region. However, only line-of-sight velocities of stars are observable. The line-
of-sight velocity dispersion of these stars from the spherical Jeans equation [Binney, 1980; Binney
& Tremaine, 2008] can be written as [Binney & Mamon, 1982]:

σ2
los =

2

Σ∗(R)

∫ ∞

R

(
1−βR2

r 2

)
ν(r )σ2

r (r )rp
r 2 −R2

dr, (2.9)
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Figure 2.2 – Dynamical modelling: DM density profiles of the eight MW classical dwarf galaxies derived
from the stellar kinematics [Read et al., 2019]. The shaded regions mark the 68% confidence intervals of
the model. In this interval, it is hard to distinguish between cusp and core for the MW satellites according
to GravSphere fits. As their profile is better constrained at a radius of 150 pc, it was established that
seven dwarfs have a central DM density ρ(150 pc) consistent with a cusp and only Fornax had a ρ(150 pc)
consistent with a DM core [Read et al., 2019].

where Σ∗(R) is the surface mass density at projected radius R and the radial velocity dispersion σ2
r (r )

is defined as:

σ2
r (r ) = 1

ν(r )g (r )

∫ ∞

r

GM(u)ν(u)

u2
g (u)du, (2.10)

with

g (r ) = exp

(
2
∫
β(r )

r

)
, (2.11)

where ν(r ) and β(r ) are the radial density profile and the velocity anisotropy, which describes the
orbital structure of the stellar system, respectively. β = 0, 1 and −∞ correspond to an isotropic,
fully radial and fully tangential distributions, respectively. This technique allows the measurement
of the central DM density profile in galaxies as the line-of-sight velocity dispersion of stars depends
on the mass profile M(r ). However, there is a degeneracy between the radial density profile of DM,
ρ(r ), and the unknown orbit distribution of the stars. This latter is typically characterized by the
velocity anisotropy parameter β which is hard to constrain with only line-of-sight velocities [Binney &
Mamon, 1982; Evans et al., 2009; Merrifield & Kent, 1990; Read & Steger, 2017]. That is the reason
why analyses of the line-of-sight velocities in dwarf galaxies have led to contradictory conclusions.
Some authors conclude that the kinematic data require DM core [Agnello & Evans, 2012; Gilmore
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et al., 2007; Walker & Peñarrubia, 2011], while others found that the data are also consistent with
the NFW form [Breddels et al., 2013; Richardson & Fairbairn, 2014; Strigari et al., 2010]. For the
brighter MW dwarfs, this degeneracy can be broken by using metallicity or colour to split the stars
into distinct components [Agnello & Evans, 2012; Battaglia et al., 2008; Walker & Peñarrubia, 2011].
Other methods have been proposed to break this degeneracy by using higher-order velocity moments
[ Lokas, 2009], Schwarzschild methods [Breddels et al., 2013; Jardel et al., 2013], and proper motions
[Massari et al., 2018; Strigari et al., 2007; Wilkinson et al., 2002]. Indeed, together with line-of-sight
velocities and positions on the sky, stellar proper motions, which are the two additional transverse
velocity components, provide five out of the six phase-space coordinates of the stars. The degeneracy
may be also broken by including the fourth-order projected virial theorem [Merrifield & Kent, 1990].
A non-parametric Jeans method, namely GravSphere, employs the additional constraints from the
virial shape parameters in their analysis [Read & Steger, 2017]. This higher-order Jeans analysis
method has been shown to successfully recover DM density distributions of simulated dwarfs [Genina
et al., 2019; Read & Steger, 2017]. In Figure 2.2, the DM density profile of eight dwarf spheroidal
galaxies was estimated by using stellar kinematics [Read et al., 2019]. In the 68% confidence interval,
it is hard to distinguish between cusp and core for the MW satellites according to GravSphere fits
(see Figure 2.2). As their profile is better constrained at radius of 150 pc, it was established that
seven dwarfs have a central DM density ρ(150 pc) consistent with a cusp and only Fornax had a
ρ(150 pc) consistent with a DM core [Read et al., 2019]. It was found that the spherically averaged
DM profile evolution of the MW dSphs is well characterized by a modified NFW functional form.
The coreNFW profile is a fitting function, which captures the cusp-core transformation [Read et al.,
2016a]. For this model, the cumulative mass profile is given by:

McNFW(< r ) = MNFW(< r ) f n , (2.12)

where MNFW is the NFW mass profile and f n generates a shallower density profile below a core
radius rc:

f n =
[

tanh

(
r

rc

)]n

, (2.13)

where the parameter 0 < n ≤ 1 controls how shallow the core becomes and corresponds to the
transition region between cusp and core. Indeed, n = 0 (n = 1) corresponds to a fully cuspy (core)
halo. The density profile of the coreNFW model is given by:

ρcNFW = f nρNFW + n f n−1(1− f 2)

4πr 2rc
MNFW. (2.14)

Despite the complexity of the Jeans analysis, dynamical models are often claimed to require shallower
density profile slopes that are consistent with a core at their centre [Adams et al., 2014; Agnello &
Evans, 2012; Amorisco & Evans, 2012; Read et al., 2019; Walker & Peñarrubia, 2011]. Figure 2.3,
taken from Wetzel et al. [2016], shows the circular velocity of 19 subhalos in the DM-only simulation
at z = 0. Only five subhalos from the GIZMO cosmological simulation are consistent with Ursa Minor,
Draco, Sculptor, Leo I, and Leo II. As a result, the other subhalos are too dense. One way to reduce
the inner DM density of halos is core formation. Thus, dark-matter-only simulation suffers from the
cusp-core problem.

Although the CDM paradigm can successfully explain various observations at different scales,
this discrepancy remains one of the greatest challenges faced by the CDM paradigm (see de Blok
[2010] for a detailed review on the observational challenges and see Bullock & Boylan-Kolchin [2017];
Genina et al. [2018] for global reviews related to the cusp-core problem). Even if we focus only on the
cusp-core problem in this thesis, there are other tensions of the ΛCDM model at small scales, which
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profiles. Figure 3 compares directly against observed disper-
sions from Wolf et al. (2010), converting them to 3D via
T T� 33D 1D. Latte’s Tvelocity,star distribution spans

�8 35 km s 1– and lies between the MW and M31, so the
baryonic simulation does not suffer from “too big to fail.”

For comparison, thin curves in Figure 3 (right) show the
distribution of Vcirc,max for dark-matter subhalos in the baryonic
(light blue) and dark-matter-only (DMO; orange) simulations.
The baryonic simulation contains _ q3 fewer subhalos at fixed
V .circ,max This significant reduction is driven largely by tidal
shocking/stripping from the host’s stellar disk (e.g., Read
et al. 2006; Zolotov et al. 2012; S. Garrison-Kimmel et al.
2016, in preparation). Furthermore, Latte’s (massive) satellites
have similar Tvelocity,star and Vcirc,max because FIRE’s feedback
reduces the dark-matter mass in the core (Chan et al. 2015).

Next, we further demonstrate that Latte’s dwarf galaxies
have realistic properties. Figure 4 (top) shows Tvelocity,star versus
Mstar for satellite (blue) and isolated (orange) galaxies from
Latte (circles) and observations (stars). All of Latte’s galaxies
lie within the observed scatter, though Latte’s satellites have
somewhat larger scatter to low Tvelocity,star, likely driven by tidal
effects (e.g., Zolotov et al. 2012), as we will examine in future
work. Overall, Tvelocity,star in both satellite and isolated galaxies
agrees well with observations across the Mstar range, primarily
because feedback reduces dark-matter densities. This result is
equally important because isolated low-mass halos in dark-
matter-only simulations also suffer from a “too big to fail”
problem (Garrison-Kimmel et al. 2014). Thus, neither satellite
nor isolated dwarf galaxies in Latte suffer from a “too big to
fail” problem.

Figure 2. Left: profiles of circular velocity, � �v r Gm r rcirc total( ) ( ) at �z 0. Points show observed satellites of the MW with � q � q :M M2 10 2 10star
5 7

(Wolf et al. 2010). Curves show the 19 subhalos in the dark-matter-only simulation at �d 300 kpchost with densities as low as Ursa Minor. Two subhalos (light blue)
are denser than all observed satellites. Allowing one to host the SMC and noting that five others are consistent with Ursa Minor, Draco, Sculptor, LeoI, and Leo II
leads to 13 that are too dense (the “too big to fail” problem). Right: profiles of stellar 3D velocity dispersion for the 13 satellite galaxies in the baryonic simulation. All
profiles are nearly flat with radius. One satellite has high dispersion, closer to the SMC’s �48 km s ;1 all others are broadly consistent with the MW.

Figure 3. Cumulative number of satellites at �z 0 above a given stellar mass (left) and stellar 3D velocity dispersion (right) in the Latte simulation (blue) and
observed around the Milky Way (MW; dashed) and Andromeda (M31; dotted), excluding the LMC, M33, and Sagittarius. For both Mstar and σ, Latte’s satellites lie
entirely between the MW and M31, so Latte does not suffer from the “missing satellites” or “too big to fail” problems. Thin curves (right) show Vcirc,max for all dark-
matter subhalos in the baryonic (light blue) and dark-matter-only (DMO; orange) simulations, demonstrating the x q3 reduction from baryonic physics.
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Figure 2.3 – Rotation curves of classical dwarfs: Circular velocity of 19 subhalos in the dark-matter-only
simulation at z = 0. Black points show observed satellites of the MW [Wolf et al., 2010]. Only five subhalos
from the GIZMO cosmological simulation are consistent with Ursa Minor, Draco, Sculptor, Leo I, and Leo
II. As a result, the other subhalos are too dense. One way to reduce the inner DM density of halos is core
formation. Thus, dark-matter-only simulation suffers from the cusp-core problem. This figure is taken from
Wetzel et al. [2016].

are the missing satellites problem, the too big to fail problem and the alignment of the substructures
in the Galactic halo [Boylan-Kolchin et al., 2011; Bullock & Boylan-Kolchin, 2017; Klypin et al.,
1999; Schneider et al., 2012b].

2.1.3 The diversity problem

As shown previously, a key observable related to the inner mass distribution of galaxies is their
rotation curve. The circular velocity curves of simulated galaxies vary systematically as a function
of their maximum circular velocity Vmax with a marginal uncertainty for a given Vmax. On the other
hand, observed galaxies show a large diversity of rotation curve shapes, even at fixed maximum
rotation velocity, especially for dwarf galaxies. This is at odds with the expectation for CDM halos,
where Vmax fully determines Vcirc(2 kpc) and has been termed the diversity problem [Oman et al.,
2015]. The origin of this diversity is still not well understood.

Figure 2.4 shows the circular velocity Vcirc(2 kpc) versus Vmax for observed galaxies. We also
used the coreNFW model in order to characterize the inner DM density from these observed circular
velocities. The lines trace the mean of the circular velocity at r = 2 kpc as a function of Vmax

described by ΛCDM (red), coreNFW model (see Equation.(2.14)) for n = 0.25 (magenta), n = 0.5
(purple), n = 0.75 (violet) and n = 1 (blue), where the width of the bands correspond to the 1σ
scatter in DM halo concentrations (see Equation.(2.5)). Observed galaxies with their observation
type such as HI (black square), Hα (black circle), and HI+Hα (black triangle) were taken from the
compilation by Oman et al. [2015]. Galaxies below the red band are those with less mass within 2
kpc than expected from the predicted ΛCDM model. This is evidence for the presence of cores in
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Figure 2.4 – Diversity problem: Circular velocity at r = 2 kpc versus the maximum circular velocity, Vmax

for observed galaxies. The lines trace the mean Vcirc(2 kpc) as a function of Vmax described by ΛCDM
(red), coreNFW model (see Equation (2.14)) for n = 0.25 (magenta), n = 0.5 (purple), n = 0.75 (violet)
and n = 1 (blue), where the width of the bands correspond to the 1σ scatter in DM halo concentrations
(see Equation (2.5)). Observed galaxies with their observation type such as HI (black square), Hα (black
circle), and HI+Hα (black triangle) were taken from the compilation by Oman et al. [2015]. Galaxies below
the red band are those with less mass within 2 kpc than expected from the predicted ΛCDM model. This
is evidence for the presence of cores in such galaxies. However, galaxies at large masses tend to have a
higher circular velocity at r = 2 kpc than expected from ΛCDM. This is explained by the non-negligible
contribution of the baryons to the inner rotation curve in massive galaxies. We also note also that the
scatter in the circular velocity at 2 kpc is reduced for galaxies below the red band as well as the mass
increase.

such galaxies (see Figure. 2.4). However, galaxies at large masses tend to have a higher circular
velocity at r = 2 kpc than expected from ΛCDM. This is explained by the non-negligible contribution
of the baryons to the inner rotation curve in massive galaxies. We also note that the scatter in the
circular velocity at 2 kpc is reduced for galaxies below the red band as well as the mass increase (see
Figure 2.4).

Explaining this observed diversity demands a mechanism that creates cores of various sizes in only
some galaxies, but not in others, over a wide range of Vmax. Nevertheless, these galaxies, formed in
similar halos, have approximately the same baryonic mass, and similar morphologies. Some diversity
induced by differences in the distribution of the baryonic component was expected, but clearly the
observed diversity is much greater than in simulations [Brook et al., 2012; Governato et al., 2010;
Madau et al., 2014; Oh et al., 2011; Teyssier et al., 2013]. Further, we would expect that the DM is
most affected in systems where baryons play a more important role such as high-surface brightness
galaxies, whereas observations seem to suggest the opposite trend [Beńıtez-Llambay et al., 2019].
From a suite of very high-resolution simulations, the observed diversity can be explained from the
starburst cycles of galaxies and their influence on the dynamical state of the galaxy [Read et al.,
2016b].
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2.2 Solutions

There are two main approaches that could solve this discrepancy between ΛCDM and observations.
Cosmological solutions invoke a different spectrum at small scales [Zentner & Bullock, 2003], dif-
ferent nature for DM particles, such as fuzzy and self-interacting DM [Coĺın et al., 2000; Goodman,
2000; Hu et al., 2000; Kaplinghat et al., 2000; Peebles, 2000; Sommer-Larsen & Dolgov, 2001],
modified gravity theories [Bengochea & Ferraro, 2009; Buchdahl, 1970; Dent et al., 2011; Godani
& Samanta, 2020; Linder, 2010; Zheng & Huang, 2011] or Modified Newtonian dynamics [Mil-
grom, 1983]. On the contrary, astrophysical solutions invoke sub-galactic baryonic physics within
the ΛCDM paradigm. A common aspect of these two broad categories of solutions is that core
creation has been identified as their main mechanism. In this section, we explore some of the most
popular and promising solutions to the cusp-core problem discussed above.

2.2.1 Baryonic physics

One of the key predictions of the ΛCDM paradigm is that DM assembles into halos that develop cuspy
density profiles following the NFW form in the absence of baryonic effects. Indeed, the cusp-core
problem was established without the inclusion of baryons. That is the reason why baryonic physics
appeared as a natural solution within the ΛCDM framework. Moreover, the size of a galactic core
is typically on the order of a few kpc, where baryons start to play an important role. Since DM
interacts only gravitationally, baryons can affect it through the gravitational potential.

Stellar and black hole feedback

First, two feedback processes were designated to explain this discrepancy: stellar and black hole
feedback. Stellar feedback consists of all interactions of stars with the interstellar medium. This
space between stars is mostly filled with gas. Throughout the life of a star, its feedback injects
energy and momentum to the surrounding gas through mechanisms such as photo-heating, radiation
pressure, supernovae, and stellar winds [Dekel & Silk, 1986; Larson, 1974; White & Frenk, 1991;
White & Rees, 1978]. As massive black holes harbour the centre of most of the galaxies [Ferrarese
& Merritt, 2000; Gebhardt et al., 2000], the accretion of matter by them also provides feedback
with energy that is of orders of magnitudes higher than that of stellar feedback [Churazov et al.,
2005; Fabian, 2012]. It was established that at high halo masses, effective feedback is provided by
black holes, but at lower masses, stellar feedback dominates, mainly from high mass stars.

Even if baryons steepen the DM potential well when they cool and accumulate at their centre
[Abadi et al., 2010; Blumenthal et al., 1986; Gnedin et al., 2004; Schaller et al., 2015], feedback
mechanisms are able to alter the DM distribution. Both powerful feedback processes showed their
ability to generates significant movements of the gas. Indeed, gas gathers in DM halos and feedback
can expel large amounts of gas from the bottom of their potential well [Brooks & Zolotov, 2014;
Freundlich et al., 2020; Gnedin & Zhao, 2002; Macciò et al., 2012b; Madau & Dickinson, 2014;
Martizzi et al., 2013; Mashchenko et al., 2008; Navarro et al., 1996a; Pontzen & Governato, 2012,
2014; Read & Gilmore, 2005; Silk, 2017]. A fraction of this gas then cools and returns to the centre,
generating repeated cycles of significant gas outflows which, in turn, cause rapid fluctuations of
the gravitational potential. These potential fluctuations dynamically heat the DM and lead to the
formation of a core. As a result, baryonic processes transform a central DM cusp α=-1 into a core
α =0. The gradual dispersion of the DM particles away from the centre of the halo is ultimately
responsible for core creation. More precisely, these fluctuations in the potential transfer energy into
DM particles, thus expanding the DM distribution. Thus, one solution to the cusp-core problem is
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Figure 2. Mean enclosed dark matter density profiles (Eq. 3) at redshift z = 0 of our suite of zoom-in dwarf galaxies, simulated at a

resolution level L2. The curves show the result of varying the assumed gas density threshold for star formation, ⇢th, as indicated in the

colour bar on the right. The smaller panels show the ratio of the individual density profiles to the “fiducial” profile of the simulation with
the lowest value of ⇢th (0.1 cm�3). The panels are arranged according to the galaxy mass, with the least massive example (D4) on the

top left and the most massive example (D1) on the bottom right (see also Fig. 1). Lines become thin below 0.5 times the Power et al.

2003 convergence radius, rP . For reference, the dashed curves are NFW profiles. For ⇢th = 0.1 cm�3, the mean enclosed dark matter
density profiles are clearly well described by NFW profiles for r > rP/2. Downward arrows indicate the virial radius of the system.

thus consists of 4 zoom-in cosmological simulations of the
formation of isolated dwarf galaxies. These were all simu-
lated at resolution level, L2, in which the gas particle mass
is mgas = 6.6 ⇥ 104 M� and the dark matter particle mass
is mdrk = 3.9 ⇥ 105 M�.

The zoom-in simulations were performed keeping all the
parameters of the EAGLE fiducial model fixed, as explained
in Sec. 2.1, but systematically varying the density threshold
for star formation, ⇢th, from the lowest value considered in
the EAGLE fiducial model, ⇢th = 0.1 cm�3, to a largest
value, ⇢th = 640 cm�3. The latter is slightly lower than the
values adopted in simulations that produce cores in dwarf
galaxies, such as FIRE-2 (e.g., Fitts et al. 2017). Finally, the
gravitational softening of the dark matter, gas and stellar
particles is chosen so that its value never exceeds 1% of the
mean interparticle separation. This yields ✏ ⇠ 500 pc for the
parent volume (resolution level L1), and ✏ ⇠ 234 pc for the
zoom-in dwarfs (resolution level L2).

Fig. 1 shows the stellar mass, Mgal, as a function of
the virial mass, M200, for “central” galaxies in the parent

volume. Grey stars show all luminous galaxies4 in the vol-
ume down to a virial mass, M200 ⇠ 1010 M�. The blue
solid circles mark the 21 galaxies that fulfil our selection
criteria of being isolated dwarfs in haloes of virial mass
1010 < M200/M� < 1011. The orange squares are the 4
zoom-in dwarf galaxies that we shall use for further analysis,
and which span the entire range of halo and stellar mass of
interest. The high-mass galaxies are consistent with abun-
dance matching expectations from Behroozi et al. (2013)
(solid line) whereas, as shown by Sawala et al. (2015), the
low-mass galaxies already begin to deviate from these expec-
tations and, for the mass range plotted, lie between the ex-
trapolated abundance matching relations of Behroozi et al.
(2013) and Guo et al. (2010) (dashed line).

4 more than 1 stellar particle within a sphere of radius, R200.

MNRAS 000, 1–18 (2015)

log10 (r / kpc) log10 (r / kpc)

log10 (r / kpc)log10 (r / kpc)

Figure 2.5 – Cusp-to-core transition: Mean enclosed DM density profiles at z = 0 of our four dwarf
galaxies for different gas density threshold for star formation, ρth compared to the NFW profile (dashed
curve). The virial radius of the halos is indicated by black arrows. The value of ρth varies from 0.1 to 640
cm−3. For ρth = 0.1 cm−3, the DM profiles are all consistent with NFW form above the convergence radius
defined by Power et al. [2003]. This radius indicates the region within which numerical convergence is not
achieved because of two-body relaxation. For higher values of ρth, the density profiles depart systematically
from NFW in some cases. The dependence of the core radius on the halo mass is highlighted over a wide
range of the gas density threshold. This confirms that very low-mass dwarfs do not exhibit large DM cores
as in earlier works [Bullock & Boylan-Kolchin, 2017; Di Cintio et al., 2014; Tollet et al., 2016]. Moreover,
it is also demonstrated that the particular choice of ρth determines the size of the core. This figure is taken
from Beńıtez-Llambay et al. [2019].

that a DM heating through feedback processes from stars or black hole generates a cusp-to-core
transition for the DM halo within the paradigm of CDM.

Cosmological hydrodynamical simulations performed with different codes such as GASOLINE
[Di Cintio et al., 2014; Governato et al., 2010; Tollet et al., 2016; Zolotov et al., 2012], FIRE
[Chan et al., 2015; Fitts et al., 2017; Garrison-Kimmel et al., 2017; Hopkins et al., 2018; Oñorbe
et al., 2015; Wetzel et al., 2016], RAMSES [Peirani et al., 2017] and GADGET [Beńıtez-Llambay
et al., 2019; Bose et al., 2019; Duffy et al., 2010; Fattahi et al., 2016; Sawala et al., 2016; Schaye
et al., 2010] have proved the efficiency of these feedback mechanisms for core creation. Many of
these most advanced hydrodynamic simulations with different feedback implementations are able to
produce core-like density profiles as inferred from rotation curves such as those shown in Figure 2.1.
Figure 2.5, taken from Beńıtez-Llambay et al. [2019], illustrates the mean enclosed DM density
profiles at z = 0 of our four dwarf galaxies for different gas density threshold for star formation, ρth,
compared to the NFW profile (dashed curve). For ρth = 0.1 cm−3, the DM profiles are all consistent
with NFW form above the convergence radius defined by Power et al. [2003]. For higher values of
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Figure 2.6 – The impact of baryonic feedback: Inner DM density slope α at r =0.015rvir as a function of
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[Chan et al., 2015; Di Cintio et al., 2014; Fitts et al., 2017; Hopkins et al., 2018; Lazar et al., 2020; Tollet
et al., 2016]. The shaded orange band shows the expected range of DM profile slopes for NFW profile as
derived from DM-only simulations by including concentration scatter. The filled black circles show results
for hydrodynamic simulations while the open circles show results for the DM-only simulations, which all
have α=-1.5 as expected from ΛCDM without baryon effects. Core profiles are associated with α=0, while
cuspy profiles have lower values than α=-1. We note that there are DM core formation peaks in the regime
of the brightest dwarfs (M∗/Mvir =0.005). Furthermore, all hydrodynamical simulations find that baryonic
feedback is negligible in the regime of classical and ultra-faint dwarfs (M∗/Mvir < 10−4). We also notice
that MW-mass halos seem to have a density structure similar to the DM-only results. However, MW-like
halos have cored density profiles. The choice of a specific radius r =0.015rvir for determining the slope α

is responsible for this effect. This figure is taken from Lazar et al. [2020].

ρth, the density profiles depart systematically from NFW in some cases. The dependence of the core
radius on the halo mass is highlighted over a wide range of the gas density threshold. This confirms
that very low-mass dwarfs do not exhibit large DM cores as in earlier works [Bullock & Boylan-
Kolchin, 2017; Di Cintio et al., 2014; Tollet et al., 2016]. Moreover, it is also demonstrated that the
particular choice of ρth determines the size of the core (see Figure 2.5). However, it was concluded
that a value of ρth higher than the mean interstellar medium density is necessary for forming cores
induced by stellar feedback [Beńıtez-Llambay et al., 2019; Dutton et al., 2019]. However, these
simulations have shown that cores form efficiently only in a narrow range of stellar/halo mass, which
corresponds to bright dwarf galaxies (see Figure 2.6). It was also suggested that the inner slope
of DM halos is mass-dependent [Di Cintio et al., 2014; Pontzen & Governato, 2012]. Figure 2.6,
taken from Lazar et al. [2020], depicts the impact of baryonic impact on the DM density distribution
by showing the inner DM density slope α at r =0.015rvir as a function of M∗/Mvir for simulated
galaxies at z = 0 from FIRE and GASOLINE cosmological hydrodynamic simulations. Indeed, a
relationship was established between the slope α and the stellar/halo mass fraction, M∗/Mvir, of
simulated galaxies [Chan et al., 2015; Di Cintio et al., 2014; Hopkins et al., 2018; Tollet et al.,
2016; Wang et al., 2015]. As a result, there is a characteristic mass-ratio of M∗/Mvir =0.005 for
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NFW

Macciò et al. 2020

NFW

Figure 2.7 – Black hole feedback: Inner DM density slope α at r =0.015rvir as a function of the halo
mass Mh at z = 0 for galaxies without (red symbols) and with black hole feedback (blue symbols). The
best fit of Macciò et al. [2020] (black solid line) is compared to the relation proposed in NIHAO-IV [Tollet
et al., 2016], based on galaxies without black hole (dashed line). The gray shaded area shows the one
sigma scatter for the whole sample. Gas outflows generated by black hole feedback are able to partially
counteract the DM contraction due to the large central stellar component in these massive halos. As a
result, the DM distribution becomes less cuspy at the transition from stellar to AGN feedback dominated
systems (Mh > 3×1012 M¯). We note that most of the final DM slopes remain similar to the NFW profile
in the black hole feedback regime. This figure is taken from Macciò et al. [2020].

efficient core formation, above and below which DM halos remain similar to the cuspy NFW profile
predicted by DM-only simulations. In fact, DM halos become more cored as M∗/Mvir increases to
this characteristic mass-ratio. These halos exhibit shallow DM cusps according to their slope α.
Furthermore, all hydrodynamical simulations find that baryonic feedback is negligible in the regime
of classical and ultra-faint dwarfs (M∗/Mvir < 10−4), as expected on energetic grounds [Garrison-
Kimmel et al., 2013; Peñarrubia et al., 2012]. We notice also that MW-mass halos seem to have a
density structure similar to the DM only results. However, MW-like halos have cored density profiles.
The choice of a specific radius r =0.015rvir for determining the slope α is responsible for this effect.

More precisely, the importance of black hole feedback on DM distribution is addressed in Fig-
ure 2.7, taken from Macciò et al. [2020], but also Chan et al. [2015]; Duffy et al. [2010]; Martizzi
et al. [2012, 2013]; Peirani & de Freitas Pacheco [2008]; Peirani et al. [2017]. Gas outflows gener-
ated by black hole feedback are able to partially counteract the DM distribution despite the huge
quantity of baryons at the centre of these massive halos. As a result, the DM distribution becomes
less cuspy at the transition from stellar to black hole feedback dominated systems (Mh > 3×1012

M¯). We note that most of the final DM slopes remain similar to the NFW profile in the black hole
feedback regime.

Even if hydrodynamical simulations alleviate this ΛCDM tension by creating cores, its significance
depends on the feedback model [Beńıtez-Llambay et al., 2019; Bose et al., 2019; Fattahi et al., 2016;
Oman et al., 2015; Sawala et al., 2016]. Indeed, galaxies without a sufficient number of stars are
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unlikely to have cores due to insufficient amount of energy from feedback [Peñarrubia et al., 2012].
It was also argued that the timing of star formation relative to DM halo growth can also affect core
formation. Cusps can regenerate from the core induced by the feedback as a result of DM rich
mergers [Oñorbe et al., 2015]. As discussed before, the gas density threshold is a crucial feedback
parameter for producing cores in galaxies. Cosmological simulations with low-density thresholds for
star formation such as APOSTLE and Auriga [Bose et al., 2019] have been shown to not exhibit
DM cores. Moreover, It seems unlikely that stellar feedback can remove a large amount of mass
(∼ 109M¯) from the inner 5 kpc as the galaxy IC 2574 according to its measured rotation curve
[Oman et al., 2015].

There is a consensus that the stellar feedback can erase the central cusps as demonstrated in
Figure 2.5. As baryons tend to accumulate towards the centre of galaxies, feedback processes could
solve the cusp-core problem, at least, for the largest galaxies. However, DM cores tend to persist
even for smaller galaxies, including those that are rather DM-dominated.

Dynamical friction via sinking objects

Chandrasekhar [1943] showed that a massive particle moving through an infinite, homogeneous and
isotropic background of lighter particles experiences a force of dynamical friction given by

F(x, v) = 2πG2ρ(x) ln(1+Λ2)

(
erf(X)− 2Xp

π
exp(−X2)

)
v

|v |3 M, (2.15)

where this massive particle of mass M at position x is moving at velocity v through a background
density ρ. The quantity X is defined as |v |/p(2)σr with σr being the radial dispersion of lighter
particles. The factor Λ that goes into the Coulomb logarithm is taken to be

Λ= r /γ

max(rhm,GM/|v |2)
, (2.16)

where rhm is the half-mass radius of the massive particle and γ is the absolute value of the logarithmic
slope of the density, i.e. γ= |d ln(ρ)/d ln(r )| [Petts et al., 2016]. The background medium composed
of lighter particles produces an overdensity region behind it due to this friction between particles. The
dynamical friction is responsible for a momentum loss by the massive object due to its gravitational
interaction with its own gravitationally induced wake. The surrounding background medium, which
consists of a combination of collisionless matter such as DM, is heated at an equal and opposite
rate to the energy lost by the massive object. The rate of energy loss by the massive object is given
by El-Zant et al. [2001]:

d

dt
= M

dv

dt
v. (2.17)

Indeed, an energy exchange occurs, increasing that of the lighter particles at the expense of the
perturber. Hence, this dynamical effect can modify the DM inner structure. That is the reason
why the sinking of massive objects such as gas clumps, globular clusters or subhalos have also been
proposed for transforming cusps into cores via from the heating by dynamical friction [Cole et al.,
2011; Del Popolo & Le Delliou, 2014; El-Zant et al., 2001; Goerdt et al., 2010; Inoue & Saitoh,
2011; Nipoti & Binney, 2015]. During their infall, they transfer part of their kinetic energy to the
DM background through dynamical friction causing the DM halo to expand.

Figure 2.8, taken from Goerdt et al. [2010], shows the modification of the inner DM structure
after the first (upper panel) and second (lower panel) closest pericentre passage of massive objects
such as gas clump or globular clusters with different masses. The perturbers were started within
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Figure 3. Simulated position of a live perturber of mass Mpert = 4.2 × 105 M"
compared to a single-particle perturber of mass Mpert = 5.0 × 105 M" both
within halo D. The black crosses indicate the respective fpca and spca.
(A color version of this figure is available in the online journal.)

where σ is the velocity dispersion, ρ is the density, and Ψ is
the relative potential. Each globular cluster is constructed with a

W0 = Ψ(0)/σ 2 parameter of 6, a total mass of 4.2×105 M", and
a central velocity dispersion of 11 km s−1. We use 0.05 pc for
the gravitational softening lengths of its particles. This perturber
is put into halo D at an initial distance of 0.4 kpc. Its trajectory
can be seen in Figure 3. As one can clearly see that the behavior
of the live perturber matches the behavior of the single particle
in this figure as well as in Figure 2 very well.

2.2.1. Cusp Destruction, Core Creation, and Stalling

For all trajectories there is an apparent “kickback” which
occurs after a first point of closest approach (fpca). The perturber
seems to move away for a while, reaches a maximum, and then
returns to a second point of closest approach (spca), where it
finally stalls. For especially pronounced kickbacks, fpca and
spca are marked by black crosses in Figure 2. This apparent
“kickback” occurs at a point where the acceleration on the
perturber due to the background is equal to the acceleration
on the background due to the perturber, and the center of mass
of the system is significantly displaced. At this point the true
“center” of the system becomes poorly defined. For this reason,
the “kickback” feature is not physical but rather an artifact of
our centering algorithm. After the “kickback,” the background
rapidly rearranges itself to form a central constant density core,
at which point the perturber stalls.

The density profiles of the respective host halo at fpca and
spca are plotted in Figure 4. One can clearly see that the density
distribution changes significantly from cuspy to having a core:
larger perturber masses lead to larger constant density central
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Figure 4. Density profiles of the host halo at fpca (upper panel) and spca (lower panel) for the different nuclei masses Mpert. From left to right, the panels show the
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𝛾 = 1𝛾 = 1.5 𝛾 = 0.75

𝛾 = 1.5 𝛾 = 1 𝛾 = 0.75

Figure 2.8 – Sinking of massive objects: DM density profiles of the host halo after the first (upper panel)
and second (lower panel) closest pericentre passage for the different perturber masses Mper = [105,5×
105,2.5×106,107,5×107]. The perturbers were started within the cusp region. From left to right, the panels
show halos with different initial absolute values of the logarithmic slope of the density γ= |dln(ρ)/dln(r )|.
All simulations are shown using circular orbits for the infalling objects. We note that the response of different
central cusps to sinking perturbers with a range of masses using N-body simulations occurs rapidly. The
DM density distribution changes significantly from cuspy to having a core. Indeed, larger perturber masses
lead to larger constant density central regions. This figure is taken from Goerdt et al. [2010].

the cusp region. All simulations are shown using circular orbits for the infalling objects. We note
that the response of different central cusps to sinking perturbers with a range of masses using N-
body simulations occurs rapidly. The DM density distribution changes significantly from cuspy to
having a core. Indeed, larger perturber masses lead to larger constant density central regions. It was
estimated that the cusp-core transformations occur at approximately the radius where the mass of
the perturber roughly matches the enclosed mass of the DM background [Read et al., 2006].

The results of these works clearly indicated, as a proof of concept, that dynamical friction heating
can have an important role in DM halos on different scales and the relevance of this process depends
on the properties of the massive objects and of the host halo. Such a mechanism still requires
another process to then destroy the gas clumps and globular clusters at the centre of the DM halo.
Otherwise, the resulting inner stellar density would be too high to be consistent with observations
[Nipoti & Binney, 2015]. For the gas clumps, stellar feedback could dissolve these clumps. However,
globular clusters form nuclear star clusters at the centre of galaxies but observations claimed that
none of the classical dwarfs exhibit a stellar nucleus at their centre.

Less studied baryon effects have been proposed to erase the central DM cusps. DM can also
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CHAPTER 2. THE CUSP-CORE PROBLEM

be heated from baryons by the evolution of a stellar bar [Holley-Bockelmann et al., 2005; Kataria
et al., 2020; Sellwood, 2003; Weinberg & Katz, 2002], the radiation recoil by a black hole [Merritt
& Milosavljević, 2005], or the transfer of angular momentum [Tonini et al., 2006].

2.2.2 Alternative theories of dark matter

The presence of the core appears to persist for dwarf galaxies that are DM dominated and baryon
deficient. Thus, it is still unclear how baryonic feedback can solve this puzzle. Another possibility is
that the DM is more complex and hotter than simple CDM. A wide range of alternative DM models
has been proposed over the last decades. Mostly three main classes of alternative DM models have
been simulated: warm dark matter (WDM) [Bode et al., 2001; Coĺın et al., 2000; Lovell et al.,
2014; Macciò et al., 2012a; Schneider et al., 2012a; Shao et al., 2013], self-interacting dark matter
(SIDM) [Burkert, 2000; Elbert et al., 2015; Kochanek & White, 2000; Miralda-Escudé, 2002; Spergel
& Steinhardt, 2000; Zavala et al., 2013], and fuzzy dark matter (FDM) that fundamentally change
the gravitational law [Chavanis, 2018; Goodman, 2000; Hu et al., 2000; Hui et al., 2017; Marsh &
Silk, 2014; Mocz et al., 2019; Nori et al., 2019; Peebles, 2000; Schive et al., 2014a]. Many of these
alternative theories have been invoked to address ΛCDM small-scale problems and more particularly,
the cusp-core problem. FDM and SIDM, which are the two most recent alternatives theories, are
reviewed in this chapter.

Fuzzy dark matter

As there is a current lack of evidence for any CDM particle such as weakly interacting massive
particles, DM as an ultralight scalar field with no self-interaction in the non-relativistic limit was
introduced under the name of Fuzzy Dark Matter (FDM) [Goodman, 2000; Hu et al., 2000]. This
scalar field is assumed to be made of very light particles with a mass of ∼ 10−22 −10−21 eV. One of
the candidates for this alternative DM theory is the axion-like particles predicted by string theories
[Marsh, 2016]. Such a scalar field is then well-described in the non-relativistic limit by the coupled
Schrodinger and Poisson equations [Widrow & Kaiser, 1993]:

i~
∂

∂t
φ=− ~

2

2m
∇2φ+mUψ, (2.18)

∇2U = 4πGρm, (2.19)

where m is the mass of FDM particles. The mass density defines as ρm = |φ|2 and U is the
gravitational potential. Such ultra-light DM particles have a characteristic wavelength called the de
Broglie wavelength:

λ= 1.19

(
10−22eV

m

)(
100km.s−1

v

)
kpc, (2.20)

where v is the characteristic velocity. Equation (2.20) shows that the wavelength of a few kpc is
of astrophysical size. Indeed, the small masses of ultra-light DM particles are associated with a
very large de Broglie wavelength where their quantum properties play an important role [Böhmer
& Harko, 2007; Hu et al., 2000; Woo & Chiueh, 2009]. Thus, the de Broglie wavelength is of the
order of the scales at which the cusp-core problem appears.

Axion-like particles are interesting DM candidates because they predict new structural and dy-
namical phenomena on scales of galaxies. When the de Broglie wavelength λ is on the order of
or larger than the inter-particle distance di , quantum effects will dominate. In fact, DM particles
have huge occupancy numbers at these small scales. In the non-interacting Bose gas theory, the
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Figure 1. Structure formation of dark matter (orange/purple) and gas (green/blue) in our simulations under the 3 cosmologies studied.

We plot projected (comoving) densities along the line of sight (see colorbars at the bottom of the figures for the values of the projected
density field). The snapshots are shown at intervals of the scale factor increasing by a factor of 2, as well as the final snapshot of the

simulation. The box size is 1.7h�1 Mpc. In these large-scale projections, gas follows the dark matter potential wells, and BECDM and

“WDM” appear similarly filamentary, while CDM has filaments fragmented into subhaloes.
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“WDM” appear similarly filamentary, while CDM has filaments fragmented into subhaloes.

c� 2019 RAS, MNRAS 000, 1–19

Figure 2: A slice of density field of ψDM simulation on various scales at zzz=== 000...111. This scaled sequence
(each of thickness 60 pc) shows how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to the granular structure inside the
haloes. Distinct solitonic cores with radius ∼ 0.3− 1.6 kpc are found within each collapsed halo. The
density shown here spans over nine orders of magnitude, from 10−1 to 108 (normalized to the cosmic mean
density). The color map scales logarithmically, with cyan corresponding to density ! 10.

graphic processing unit acceleration, improving per-
formance by almost two orders of magnitude21 (see
Supplementary Section 1 for details).

Fig. 1 demonstrates that despite the completely
different calculations employed, the pattern of fil-
aments and voids generated by a conventional N-
body particle ΛCDM simulation is remarkably in-
distinguishable from the wavelike ΛψDM for the
same linear power spectrum (see Supplementary Fig.
S2). Here Λ represents the cosmological constant.
This agreement is desirable given the success of stan-
dard ΛCDM in describing the statistics of large scale
structure. To examine the wave nature that distin-
guishes ψDM from CDM on small scales, we res-
imulate with a very high maximum resolution of
60 pc for a 2 Mpc comoving box, so that the dens-
est objects formed of " 300 pc size are well re-
solved with ∼ 103 grids. A slice through this box
is shown in Fig. 2, revealing fine interference fringes
defining long filaments, with tangential fringes near

the boundaries of virialized objects, where the de
Broglie wavelengths depend on the local velocity of
matter. An unexpected feature of our ψDM simula-
tions is the generation of prominent dense coherent
standing waves of dark matter in the center of every
gravitational bound object, forming a flat core with
a sharp boundary (Figs. 2 and 3). These dark matter
cores grow as material is accreted and are surrounded
by virialized haloes of material with fine-scale, large-
amplitude cellular interference, which continuously
fluctuates in density and velocity generating quan-
tum and turbulent pressure support against gravity.

The central density profiles of all our collapsed
cores fit well with the stable soliton solution of the
Schrödinger-Poisson equation, as shown in Fig. 3
(see also Supplementary Section 2 and Fig. S3). On
the other hand, except for the lightest halo which
has just formed and is not yet virialized, the outer
profiles of other haloes possess a steepening loga-
rithmic slope, similar to the Navarro-Frenk-White

3

2

mass limits of UFDs based on their star formation his-
tories. We summarize our results in §6 and present the
caveats.

2. HALO PROFILES IN WAVE DM COSMOLOGY

Cosmological simulations of light-dark matter (Schive
et al. 2014b) find that the density profile of the innermost
central region of the halos at redshift z = 0 follows

⇢s(r) =
1.9 (10 m22)�2r�4

c

[1 + 9.1 ⇥ 10�2(r/rc)2]8
109M�kpc�3 , (1)

where m22 ⌘ m/10�22eV is the DM particle mass and rc is
the radius at which the density drops to one-half its peak
value for a halo at z = 0. This relationship is accurate to
2% in the range 0 < r < 3rc.

The enclosed mass at a given radius r is:

M(< r) =
π r

0
4⇡⇢s(r 0)r 02dr 0 . (2)

Mc ⌘ M(< rc) gives approximately the central core mass.
This definition of core mass, makes up about 25% of the
total soliton mass, and M(< 3 rc) makes up about 95%
of the total soliton mass. Core mass or radius and the
total mass of the halo, Mh, hosting the galaxy are related
(Schive et al. 2014b):

Mc ⇡ 1
4

M1/3
h

(4.4 ⇥ 107m�3/2
22 )2/3 , (3)

rc ⇡ 1.6m�1
22

⇣ Mh

109M�

⌘�1/3
kpc . (4)

Beyond the core radius, the halo profiles resemble
Navarro-Frenk-White (NFW, Navarro et al. 1997) pro-
files (Schive et al. 2014a). We model each halo to have a
central solitonic core profile which smoothly transitions
to an NFW profile (Mocz et al. 2018) around r = 3 rc.
We show the modeled profiles in Figure 1. Thin solid
lines show the solitonic core profiles for di↵erent axion
masses. The thin black line shows the NFW profile of
a 1010 M� halo at z = 0. The thick dashed lines show
the full halo profile that is a combination of the solitonic
profile transitioning to an NFW profile of mass 1010 M�
around r = 3rc.

3. COMPARISON TO OBSERVATIONAL DATA

For a pressure supported system, one can use the
Collisionless Boltzmann Equation (CBE) to related the
six-dimensional (6D) phase-space distribution function,
f (Ær, Æv), of a tracer particle, to the underlying gravita-
tional potential (Binney & Tremaine 2008). For nearby
dwarfs we only have access to two spatial dimensions
and one velocity dimension along the line of sight. dSph
kinematic studies therefore rely on Jeans equations by
integrating the CBE over velocity space:

1
⌫

d
dr

(⌫v̄2
r ) +

2
r
(v̄2

r � v̄2
✓ ) = �GM(r)

r2 , (5)

Figure 1. shows the modeled halo profiles of a 1010 M�
halo at z = 0 for di↵erent values of m22. Solid lines show
the solitonic cores choice of m22 (thin solid lines) and
the thick dashed lines show the full halo profile that is
a combination of the solitonic profile transitioning to an
NFW profile of mass 1010 M� at around r = 3rc.

where ⌫(r) is the stellar density profile, and v̄2
r and v̄2

✓ are
components of the velocity dispersion in radial and tan-
gential directions, respectively. The velocity anisotropy

quantified by the ratio �ani(r) ⌘ 1 � v̄2
✓ (r)/v̄2

r (r) is un-
constrained by data. Di↵erent anisotropic profiles can
fit the projected velocity dispersion profile observed for
the Fornax dSph, however, despite the presence of the
degeneracy between mass and anisotropy, the predicted
enclosed mass within about the dSph half-light radius is
the same among the di↵erent Jeans models (Walker &
Penarrubia 2011).

We take the enclosed mass within half-mass radius of
most of the UFDs and dSph systems from Wolf et al.
(2010), where the two are related to the observed line of
sight velocity dispersion by,

M1/2 ⇡ 3 < �2
los > r1/2

G
. (6)

The brackets indicate a luminosity-weighted average and
r1/2 is the 3D deprojected half-light radius. The data
points for Draco II and Triangulum II are from Martin
et al. (2016a) and Martin et al. (2016b), respectively.

The measured slopes come from recent observations
that some dSphs have more than one stellar popula-
tion. Each population independently trace the underly-
ing gravitational potential. Battaglia et al. (2006, 2011)
report the detection of a two component stellar system
for both dSphs such that a relatively metal-rich subcom-
ponent is more centrally concentrated with small veloc-

CDM

FDM

z = 31z = 63 z = 15 z = 7 z = 5.5

(a)

(b)

(c)

Figure 2.9 – FDM properties: (a) Snapshots of the DM projected densities along the line of sight at
z = 63, 31, 15, 7, and 5.5 under the CDM (upper panel) and FDM (lower panel) cosmologies. The two
cosmological simulations have led to the formation of three ∼ 109 −1010 M¯ halos. Snapshots highlight
that FDM halos are connected via filaments, while CDM has filaments fragmented into subhalos. (b) Slice
of density field of FDM simulation at different scales at z = 0.1. We can distinguish the cores with a size
of ∼ 0.3−1.6 kpc in each halo. These DM cores grow as particles are accreted and surrounded by virialized
halos. (c) DM profiles of a 1010 M¯ halo at z = 0 for different values of m22. Thin solid lines show the
FDM core profiles for different axion masses. The thin black line shows the NFW profile of a 1010 M¯
halo at z = 0. The thick dashed lines show the full halo profile that is a combination of the FDM profile
transitioning to an NFW profile around r = 3rc. This figure is taken from Mocz et al. [2019]; Safarzadeh
& Spergel [2020]; Schive et al. [2014a].

macroscopic occupation of the ground state is seen as condensation and this phenomenon is called
Bose-Einstein condensation. In FDM, the particles form a Bose-Einstein condensate on galactic
scales [Hu et al., 2000]. Figure 2.9 depicts that it results in a DM core at the halo’s central region
as the particles of the system are in the ground state described by a single wave function [Böhmer
& Harko, 2007; Schive et al., 2014a]. Cosmological simulations of light DM found that the density
profile of the innermost central region of the halos at redshift z = 0 follows [Schive et al., 2014a]:

ρ(r ) = ρ0(
1+0.091(r /rc)2

)8 109M¯kpc−3, (2.21)

with
ρ0 = 0.019m−2

22 r−4
c 109M¯kpc−3, (2.22)

26



CHAPTER 2. THE CUSP-CORE PROBLEM

where m22 = m/10−22 eV is the DM particle mass and rc is the radius at which the density drops to
one-half its peak value for a halo at z = 0. The central mass density of the core is given by Robles
et al. [2019]:

Mc =
M1/3

h

4

(
4.4×107m−3/2

22

)2/3
, (2.23)

and

rc = 1.6

m22

(
Mh

109M¯

)
kpc, (2.24)

where Mh is the halo mass. The heating mechanism is due to quantum fluctuations arising from
the uncertainty principle. Indeed, the quantum pressure stabilizes the gravitational collapse and
prevents the formation of cusp by suppressing the small-scale structures [Hu et al., 2000; Lee &
Lim, 2010; Woo & Chiueh, 2009]. The condensate is a stable region where no clustering takes place
(see Figure 2.9). These kpc cores offer one possible solution to the cusp-core problem.

However, when λ¿ di, DM particles can be considered to be a classical system. Indeed, at large
scales, condensation is broken and the system behaves as a system of individual massive particles
[Mocz et al., 2019]. Figure 2.9 shows that the outer region of FDM halo behaves like CDM which
is well approximated by the NFW [Schive et al., 2014a]. Thus, the full density profile of halos can
be written as:

ρ(r ) =Θ(rt − r )ρc +Θ(rt − r )ρNFW , (2.25)

where the Θ is a step function and rt is the transition radius, which marks the transition between
the core profile and NFW profile. This specific scale is proportional to the core size as rt = αrc where
α∼ 2−4 [Robles et al., 2019].

FDM was introduced by the motivation to solve the core-cusp problem in DM halos of galaxies.
As halo cores form naturally in FDM theory, this scenario is appealing in principle. However, some
specific observations are necessary to verify this type of DM. The quantum nature of DM particles
gives rise to specific density profiles and potential fluctuations that may affect delicate structures
such as tidal streams and disks [El-Zant, 2019].

As illustrated above, any DM model, which sets a universal core profile cannot fit observations.
As such, baryonic physics must also play a significant role in shaping the DM profiles. Figure 2.10
illustrates DM density profiles of a halo with a final virial mass of 1010 M¯ at three different redshifts
assuming FDM, FDM with baryons and CDM with baryons. At the earliest redshift z =5.6, the CDM
halo exhibits the highest central DM density with a cuspy profile, while the FDM halos show core
profiles. The FDM halo with baryons has a lower density at the centre than the FDM-only halo
because the baryon pressure delays its collapse. In contrast, at z =4, the FDM central density is more
than one order of magnitude higher with baryons than without, exceeding the central DM density
of the CDM halo. Indeed, in the presence of baryons, the cores grow by more than a factor of two.
However, the core mass does not evolve over time if baryons are absent (see Figure 2.10). As DM
cores become more massive and compact in the presence of baryons, observed rotation curves are
likely harder to reconcile with FDM [Veltmaat et al., 2020].

Moreover, we expect that DM distribution of centrally baryon-dominated galaxies, especially
those containing supermassive black holes, are more strongly affected [Bar et al., 2019; Davies &
Mocz, 2020; Davoudiasl & Denton, 2019; Desjacques & Nusser, 2019]. Figure 2.10 shows density
profiles of FDM halos with masses from 108 M¯ up to 1014 M¯ assuming a FDM particle mass
of m = 10−22 eV. The dot-dashed (thicker) lines correspond to DM halos without (with) a central
black hole. It can be seen that the black hole increases the central density only for Mh ≥ 1013 M¯.
This latter effect depends also on the FDM particle mass. Thus, black holes are most effective
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2

halo zf Mvir [1010 M�] Mbar
sol /Mdm

sol Mtot/Mdm vsol [km/s] vc [km/s] vo [km/s]
1 4.0 1.05 2.08 3.81 136 138 70
2 4.4 1.25 3.00 3.07 159 147 77

TABLE I. Final values for redshift, virial mass, ratio of the soliton mass with baryons to the soliton mass without baryons
given by the smoothed curve in Fig. 5, ratio of total mass to dark matter mass within two times the half-density radius of the
dark matter profile (2 r1/2) and velocities shown in Fig. 4 (soliton, central, outer) for both halos. All values are taken from the
FDM runs with baryonic physics included if not stated otherwise.

for dark matter-only simulations. It employs a hybrid ap-
proach to solve the SP equation governing the dynamics
of FDM,

i~
✓
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@t
+

3

2
H 

◆
= � ~2

2m
r2 + V m 

r2V = 4⇡G(⇢tot � ⇢̄tot) ,

using a finite di↵erence scheme for  on the finest AMR
level while approximating the dynamics as a collisionless
fluid on coarser levels with N-body particles.

Here, we extend the simulations reported in [9] by ad-
ditionally including baryonic physics as implemented into
Enzo and described below. The total density ⇢tot with
global average ⇢̄tot entering on the right hand-side of the
Poisson equation is then given by

⇢tot = | |2 + ⇢gas + ⇢stars

with individual contributions from FDM, gas and stars
respectively. The hydrodynamic equations are integrated
by the Zeus solver [38] on the same AMR grid hierar-
chy as dark matter. We include non-equilibrium cooling
solving the rate equations for H, H+, He, He+, He++

and equilibrium cooling for metals using a lookup ta-
ble from [39] assuming solar abundances. We adopt a
uniform metagalactic UV background computed in [40]
which is gradually ramped up from zero at z = 7.00 to
full strength at z = 6.75. For modelling star formation,
we use the algorithm from [41] adapted to Enzo as de-
scribed in [37]. Stars form according to the standard
criteria and delayed cooling is used to prevent artificial
overcooling (see Appendix A).

Our simulations use the same numerical and cosmolog-
ical parameters as in [9] apart from changes related to the
inclusion of baryons, i.e. h = 0.7, ⌦⇤ = 0.75, ⌦m = 0.25,
⌦b = 0.05, and the scalar field mass m = 2.5 ⇥ 10�22

eV. They start at a redshift of z = 60 from initial con-
ditions generated by Music [42] with dark matter and
baryon transfer functions computed by AxionCamb [43].
With a total physical box size of 2.5 Mpc/h covered by
a root grid of 5123 cells and five additional refinement
levels (two of them initial and static and three follow-
ing the selected halo), we reach a comoving resolution of
�x = 218 pc in the region of the selected halo.

The following analysis is based on multiple simulations
of two halos, chosen in low-resolution CDM simulations
and re-simulated with grids of higher resolution centered
on the halo. For each halo, three high-resolution runs are

FIG. 2. Radial dark matter density profiles of halo 1 in all
three runs at three di↵erent redshifts. The inner profile of the
FDM run with baryons matches the modified FDM ground
state solution (red dotted line) instead of the dark matter-
only ground state solution (black dotted line). Also shown is
the gas density profile of the FDM run with baryons.

4

FIG. 5. Evolution of the core mass, defined as the dark
matter mass within �dB/4 from the center, where �dB is the
de Broglie wavelength corresponding to vsol. The lines show
the Gaussian filtered data points with �z = 0.2. The shaded
regions represent the corresponding standard deviations.

compare the virial velocity of the simulated cores with the
local dark matter velocity dispersion in their environment
in Fig. 4 (see also Appendix C). Our simulations indeed
verify that the baryonic gravitational potential gives rise
to a radially stratified velocity distribution and confirm
that the velocity dispersion of the soliton (and thus its
virial temperature) closely follows the temperature of its
immediate surrounding. In all runs with baryons, the
central velocity dispersion di↵ers by up to a factor of
two from the velocity dispersion at xvir/2, whereas in
the dark matter only runs, the velocity dispersion in the
center and at the outer radius are similar. The similar-
ity of the CDM and the FDM runs, both with baryons,
suggests that the radial velocity distribution is a generic
result of the accumulation of gas in the center unrelated
to the distinctive features of FDM.

The balance of core and halo velocity dispersions is
accompanied by a growth of the core mass, as illustrated
in Fig. 5. In the presence of baryons, the cores grow by
more than a factor of two. In contrast, there is no clear
sign of mass growth if baryons are absent, confirming
previous results [9].

Previous dark matter-only simulations [9] found that
central solitonic cores are in excited states oscillating
with their quasi-normal frequency [46]

f = 10.94

✓
⇢c

109M�kpc�3

◆1/2

Gyr�1

inversely proportional to the free-fall time of the inner
halo region with central density ⇢c. If a baryonic com-
ponent is present, the free-fall time depends on the to-
tal density ⇢tot. Thus, assuming that the proportional-
ity between quasi-normal period and free-fall time holds,
one expects the frequency f to increase by a factor
⇡

p
⇢tot/⇢c. As shown in Fig. 6, we indeed find that

the ground state configurations in our FDM simulations
with baryons oscillate with the frequency f multiplied

FIG. 6. Top: Evolution of the central density in the FDM
run with baryons. Bottom: Frequency spectrum of the time
series above. The orange-shaded region marks the expected
quasinormal frequency under the influence of baryons. Its
boundaries are computed using the minimum and maximum
central density averaged over several oscillation periods.

by the square root of total mass over dark matter mass
within 2 r1/2 averaged over time.

IV. CONCLUSIONS

Using cosmological hydrodynamical simulations in-
cluding baryonic feedback, we find that the formation
of central solitonic cores remains a robust prediction for
FDM halos. However, the core-halo mass relation found
in dark matter only simulations [8] is altered by two ef-
fects. Firstly, the accumulation of gas and stars leads to
an increased dark matter velocity dispersion in the cen-
ter. This e↵ect is also found in CDM simulations and
not special to FDM. As in the case of pure dark matter
simulations, the velocity dispersion of the solitonic FDM
core follows the ambient dark matter velocity dispersion,
but due to the radially varying velocity dispersion profile
the ambient dark matter velocity is now di↵erent from
the virial velocity of the halo. Secondly, taking into ac-
count the gravitational e↵ect of the baryons gives rise to a
modified ground-state solution of the SP equation. This
modified profile has a di↵erent mass-radius relation than
a pure FDM soliton without baryons. Note that the two
e↵ects are opposite in the sense that increasing the ve-
locity of the core with a fixed baryon profile increases the
core mass, whereas increasing the baryon density with a
fixed core velocity decreases it.

According to this result, core profiles in galaxies with
non-negligible central amounts of baryons can be pre-
dicted in the following way: given the baryonic contri-
bution to the gravitational potential, one solves for the
ground state solution with velocity dispersion matching
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Figure 3. Numerical solutions of the SP system for halo masses from 108 M� up to 1014 M� for a FDM particle mass of m = 10�22 eV
(left) and m = 10�21 eV (right). The thin, dot-dashed lines correspond to the ↵̂ = 0 (without SMBH) solutions and the thicker, slightly

opaque lines correspond to ↵̂ > 0 (with SMBH) solutions. Dimensionless numerical solutions �(r) have been appropriately scaled to a
dimension-full solutions ⇢ by comparison of core densities of numerical ↵̂ = 0 with the core densities of analytic solutions obtained from

equation 2.26.

We take as our fiducial relationship the expression from
Bandara et al. (2009):

log10(M•/M�) = 8.18 + 1.55 ⇥ ⇥
log10(Mhalo/M�) � 13.0

⇤
.

(3.3)
This relationship was derived from subset of the

galaxy-scale strong gravitational lenses from the Sloan Lens
ACS (SLACS) Survey (Bolton et al. 2006). The M•–Mhalo
relationship was obtained by estimating the masses of
the SMBHs in their sample by combining the M•–� rela-
tion from Gültekin et al. (2009) and the M•–n (where n is
the Sersic index) relationship from Graham & Driver (2007).

3.3 Density profiles

Combining equations 3.2 and 3.3 allows us to predict the
mass ratio of the SMBH to the soliton core, ⌅ ⌘ M•/M, for
a given halo mass Mhalo. As we have stated, we assume that
the soliton-halo mass relation still holds in the presence of
a SMBH which we treat as a perturber to an established
soliton-halo system, and that the gravitational field of
the black hole will reshape the soliton density profile. We
discuss alternative assumptions for the soliton mass with
the additional presence of the SMBH, and their e↵ect on
our calculations, in section 3.6.

We obtain the soliton density profile for the given halo
mass as follows.

In our numerical solutions we had set the arbitrary
boundary condition �̂(0) = 1, and also set the black hole
mass through the dimensionless parameter ↵̂. This yielded
a solution with a consequently-deduced mass ratio ↵̂/M̂.
So here we find ↵̂ that yields a solution that matches the
predicted mass ratio ⌅ for our given halo of interest. We

then convert the dimensionless density profile to dimen-
sionful units, and use the �-scaling symmetry relations
described in section 2 to convert the soliton solution so that
its total mass matches that predicted by the soliton-halo
mass relation (equation 3.2). This is done by comparing
the mass of the unscaled numerical solution (2.16) to
equation 3.2 for the given halo mass. Then using the found
� from equation 2.25, we can scale the numerical solution.
Appendix A lists some numerical values of ↵̂, �̂0, M̂ that
were found in the process for various halo masses.

For illustrative purposes we calculate the FDM core
profiles of halo masses ranging from 108M� to 1014M�
in order to visualise results for sensible range of galaxy
halo masses. We consider the cases of a FDM particle
mass of m = 10�22 eV and m = 10�21 eV. Figure 3 shows
the core profiles for the various halo masses. It can be
seen that the e↵ect of black hole perturber can only be
noticed for Mhalo � 1013 M� for the smaller value m and
for Mhalo � 1012 M� for the larger value of m. That is, the
SMBHs are most e↵ective at modifying the halo cores for
higher halo masses, and larger FDM particle masses. The
e↵ect is that of ‘squeezing’ the density profile inwards to
have a decreased core radius but increased central density.
When the black hole in unimportant, the core radius
scales inversely with the soliton mass (equation 2.27). But
when the black hole dominates, the soliton size now scales
inversely with the black hole mass (equation 2.13), which
can make solitons orders of magnitude more compact in
certain cases.

3.4 Soliton accretion time

An important question to ask is whether the soliton can
survive given the presence of a SMBH at its centre or if it

MNRAS 000, 1–10 (2019)

(a)

(b)

(c)
Figure 2.10 – Adding baryons and black holes: (a) DM density profiles of a halo with a final virial mass
of 1010 M¯ at three different redshifts assuming FDM only, FDM with baryons and CDM with baryons. At
the earliest redshift of z =5.6, the CDM halo exhibits the highest central DM density with a cuspy profile,
while the FDM halos show core profiles. The FDM halo with baryons has a lower density at the centre
than the FDM-only halo because the baryon pressure delays its collapse. On the contrary, at z =4, the
FDM central density is more than one order of magnitude higher with baryons than without, exceeding the
central DM density of the CDM halo. (b) Evolution of the core mass over redshift for a FDM halo with
(blue curve) and without baryons (green curve). The shaded regions represent the corresponding standard
deviations. In the presence of baryons, the cores grow by more than a factor of two. However, the core
mass does not evolve over time if baryons are absent. (c) Density profiles of FDM halos with masses from
108 M¯ up to 1014 M¯ assuming a FDM particle mass of m = 10−22 eV. The dot-dashed (thicker) lines
correspond to DM halos without (with) a central black hole. It can be seen that the black hole increases
the central density only for Mh ≥ 1013 M¯. This latter effect depends also on the FDM particle mass.
Thus, black holes are most effective at modifying the DM distribution for higher halo masses, and larger
FDM particle masses. By numerically solving the Schrodinger-Poisson equations, it was shown that black
holes decrease the core radius and increase the central density of FDM halos. This figure is taken from
Davies & Mocz [2020]; Veltmaat et al. [2020].

at modifying the DM distribution for higher halo masses, and larger FDM particle masses. By
numerically solving the Schrodinger-Poisson equations, it was shown that black holes decrease the
core radius by increasing the central density of DM halos (see Figure 2.10).

Moreover, it not clear if FDM halos can be in line with known galaxy scaling relation [Bar et al.,
2019; Deng et al., 2018; Robles et al., 2019; Safarzadeh & Spergel, 2020]. Figure 2.11 depicts
the mass profiles of FDM halos with masses from 109 M¯ up to 1012 M¯. Left, middle and right
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FIG. 3. de Broglie wavelength � = h/(mv) versus core radius
Rc for a range of galaxies in the fuzzy dark matter hypothesis.
Black dots correspond to the data from Ref. [10] that we used
in Fig. 1. We have taken the velocity v that determines the
de Broglie wavelength to be the virial speed corresponding to
the core density ⇢c for that radius Rc, and we have taken the
dark matter particle mass to be m = 10�22 eV for the sake
of illustration (since � / 1/m, other values of m involves a
simple re-scaling of the vertical axis). Dashed orange curve is

the corresponding best fit power law � / 1/R1��/2
c from Fig. 1

with � = 1.3 for this data set. The dotted cyan curve is � =
2Rc; for points that lie well above this line, the theoretical
model is unphysical, and for points that lie well below this
line, the core seems to require some alternate explanation.

where Mc is the enclosed mass up to radius Rc. In the
vicinity of the core, we take the density profile to be given
by the fiducial form in Eq. (1). Integrating this gives the
core mass as

Mc = (4� ⇡)⇡ ⇢c R
3
c . (34)

Now a non-relativistic quantum particle has a de Broglie
wavelength set by its characteristic speed v as

� =
h

mv
. (35)

By using Eqs. (33, 34) this expression gives the de Broglie
wavelength in the vicinity of the core of a galaxy as a
function of core density and radius. This is given in
Fig. 3 as a function of core radius for a range of ob-
served galaxies, where we have used the corresponding
core density data from Fig. 1. We chose a particle mass of
m = 10�22 eV for illustrative purposes. We have also in-
cluded the corresponding best fit curve (dashed orange),

which is � / 1/R1��/2
c with � = 1.3 for this data set.

Note that the data indicates that the de Broglie wave-
length is a decreasing function of the galactic core radius.
However, this appears to go in the opposite direction to
the idea behind the ultra-light or “fuzzy” dark matter
proposal. To illustrate this we have also plotted as the
dotted cyan curve � = 2Rc. Any galaxies that lie well
above this line would have a core diameter that is much
smaller than the corresponding scale over which the par-
ticles are localized, which we consider to be an unphysical
prediction of the model. On the other hand, any galaxies
that lie well below this line have a core diameter that is
much bigger than the size of the particle’s wave-packet.
While this latter scenario can be perfectly physical, it
begs the question as to what is then actually responsi-
ble for the large core size, since the proposal of fuzzy
dark matter is that the core arises from the particle’s de
Broglie wavelength itself. In fact to match � = 2Rc, the
data should follow ⇢c / 1/R4

c . Since the orange curve
(best fit data) and cyan curve (theoretical prediction)
are essentially orthogonal to each other, it disfavors this
proposal.

VIII. OTHER MODELS

In this Section we generalize our results to a range
of other models, including more general scalar theories,
fermions, superfluids, and general polytropes.

A. Other Scalar Field Theories

1. Real Scalars

An important subject is that of a real scalar field. How-
ever, we expect similar behavior to the case of the com-
plex field studied here. In fact in the non-relativistic
limit, both theories obey the same equations of motion.
Hence the standard regime of the ultra-light axion sce-
nario is fully encompassed by our analysis here. However,
for large field amplitudes, there can be di↵erences. In
particular, there can be particle number changing pro-
cesses allowed. It appears unlikely that such processes
could at all help to explain galactic cores; if anything,
such behavior would limit the stability of such cores,
making it even less likely to produce a consistent model.

2. Kinetic Corrections

Other possibilities are to include corrections to the ac-
tion, including higher order kinetic terms, such as

�L = � |@�|4 + . . . , (36)

for a complex field or a real field (� is some coupling).
However, in the non-relativistic limit, this introduces the

4

Figure 2. Comparing the parametrized mass profile of ultra-light dark matter against observations of the half-mass
radius of dSphs and UFDs. In each panel we show the mass profiles corresponding to di↵erent total halo masses
as indicated in the legends. Left, middle, and right panels show the profiles corresponding to m22=0.1, 1, and 10
respectively. The individual data points for the systems are collected from Wolf et al. (2010); Martin et al. (2016a,b),
and the slopes of Fornax and Sculptor which are shown with green and red lines are from Walker & Penarrubia (2011).
The errorbars are all inflated to be 0.1 dex. With m22 less that 1, the predicted halo mass of the dwarf galaxies is too
high given their dynamical state in the galaxy, and higher m22 does not agree with the inferred slopes of Sculptor and
Fornax.

Figure 3. he estimated total halo mass of all the satellites
with measured half-mass radius, as a function of m22.
Starting at log(m22) = �1, increasing m22 would predict
lower halo mass for the satellites. However, the trend
breaks at some values of m22 and the estimated halo mass
increases again. The turning point indicates the start of
NFW part of the profile to fit the observed data.

out by any individual satellite. The horizontal black line
shows the 3 � � limit. The thin lines each show � de-
fined as � = (Mh(m22) � Mdyn)/�dyn as a function of m22,
where Mdyn is the upper limit achieved when considering

Figure 4. The upper limits on the halo mass of the UFDs
with defined peri-center and apo-center distances from
Gaia release (Simon 2018). The red (blue) error bars
show the results assuming the infall time for the satellites
is 8 (5) Gyr ago. The e↵ective distance of the satellites
are set to be their semi-major axis, as opposed to the
virial radius of the host.

dynamical friction timescale of each satellite. The errors
on the dynamical friction upper limits are assumed to
be �dyn = 0.2Mdyn to be on the conservative side. For
satellites with available Gaia data such as Segue I and
Willman I, the upper limits are much less than 1011 M�.
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m22 = 1.0
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Figure 2.11 – FDM inconsistencies: (a) Mass profiles of FDM halos with masses from 109 M¯ up to
1012 M¯. Left, middle, and right panels represent the mass profiles corresponding to m22 =0.1, 1, and 10,
respectively. The individual data points for dwarf galaxies are collected from Martin et al. [2016]; Wolf et al.
[2010], and the slopes of Fornax and Sculptor (green and red lines) are from Walker & Peñarrubia [2011].
The profiles show a core region parametrized by Equation (2.23) which then follow an NFW profile at
r = 3rc. For m22 =0.1, the predicted halo mass of the dwarf galaxies is too high given their dynamical state
in the galaxy, and higher m22 does not agree with the inferred slopes of Sculptor and Fornax. Low mass
axions (m22 =0.1) can explain the observed mass profile slopes in Sculptor and Fornax [González-Morales
et al., 2017; Marsh & Pop, 2015; Schive et al., 2014b]). However, at such low masses, the predicted halo
masses of the ultra-faint dwarf galaxies such as Segue I are ruled out by dynamical friction arguments. In
contrast, high mass axions (m22 =10) can explain the halo masses of the ultra-faint dwarf galaxies such as
Draco II, Triangulum II, and Segue I. For this axion mass, the predicted mass profiles do not agree with
the observed slope of Fornax and Sculptor. The latter highlights the tensions concerning the FDM particle
mass. (b) De Broglie wavelength λ as a function of the core radius rc for a range of galaxies assuming
FDM particle mass of 10−22 eV. Black dots correspond to the data from Rodrigues et al. [2017]. Dashed

orange curve is the corresponding best fit power law λ∝ 1/R1−β/2
c with β= 1.3 for the data set.The dotted

cyan curve corresponds to λ= 2Rc. We stress that the data indicates that the de Broglie wavelength is a
decreasing function of the galactic core radius. However, the FDM theory seems to predict the opposite
behaviour. Galaxies above the λ = 2Rc line would have a core size that is much smaller than De Broglie
wavelength λ over which the particles are localized. In contrast, galaxies below this line have a core size
that is much higher than λ. Thus, it seems very difficult for FDM to reproduce the observed relationship
between core density and core radius in galaxies, which obeys the rough scaling law given by ρc ∝ 1/Rβc
with exponent β∼ 1. This figure is taken from Deng et al. [2018]; Safarzadeh & Spergel [2020].

panels represent the mass profiles corresponding to m22 =0.1, 1, and 10 respectively. The individual
data points for dwarf galaxies are collected from Martin et al. [2016]; Wolf et al. [2010], and the
slopes of Fornax and Sculptor (green and red lines) are from Walker & Peñarrubia [2011]. The
profiles show a core region parametrized by Equation (2.23) which then follows an NFW profile
at r = 3rc . For m22 =0.1, the predicted halo mass of the dwarf galaxies is too high given their
dynamical state in the galaxy, and higher m22 does not agree with the inferred slopes of Sculptor
and Fornax. Low mass axions (m22 =0.1) can explain the observed mass profile slopes in Sculptor
and Fornax [González-Morales et al., 2017; Marsh & Pop, 2015; Schive et al., 2014b]. However, at
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such low masses, the predicted halo masses of the ultra-faint dwarf galaxies such as Segue I are ruled
out by dynamical friction arguments. In contrast, high mass axions (m22 =10) can explain the halo
masses of the ultra-faint dwarf galaxies such as Draco II, Triangulum II, and Segue I. For this axion
mass, the predicted mass profiles do not agree with the observed slope of Fornax and Sculptor. The
latter highlights the tensions concerning the FDM particle mass (see Figure 2.11). Indeed, the MW
galaxy constrained the FDM particle mass to be m < 10−19 eV [Bar et al., 2019]. In Figure 2.11 ,
the De Broglie wavelength λ as a function of the core radius rc for a range of galaxies assuming
FDM particle mass of 10−22 eV. Black dots correspond to the data from Rodrigues et al. [2017].

Dashed orange curve is the corresponding best fit power law λ∝ 1/R1−β/2
c with β= 1.3 for the data

set.The dotted cyan curve corresponds to λ = 2Rc. We stress that the data indicate that the de
Broglie wavelength is a decreasing function of the galactic core radius. However, the FDM theory
seems to predict the opposite behaviour. Galaxies above the λ= 2Rc line would have a core size that
is much smaller than De Broglie wavelength λ over which the particles are localized. In contrast,
galaxies below this line have a core size that is much higher than λ. Thus, it seems very difficult for
FDM to reproduce the observed relationship between core density and core radius in galaxies, which
obeys the rough scaling law of ρc ∝ 1/Rβ

c with exponent β ∼ 1 (see Figure 2.11). To sum up, the
FDM model appears to be too predictive and seems to be in conflict with observations of galaxies
[Safarzadeh & Spergel, 2020].

Self-interacting dark matter

In the ΛCDM model, DM is assumed to be collisionless. Another promising alternative is, therefore,
self-interacting dark matter (SIDM) [Carlson et al., 1992; de Laix et al., 1995], proposed to solve
the small scales problems, and more specifically the cusp-core problem [Spergel & Steinhardt, 2000].
In this scenario, it was initially assumed that DM interactions are isotropic elastic scatterings with
an interaction cross-section that is independent of velocity. Since the mass of the DM particle is
not known, self-interactions are commonly quantified in terms of the cross-section per unit particle
mass, σ/m, which is an important cosmological value for SIDM theories. The total number of
interactions, Γ, that occurs per unit time is given by

Γ∼ 0.1Gyr−1 ×
(

ρdm

0.1M¯/pc3

)(
σ/m

1cm2g−1

)( vrel

50kms−1

)
, (2.26)

where m, σ and vrel are the DM particle mass, the cross-section, and the relative velocity, respec-
tively. The upper panel of Figure 2.12 compares the DM density distribution at large scales of CDM
and SIDM halos with a mass of 9×109 M¯ and σ/m increasing from left to right in 100 kpc boxes.
As the scattering rate Γ is proportional to the DM density, SIDM halos have the same structure as
CDM halos at large scales where the DM interactions are negligible. Indeed, on the scale of their
virial radius (rvir = 55 kpc), CDM and SIDM halos are nearly identical. Moreover, the collision rate
is also negligible during the early Universe when DM structures form. Therefore, SIDM is consistent
with observations of large-scale structures, predicted by ΛCDM [Springel et al., 2006; Trujillo-Gomez
et al., 2011]. However, self-interactions perturb the inner density structure of DM halo at late times.
The upper panel of Figure 2.12 highlights that the SIDM halos at sub-galactic scales are less dense
than in the CDM model due to the formation of cores.

A generic prediction for SIDM is that halos can form dense cores with size depending on the
cross-section σ/m [Coĺın et al., 2002; Davé et al., 2001; Elbert et al., 2015; Fry et al., 2015a; Peter
et al., 2013; Robertson et al., 2017; Robles et al., 2017; Rocha et al., 2013; Vogelsberger et al., 2012,
2014; Yoshida et al., 2000a,b; Zavala et al., 2013], as shown in the lower panel of Figure 2.12. The
redistribution of energy and momentum by DM particle collisions decreases the central density of DM
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Figure 3. Density profiles of Pippin (left) and Merry (right) in collisionless CDM and in SIDM (see legend) at z = 0. All SIDM runs with σ/m ≥ 0.5 cm2 g−1

produce central density profiles with well-resolved cores within ∼500 pc. Core densities are the lowest (and core sizes the largest) for cross-sections in the
range σ/m = 5–10 cm2 g−1. The 50 cm2 g−1 run of Pippin has undergone a mild core collapse, with a resultant central density intermediate between the 10 run
and 1 cm2 g−1 run. For velocity dispersion profiles of these haloes, see Appendix A. NFW fits to the CDM profiles of each halo yield scale radii of ∼2.7 kpc.

3.2 Circular velocities and the TBTF

According to the ELVIS simulations of the Local Group (Garrison-
Kimmel et al. 2014a), there should be ∼10 isolated haloes with
Vmax ! 40 km s−1 in the local (∼1.2 Mpc) field around the MW
and M31, excluding satellites of either large system. Of the 14
isolated dwarfs in this volume, only 1 (Tucana) is clearly dense
enough to reside in a CDM halo larger than 40 km s−1. Tucana itself
is extremely dense, and as discussed in Garrison-Kimmel et al.
(2014b), it is difficult to understand, even in the context of CDM.
Tucana’s density suggests a CDM halo with Vmax > 70 km s−1,
similar in size to the halo expected to host the Small Magellanic
Cloud. If we force Tucana to reside within one of the typical Vmax $
40 km s−1 haloes we expect within ∼1 Mpc, then this leaves roughly
nine isolated, massive haloes unaccounted for. These missing, or
overdense, haloes are the systems of concern for the TBTF.

Fig. 4 illustrates this problem explicitly by comparing the circu-
lar velocities of nearby field dwarfs at their half-light radius (data
points) to the circular velocity profiles of our simulated haloes
(lines), each of which has Vmax $ 40 km s−1 and is therefore nom-
inally a TBTF halo. The data points indicate local dwarf galaxies
(M" < 1.7 × 107) farther than 300 kpc from both the MW and An-
dromeda that are DM dominated within their half-light radii (r1/2),
with estimates for their circular velocities at r1/2 (V1/2). We restrict
our observational sample to the local volume because this is where
galaxy counts are complete at halo masses around 1010M&. Note
that we do not consider galaxies with rotation curves derived from
gas physics (e.g. Oh et al. 2011) as these data are obtained from
such large volumes that they are incomplete at this mass scale. V1/2

for the purely dispersion galaxies are calculated using the Wolf et al.
(2010) formula, where measurements for stellar velocity dispersion,
σ ", are taken from Hoffman et al. (1996), Simon & Geha (2007),
Epinat et al. (2008), Fraternali et al. (2009), Collins et al. (2013) and
Kirby et al. (2014). However, Tucana, WLM and Pegasus also dis-
play evidence of rotational support, indicating that they are poorly
described by the Wolf et al. (2010) formalism. For the first two,

we use the Leaman et al. (2012) estimate of the mass within the
half-light radius, obtained via a detailed dynamical model. The data
point for Pegasus is obtained via the method suggested by Weiner
et al. (2006), wherein σ 2

" is replaced with σ 2
" + 1

2 (v sin i)2 in the
Wolf et al. (2010) formula, where vsin i is the projected rotation
velocity. (also see section 5.2 of Kirby et al. 2014). We plot Tucana
as an open point to highlight its extreme density, as discussed above.

As expected, the all of data points save Tucana lie below the
CDM curves (black lines), demonstrating explicitly that both Merry
and Pippin are TBTF haloes. The SIDM runs, however, provide
a much better match, and in fact all of the SIDM runs with
σ/m ≥ 0.5 cm2 g−1 alleviate TBTF.

3.3 Expectations for the stellar-mass halo-mass relation

A problem related to TBTF, but in principle distinct from it, concerns
the relationship between the observed core densities of galaxies and
their stellar masses. Specifically, there does not appear to be any
correlation between stellar mass and inner DM density inferred from
dynamical estimates of dwarf galaxies in the Local Group (Strigari
et al. 2008; Boylan-Kolchin et al. 2012; Garrison-Kimmel et al.
2014b). If DM haloes behave as expected in dissipationless #CDM
simulations, then we would expect more massive galaxies to have
higher DM densities at fixed radius. This ultimately stems from the
expectation, born out at higher halo masses, that more massive DM
haloes tend to host more massive galaxies.

Consider, for example, the two galaxies Pegasus (r1/2 $ 1 kpc)
and Leo A (r1/2 $ 500 pc) in Fig. 4. Both of these galaxies have about
the same stellar mass M" $ 107 M&. According to the expectations
of abundance matching (Garrison-Kimmel et al. 2014b), each of
these galaxies should reside within a Vmax $ 40 km s−1 halo. Instead,
their central densities are such that, if their DM structure follows the
CDM-inspired NFW form, they need to have drastically different
potential well depths: Vmax $ 30 and 12 km s−1 for Pegasus and
Leo A, respectively (see fig. 12 of Garrison-Kimmel et al. 2014b).

MNRAS 453, 29–37 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/453/1/29/1747632 by guest on 19 M
ay 2020

9 × 109 M⊙ 1.2 × 1010 M⊙ 

Dwarf halo cores with SIDM 31

Table 1. Summary of simulated haloes. The first four columns list
identifying names and virial-scale properties (virial mass, virial radius
and maximum circular velocity). The fifth column gives number of
particles within the virial radius for the high-resolution runs and the
last column summarizes the cross-sections each halo was simulated
with. The virial-scale properties of the haloes listed are for the CDM
cases (σ/m = 0) but each of these values remains unchanged (within
∼5 per cent) for all SIDM runs. Mv and Rv are calculated using the
Bryan & Norman (1998) definition of ρV.

Name Mv Rv Vmax Np(Rv) σ/m
(1010 M") (kpc) (km s−1) (106) (cm2 g−1)

Pippin 0.9 55 37 4.1 0, 0.1, 0.5,
5, 10, 50

Merry 1.2 59 38 5.4 0, 0.5, 1, 10

of GADGET-2 (Springel 2005). Haloes were identified with the six-
dimensional phase-space halo finder ROCKSTAR (Behroozi, Wechsler
& Wu 2013).

We chose two haloes for our primary simulations using par-
ent cosmological volumes of 7 Mpc on a side. Initial conditions
were generated with MUSIC (Hahn & Abel 2011) at z = 125 using
cosmological parameters derived from the Wilkinson Microwave
Anisotropy Probe-7 year data (Komatsu et al. 2011): h = 0.71,
#m = 0.266, #$ = 0.734, ns = 0.963 and σ 8 = 0.801. Their global
properties are given in Table 1. We refer to the slightly smaller
of the two dwarfs (Vmax = 37 km s−1) as Pippin and the larger
(Vmax = 38 km s−1) as Merry. Our high-resolution runs, which we
analyse throughout, have particle mass mp = 1.5 × 103 M" and
a Plummer equivalent force softening ε = 28 pc. We have also
checked that various basic parameters of our target haloes (spins,
concentrations and formation times) are within one standard devia-
tion of what is expected for dwarf haloes based on a larger simulation
box of 35 Mpc on a side (described in Oñorbe et al. 2014).

In addition to σ/m = 0 (collisionless CDM) runs, we simulate
both haloes with σ/m = 0.5, 1, 10 cm2 g−1. Additionally, we have
simulated Pippin with σ/m = 0.1, 5, 50 cm2 g−1. In all SIDM sim-
ulations, the DM self-interactions were calculated using an SIDM
smoothing length equal to 0.25ε, as described in Rocha et al. (2013).

Fig. 1 shows visualizations of Pippin at high resolution, coloured
by the local DM density, with collisionless CDM on the far left and
SIDM runs of increasing cross-section to the right. The upper panels
visualize a box 100 kpc across (∼2Rv) and the lower panels zoom in
on the central 10 kpc of the haloes, using a colour bar that has been
rescaled to emphasize the highest densities. As these visualizations
emphasize, bulk halo properties on the scale of Rv are virtually
identical in CDM and SIDM; even the locations of subhaloes re-
main unchanged. The fact that substructure remains very similar
in both SIDM and CDM is consistent with the findings of Vogels-
berger & Zavala (2013) and Rocha et al. (2013); here, however,
we examine mass scales well below those resolved in any previous
SIDM study, resolving substructure as small as Vmax = 1 km s−1.
The main differences are apparent in the core regions (lower pan-
els), where the SIDM runs are systematically less dense than CDM.
Note that the 50 cm2 g−1 run is actually denser in its core than
the 5 cm2 g−1 run. As discussed below, this is a result of core
collapse.

2.1 Resolution tests

We have designed our high-resolution simulations explicitly to re-
cover the density structure at the ∼300 pc half-light radius scale
of low-mass dwarfs based on the work of Power et al. (2003) for
CDM simulations. Power et al. (2003) showed that the differential
density profiles of CDM haloes should be converged only outside of
a specific radius where the gravitational two-body relaxation time
approximates the Hubble time. While this work is perfectly well
designed for CDM runs, the issue of convergence in SIDM is less
well explored. In order to remedy this concern, we have simulated
Pippin in CDM and SIDM (1 cm2 g−1) at lower resolution, with

Figure 1. DM density of Pippin in CDM (left) and SIDM with σ/m increasing from left to right: 0.5, 5 and 50 cm2 g−1. Boxes on the top span 100 kpc
(Rv = 55 kpc) and the bottom panel zooms in to span a central 10 kpc box (with modified colour bar). Note that the global properties of the haloes on the
scale of the virial radius, including the number and locations of subhaloes, are nearly identical across all runs. The only difference is that the inner core regions
become less dense and somewhat puffed out in the SIDM cases. Note that the 50 cm2 g−1 simulation is somewhat denser in the inner core than the 5 cm2 g−1

case; it is undergoing mild core collapse.
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Figure 2.12 – SIDM halo properties: Upper panel: DM density maps of CDM (left) and SIDM halo with
a mass of 9×109 M¯ and σ/m increasing from left to right in 100 and 10 kpc boxes. As the scattering
rate Γ is proportional to the DM density, SIDM halos have the same structure as CDM halos at large scales
where the DM interactions are negligible (see Equation (2.26)). Indeed, on the scale of their virial radius
(rvir = 55 kpc), CDM and SIDM halos are nearly identical. At sub-galactic scales, the SIDM halos are less
dense than in CDM model due to the formation of cores. Lower panel: DM density profiles of 9×109 (left)
and 1.2×1010 M¯ (right) halos in CDM and SIDM models. SIDM runs have σ/m between 0.1 and 50 cm2

g−1. For σ/m ≥ 0.5 cm2 g−1, the self-interactions between DM particles produce central cores with a size
depending on σ/m. Indeed, the largest cores form for cross-sections in the range σ/m = 5−10 cm2 g−1.
This figure is taken from Elbert et al. [2015].

halos, known as a cusp-to-core transition [Burkert, 2000; D’Onghia & Burkert, 2003; Rocha et al.,
2013; Spergel & Steinhardt, 2000; Yoshida et al., 2000a]. In other words, this heat transfer alters
the inner region of halos by turning cuspy profiles into a cored profile. Core formations occur only if
σ/m is sufficiently large to ensure that the relatively high probability of scattering over a time Tage

is comparable to the age of the halo: Γ×Tage ∼ 1. Figure 2.12 illustrates that the self-interactions
between DM particles produce central cores for σ/m ≥ 0.5 cm2 g−1 in 9×109 and 1.2×1010 M¯
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halos. Numerous simulations have then demonstrated that models with σ/m ∼ 0.5−10 cm2/ g−1

produce DM cores in dwarf galaxies with sizes ∼ 0.3−1.5 kpc [Elbert et al., 2015; Fry et al., 2015a;
Peter et al., 2013; Rocha et al., 2013; Vogelsberger et al., 2012; Zavala et al., 2013] that seem to
alleviate the cusp-core problem. In fact, the discrepancy with observations of low surface brightness
(LSB) galaxies having density cores could be avoided in SIDM theory [Spergel & Steinhardt, 2000].

The viability of DM self-interacting as a cusp-core transformation mechanism depends on whether
or not this cosmological model is consistent with all observations. In other words, it remains to see
if SIDM models are able to explain the observed cores from ultra-faint galaxies to galaxy clusters.
SIDM model requires compromises on the cross-section, which needs to be small enough to be
observationally allowed but sufficiently large to alleviate the relevant small-scale problems. The first
constraint on the SIDM cross-section derives from galaxy clusters, which impose σ/m < 0.02 cm2/g
[Miralda-Escudé, 2002]. Later, this constraint was revised and the inferred values of <σv > /m for
all six clusters are consistent with a constant cross-section σ/m = 0.1 cm2 g−1 according to right
panel of Figure 2.13 [Peter et al., 2013; Tulin & Yu, 2018]. The left panel of Figure 2.13 shows that
SIDM model (σ/m = 0.1 cm2 g−1) allowed by cluster constraints would be very similar to the CDM
predictions. While the most massive CDM subhalos are inconsistent with the kinematics of the MW
dSphs, SIDM model can only alleviate this problem for σ/m > 1 cm2 g−1.

If the self-scattering cross-section per unit mass is ∼ 1 cm2 g−1, SIDM models can solve the
cusp-core problem at the scale of dwarf galaxies [Rocha et al., 2013; Vogelsberger et al., 2012;

L22 J. Zavala, M. Vogelsberger and M. G. Walker

Figure 2. The circular velocity profiles at z = 0 encompassing the first and
third quartiles of the distribution of the 15 subhaloes with the largest values
of Vmax(z = 0). The symbols with error bars are estimates of the circular
velocity within the half-light radii for nine MW dSphs (Walker et al. 2009;
Wolf et al. 2010). Clearly, the most massive CDM subhaloes are inconsistent
with the kinematics of the MW dSphs. SIDM can alleviate this problem
only for a constant scattering cross-section σ T/m ! 1 cm2 g−1 (SIDM10
and SIDM1) or if it has a velocity dependence (vdSIDMa and vdSIDMb).
Current constraints from clusters put an upper limit to the constant cross-
section case close to σ T/m ∼ 0.1 cm2 g−1 (SIDM0.1). This value is too low
to solve the too big to fail problem. The observational data in the bottom
right can be fitted by lower mass subhaloes, not shown here since they are
affected by the limited resolution of our simulations.

which goes to zero at zero velocity. It is clear that for the vdSIDM
models, σ T/m # 0.1 cm2 g−1 at the characteristic velocities in MW
dSphs (the observed velocity dispersion of stars along the line of
sight is ∼10 km s−1, e.g. Walker et al. 2009). This fact alone already
casts a doubt on the possibility of SIDM0.1 (σ T/m = 0.1 cm2 g−1)
producing similar results as the vdSIDM cases that were shown
to be consistent with the kinematics of the MW dSphs in VZL.
We note that there is a change in nomenclature relative to VZL:
RefP0≡CDM, RefP1≡SIDM10, RefP2-3≡vdSIDMa-b.

Fig. 2 shows the inter-quartile range (i.e. 25–75 per cent) of the
distribution of the present-day circular velocity profiles of the 15
subhaloes with the largest values of Vmax(z = 0) (the maximum
of the circular velocity) within 300 kpc halocentric distance. The
symbols with error bars correspond to estimates of the circular
velocity within the half-light radii of the sample of nine MW dSphs
used by Boylan-Kolchin et al. (2011, 2012). Since current data for
the stars in the dSphs provide an incomplete description of the 6-
dimensional phase-space distribution, the derived mass profiles are
typically degenerate with the velocity anisotropy profile. However,
the uncertainty in mass that is due to this degeneracy is minimized
near the half-light radius, where Jeans models tend to give the same
value of enclosed mass regardless of anisotropy (e.g. Strigari et al.
2007; Walker et al. 2009; Wolf et al. 2010). Observations can then
be used to constrain the maximum dark matter density within this
radius. CDM clearly predicts a population of massive subhaloes
that is inconsistent with all the nine dSphs, whereas for SIDM this
problem disappears as long as σ T/m ! 1 cm2 g−1 on dSph scales.
The currently allowed case with σ T/m = 0.1 cm2 g−1 is very close to
CDM, only reducing slightly the inner part of the subhalo velocity
profiles. In contrast, the vdSIDM models clearly solve the too big to
fail problem. We note that the extent of the too big to fail problem

Figure 3. Density profile of the 15 subhaloes with the largest Vmax(z =
0) within CDM and different SIDM models (see Fig. 1). We show the
median and first and third quartiles of the subhalo distribution for each
case. The velocity-dependent SIDM cases produce cores of approximately
600 pc. Of the constant cross-section models we explored, the one that is
currently allowed by cluster constraints, SIDM0.1 (σ T/m = 0.1 cm2 g−1),
only deviates slightly from CDM; the associated core sizes are less than
300 pc.

in CDM depends on the mass of the MW halo, if it is in the low
end of current estimates, "1012 M%, the problem may be resolved
(e.g. Wang et al. 2012), although a low halo mass may generate
other difficulties such as explaining the presence of the Magellanic
Clouds. In the context of SIDM, the lower the mass of the MW
halo, the weaker the argument against σ T/m = 0.1 cm2 g−1.

A simple statistical test of the agreement between the subhalo
distributions of two models and the nine dSphs is to compute the chi-
square difference associated with the likelihood of having n+(n−)
data points above (below) the median of the distribution of each
model. Assuming that the probability distribution of finding n±

data points is Poissonian:

"χ2 = 2 (ln(n+
1 ! n−

1 !) − ln(n+
2 ! n−

2 !)). (2)

Comparing SIDM1 and the vdSIDM models with SIDM0.1, the
difference is driven solely by Draco with the former preferred over
the latter with "χ2 ∼ 4.4 (2.1σ ). Using an interpolation of our three
constant cross-section cases, we estimate that σ T/m ∼ 0.6 cm2 g−1

is the minimum value for which "χ2 = 0 relative to SIDM1.
To show the typical core size and central densities that are pre-

dicted by the SIDM models, we plot in Fig. 3 the density profile of
the 15 subhaloes with the largest Vmax(z = 0). A value of σ T/m ∼
1 cm2 g−1 is needed for a constant cross-section SIDM model to
mimic the effect of the vdSIDM models and produce ∼1 kpc cores
with central densities of O(0.1 M% pc−3). If the cross-section is
reduced to 0.1 cm2 g−1, then the subhaloes are only slightly less
dense than in CDM, having cores (central densities) that are at least
twice smaller (higher) than those in the other SIDM cases.

VZL showed that the SIDM10 and vdSIDM models have conver-
gent density and circular velocity profiles within the central density
core; we have found the same for SIDM1 and to lesser extent for
SIDM0.1. Convergence is harder to achieve for CDM since, at a
fixed radius, the two-body relaxation time is shorter than for SIDM
(due to the reduced densities in the latter case). Power et al. (2003)
showed that the density profile converges at a given radius when
the two-body relaxation time is larger than the Hubble time at this
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our main conclusions.
II. SIDM halo model. Scattering between DM particles

is more prevalent in the halo center where the DM density is
largest. It is useful to divide the halo into two regions, sepa-
rated by a characteristic radius r1 where the average scatter-
ing rate per particle times the halo age (tage) is equal to unity.
Thus,

rate ⇥ time ⇡ h�vi
m

⇢(r1) tage ⇡ 1 , (1)

where � is the scattering cross section, m is the DM parti-
cle mass, v is the relative velocity between DM particles and
h...i denotes ensemble averaging. Since we do not assume
� to be constant in velocity, we find it more convenient to
quote h�vi/m rather than �/m. We set tage = 5 and 10 Gyr
for clusters and galaxies, respectively. Although Eq. (1) is a
dramatic simplification for time integration over the assembly
history of a halo, we show by comparing to numerical simu-
lations that it works remarkably well.

For halo radius r > r1, where scattering has occurred
less than once per particle on average, we expect the DM
density to be close to a Navarro-Frenk-White (NFW) profile
⇢(r) = ⇢s(r/rs)

�1(1+r/rs)
�2 characteristic of collisionless

CDM [26]. In the halo center, for radius r < r1, scattering
has occurred more than once per particle. Here, we expect
DM particles to behave like an isothermal gas satisfying the
ideal gas law p = ⇢�2

0 , where p, ⇢ are the DM pressure and
mass density and �0 is the one-dimensional velocity disper-
sion. Since the inner halo achieves kinetic equilibrium due
to DM self-interactions, the density profile can be determined
by requiring hydrostatic equilibrium, rp = �⇢r�tot. Here,
�tot is the total gravitational potential from DM and bary-
onic matter, which satisfies Poisson’s equation r2�tot =
4⇡G(⇢ + ⇢b), where G is Newton’s constant and ⇢b is the
baryonic mass density. These equations yield

�2
0 r2 ln ⇢ = �4⇡G(⇢ + ⇢b) , (2)

which we solve to obtain ⇢(r) assuming spherical symmetry.
We model the full SIDM profile by joining the isothermal

and collisionless NFW profiles together at r = r1:

⇢(r) =

⇢
⇢iso(r) , r < r1

⇢NFW(r) , r > r1
(3)

where ⇢iso is the solution to Eq. (2). We fix the NFW param-
eters (⇢s, rs) by requiring that the DM density and enclosed
mass for the isothermal and NFW profiles match at r1. Thus,
our SIDM halo profile is specified by three parameters: the
central DM density ⇢0 ⌘ ⇢(0), velocity dispersion �0, and
r1. Lastly, we note that this model exhibits a two-fold degen-
eracy in solutions for h�vi/m. We keep the smaller h�vi/m
solutions but note that this situation may be indicative of the
degeneracy between halo profiles with cores that are growing
or shrinking in time [5].

III. SIDM fits. To constrain DM self-interactions, we con-
sider a set of six relaxed clusters and twelve galaxies with
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FIG. 1: Self-interaction cross section measured from astrophysical
data, given as the velocity-weighted cross section per unit mass as
a function of mean collision velocity. Data includes dwarfs (red),
LSBs (blue) and clusters (green), as well as halos from SIDM
N-body simulations with �/m = 1 cm2/g (gray). Diagonal
lines are contours of constant �/m and the dashed curve is the
velocity-dependent cross section from our best-fit dark photon model
(Sec. V).

halo masses spanning 109 � 1015 M�. These objects ex-
hibit central density profiles that are systematically shallower
than ⇢ / r�1 predicted from CDM simulations. To determine
the DM profile for each system, we perform a Markov Chain
Monte Carlo (MCMC) scan over the parameters (⇢0,�0, r1)
characterizing the SIDM halo, as well as the mass-to-light ra-
tio ⌥⇤ for the stellar density. The value for ⇢(r1) determines
the velocity-weighted cross section h�vi/m from Eq. (1), as a
function of average collision velocity hvi = (4/

p
⇡)�0 for

a Maxwellian distribution. We also verify our model and
MCMC fit procedure using a mock data set from simulations.

Clusters. We consider the relaxed clusters from the data
set of Newman, et al. [19, 27] for which spherical modeling
is appropriate (MS2137, A611, A963, A2537, A2667, and
A2390). These clusters have stellar kinematics as well as
strong and weak lensing measurements allowing the mass pro-
file to be measured from stellar-dominated inner region (⇠ 10
kpc) out to the virial radius (⇠ 3 Mpc). The baryonic and
DM densities are disentangled by constraining ⌥⇤ through
the assumption that all the clusters share a similar star for-
mation history. The inferred DM density profile is consistent
with CDM expectations except in the inner O(10) kpc region
where a mass deficit is inferred [19]. These small core sizes
dictate the preference for a velocity-dependent cross section.

We model each cluster using Eq. (3) and fit directly to the
stellar line-of-sight velocity dispersion data [27]. We include
the gravitational effect of the stars following Eq. (2) and allow
for a ±0.1 dex spread in ⇢b to account for systematic uncer-
tainties [19, 27]. Further, as a proxy for fitting to the gravi-
tational lensing data at large radii, we fit to posteriors of the
maximum circular velocity Vmax and the corresponding radius
rmax that have been obtained from the lensing data [27].

Figure 2.13 – Constraints from observations: Left panel: Circular velocity profiles encompassing a
distribution of 15 subhalos for CDM and SIDM models with a constant cross-section between 0.1 and 10
cm2 g−1. Black points with error bars correspond to the circular velocity within the half-light radii for nine
MW dSphs [Walker et al., 2009; Wolf et al., 2010]. While the most massive CDM subhalos are inconsistent
with the kinematics of the MW dSphs, the SIDM model with σ/m > 1 cm2 g−1 can alleviate this problem.
Unfortunately, SIDM model (σ/m = 0.1 cm2 g−1) allowed by cluster constraints would be very similar to
the CDM predictions. Lower mass subhalos, which could fit the observational data in the bottom right,
are affected by the limited resolution of simulations. Right panel: Velocity-weighted cross-section per unit
mass as a function of the mean collision velocity for dwarf galaxies (red), Low surface brightness (LSB)
galaxies (blue) and galaxy clusters (green). For comparison, SIDM N-body simulations with σ/m = 5−10
cm2 g−1 are represented by grey points. Diagonal lines show the corresponding cross-section σ/m. As σ/m
is not supposed to be constant in velocity, it is more convenient to invoke < σv > /m rather than σ/m.
The dashed curve represents the best-fit for a velocity-dependent cross-section. This figure is taken from
Kaplinghat et al. [2016].
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FIG. 2. The circular velocity profiles for the 24 subhalos with the largest values of Vmax(z = 0) within 300 kpc of the center
of the MW-size halo, after excluding Magellanic Cloud analogs. We show four different cosmologies (see Fig. 1): CDM, SIDM
with σT /mχ = 1 cm2g−1, WDM with mχ = 2.3 keV, and a benchmark model within the ETHOS framework, which has
self-interactions and a primordial power spectrum cutoff [26, 41]. The solid lines show the profiles beyond the convergence
radius. Below this radius (thin lines), most subhalos have reached the expected asymptotic values: Vcirc ∝ rγ for cuspy (left
panels) and cored profiles (right panels). Open symbols with error bars show Vcirc values at the half light radius for 24 MW
satellites as given in [32, 58]. Lines and symbols in gray are examples of consistent matches of simulated subhalos and data
points (the largest possible number of matching pairs is shown in the lower right). The mismatches are shown in green.
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Figure 2.14 – SIDM versus CDM: Circular velocity profiles Vcirc of CDM and SIDM (σ/m = 1 cm2 g−1)
subhalos within 300 kpc from the centre of the simulated MW-like galaxies. Open symbols with error bars
correspond to circular velocities at the half-light radius for 24 MW satellites [Errani et al., 2018; Torrealba
et al., 2019]. Lines and symbols in gray (green) are consistent matches (mismatches) between simulated
subhalos and data points. Both CDM and SIDM subhalos match only 15-16 MW satellites. Indeed, the
CDM host halo has too many dense subhalos to explain the satellite distribution. It was claimed that SIDM
models can solve the cusp-core problem at the scale of dwarf galaxies if the self-scattering cross-section per
unit mass is ∼ 1 cm2 g−1 [Rocha et al., 2013; Vogelsberger et al., 2012; Zavala et al., 2013]. But SIDM
theory with σ/m = 1 cm2 g−1 predicts subhalos with too low densities to match the ultra-faint galaxies.
This figure is taken from Zavala et al. [2019].

Zavala et al., 2013]. Figure 2.14 depicts the circular velocity profiles Vcirc of CDM and SIDM
(σ/m = 1 cm2 g−1) subhalos within 300 kpc from the centre of the simulated MW-like galaxies.
Both CDM and SIDM subhalos match only 15-16 MW satellites. Nevertheless, SIDM theory with
constant cross-section (σ/m = 1 cm2 g−1) predicts DM subhalos with too low densities to match
the observations of ultra-faint galaxies (see Figure 2.14). Thus, a constant cross-section of σ/m = 1
cm2 g−1 is likely to be inconsistent with the observed halo shapes of ultra-faint galaxies and several
galaxy clusters.

Figure 2.13 highlights the possible velocity dependence discernible in these data from dwarfs to
clusters. As σ/m varies within a wide range, SIDM models, which assume a constant scattering
cross-section, needs to be abandoned since those that could solve the cusp-core problem in dwarfs
seemed to violate several astrophysical constraints. In order to alleviate the cusp-core problem and
also match constraints at different scales, SIDM model needs to have a velocity-dependent cross-
section σ(v) that decreases as the relative velocity of DM particles involved from dwarfs to clusters
such as in Figure 2.15 [Feng et al., 2010; Loeb & Weiner, 2011; Vogelsberger et al., 2012]. For
σ/m > 10 cm2 g−1, self-interactions between DM particles are frequent enough to entail a core-
collapse, which is a well-known mechanism in globular clusters [Lynden-Bell & Wood, 1968], within
a Hubble time in halos. Then, it results in the collapse of the core into a central cusp for SIDM halos
[Balberg et al., 2002; Coĺın et al., 2002; Koda & Shapiro, 2011; Nishikawa et al., 2020; Pollack et al.,
2015]. As the vdSIDM model has cross-sections near and above the core-collapse limit according to
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stripping occurs, as was proposed recently by [57] (see
also [75, 76]).

A. Systematic uncertainties in ultra-faint galaxies

We stress that it is the large central densities of the
ultra-faint galaxies that make the diversity of the satel-
lite population particularly challenging. If the uncertain-
ties on the mass estimator used in [32] for these galaxies
have been underestimated, this would relax the discrep-
ancy noted here for the 1 cm2g−1 SIDM model. The
four ultra-faints we show in Figs. 2 and 3 could have rel-
evant systematic uncertainties: (i) the stellar kinemat-
ics data from Segue I is based on ∼ 70 stars [77], but
not all of them are unambiguously identified as belong-
ing to the satellite, which could affect the measurement
of 〈σlos〉 (see Fig. 5 of [78]); (ii) the data for Willman
1 is based on ∼ 15 stars [79] and a more detailed study
with a larger sample [80] suggested that Willman 1 might
not be in dynamical equilibrium, and also found possi-
ble interlopers in the sample in [79], which might have
biased high the value of 〈σlos〉; (iii) the cases of Segue II
and Boötes II are even more uncertain with kinematics
based only on a handful of stars [81, 82]; a study by [83]
with ∼ 20 members of Segue II was not able to measure
the velocity dispersion, and instead set an upper limit of
〈σlos〉 < 2.6 km/s (95% confidence), which remains con-
sistent but at the lower end of the error bars reported
in [81], while a study by [84] on Boötes II indicates that
the velocity dispersion reported in [82] might be biased
high due to the inclusion of a star that is likely part of a
binary system.

B. Gravothermal collapse in SIDM halos

The addition of baryonic physics points towards a sub-
halo population that should diversify and move system-
atically towards lower Vcirc values relative to the one
shown in Fig. 2 for all DM models. This would exac-
erbate the tension of the 1 cm2g−1 SIDM model with
the ultra-faint galaxies. It is however, possible for DM
self-interactions to provide a novel explanation to the di-
versity we highlight here if the cross section is velocity
dependent in such a way that it satisfies two conditions:
(i) it is large enough to be above but near the thresh-
old for gravothermal catastrophe at the typical internal
velocities of MW satellites and (ii) it has a strong ve-
locity dependence putting it well below this threshold at
the orbital velocities of MW satellites within the MW.
The former is required to have a fraction of SIDM sub-
halos collapse into cuspy density profiles, while the latter
is required to avoid subhalo evaporation due to particles
inside subhalos scattering with particles in the host halo,
and it also minimizes the impact of self-interaction in
the MW halo and beyond where constraints on the cross
section are tight (e.g. [24]).

FIG. 3. As Fig. 2 but for the vdSIDM simulation (see Fig. 1).
The velocity dependence of this SIDM model has cross sec-
tions near and above the onset of gravothermal collapse for
MW-like subhalos. This produces a bimodal subhalo distri-
bution, with some of the systems developing a central cusp,
Vcirc ∝ r0.6, while the others still retain a core, Vcirc ∝ r0.9.

The vdSIDM model we have explored (see Fig. 1) sat-
isfies these requirements and is shown in Fig. 3. We note
that in this case we use the subhalo ranking according to
the Vmax values in the SIDM simulation, which has the
same initial conditions. We do this because for those sub-
halos that have collapsed, the value of Vmax changes sub-
stantially in the later epochs after accretion, and likely
would not reflect the satellites’ luminosity. The effect
of the gravothermal collapse in this model is clear: it
distinctly diversifies the subhalo population by produc-
ing a bimodal distribution, with low-mass subhalos being
cuspy and offering a better match to the dense ultra-faint
galaxies, while more massive subhalos remain cored and
are better matched to the lower density satellites with
large half-light radii.

We can use the number of matching pairs as a way
of ranking the five different (DM-only) models we have
analysed in this work: 1) WDM (2.3 keV) with 21/24,
2) vdSIDM and ETHOS-4 both with 19/24, 3) SIDM
(1 cm2g−1) with 16/24 and 4) CDM with 15/24. An-
other way of quantifying the difference between the mod-
els is the following. We compute the minimum chi-
square of each model with all the satellites, i.e., for a
given combination of 24 pairs (regardless of the number
of matches), each being a subhalo circular velocity pro-
file and a (r1/2,V1/2) observational point, we compute

Figure 2.15 – Velocity-dependent cross-section: Left panel: Cross-section as a function of the relative
velocity. vdSIDM model consists of a SIDM with a strong velocity-dependent cross-section (orange line).
The collisionless region is delimited by the black area σ/m < 0.1 cm2 g−1. For σ/m > 10 cm2 g−1, self-
interactions between DM particles are frequent enough to result in core-collapse within a Hubble time in
halos. The green area represents the relevant region for MW satellites. A constraint on the cross-section
from the elliptical galaxy NGC720 is represented by a magenta arrow. Right panel: Circular velocity profiles
Vcirc of vdSIDM (orange line in the left panel) subhalos within 300 kpc from the centre of the simulated
MW-like galaxies. Open symbols with error bars correspond to circular velocities at the half-light radius
for 24 MW satellites [Errani et al., 2018; Torrealba et al., 2019]. Lines and symbols in gray (green) are
consistent matches (mismatches) between simulated subhalos and data points. As the vdSIDM model has
cross-sections near and above the core-collapse limit, it produces a bimodal distribution composed of cusps
and cores for MW-like subhalos. Indeed, the core collapse is responsible for this diversity, which is more
consistent with cored brighter satellites and cuspy ultra-faint galaxies. This figure is taken from Zavala
et al. [2019].

Figure 2.15, it produces a bimodal distribution composed of cusps and cores for MW-like subhalos.
Indeed, the core collapse is responsible for this diversity, which is more consistent with cored brighter
satellites and cuspy ultra-faint galaxies [Zavala et al., 2019]. Thus, core collapses can be considered
as a mechanism to create a diverse population of dwarf-size haloes, some of which would be cuspy
and others that would have cores in velocity-dependent SIDM models [Kahlhoefer et al., 2019;
Nishikawa et al., 2020; Sameie et al., 2020; Zavala et al., 2019].

All previous works are based on SIDM simulations without taking into account baryonic physics.
The inclusion of baryons into CDM simulations of dwarf galaxies has initially served to reduce the
discrepancy between DM-only simulations and observations concerning the inner DM distribution.
We have shown previously that baryonic feedback can reduce the central density of a cuspy DM
halo. By including hydrodynamics in SIDM simulations, it was found that the DM inner region of
dwarf galaxies with stellar masses M∗ < 106 are nearly identical to the SIDM-only simulations [Fry
et al., 2015b; Robles et al., 2017; Vogelsberger et al., 2014]. Substantial DM cores are formed in
both SIDM and SIDM+baryons simulations. It appears then that SIDM is more robust to feedback
than CDM at dwarf scales [Elbert et al., 2018; Robles et al., 2017]. This suggests that the faintest
dwarf spheroidals provide excellent laboratories constraining SIDM models. Indeed, they are ideal
targets as SIDM and CDM produce cores and cusps in these galaxies, respectively.

For high baryon concentration, it leads to a dense inner halo with a smaller core in SIDM model
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FIG. 2: Left: Logarithmic slope of the dark matter density profile at 1.5%rvir vs the ratio of stellar-to-halo masses inferred from the SIDM fits
with controlled sampling in Ren et al. [37]. Large filled circles denote the outliers shown in Fig. 1 with the same color scheme. For comparison,
we also show the expected range from NIHAO [26] (red band to guide the eye) and FIRE-2 [62, 63] hydrodynamical CDM simulations, as well
as CDM-only simulations (gray band); adapted from [5]. Right: The same as the left panel, but with the SIDM fits using MCMC sampling.

the validity of these tuned feedback models, and the impact on dark matter densities and disk sizes are correlated. We discuss
this in more detail next.

III. THE DIVERSITY OF THE INNER DARK MATTER DENSITY PROFILES

To be more quantitative, we use the logarithmic slope of the density profile at 1.5% times the virial radius rvir, ↵, to charac-
terize the cuspiness of the halo in the SIDM fits, study its correlations with the ratio of stellar-to-halo masses (M⇤/Mvir) and the
central stellar mass density (⌃0 = M⇤/2⇡R2

d), and compare them with CDM simulations.
Fig. 2 shows the logarithmic slope vs log(M⇤/Mvir) interfered from the SIDM fits with controlled (left) and MCMC (right)

samplings [37], together with the results from NIHAO [26] and FIRE-2 [62, 63] simulations, as well as CDM-only predictions,
adapted from [5]. We use large filled circles to denote outlier galaxies shown in Fig. 1. We first note that ↵ from the SIDM fits
spans a large range from �0.5 to �2.5, indicating that the SIDM model predicts both cored and cuspy inner halos. In fact, about
50% of the galaxies in our SIDM fits have ↵ . �1. For log(M⇤/Mvir) ⇠ �1.5, ↵ has the largest spread. This reflects diverse
baryon distributions in the galaxies even their stellar-to-halo mass ratios are fixed, as the SIDM halo profile is very responsive
to the baryonic potential, ⇢iso / exp(��b/�2

v0) [55–58]. We will come back to this point later.
On the other hand, both NIHAO and FIRE-2 CDM simulations predict a similar trend. For log(M⇤/Mvir) . �3.5, the

baryon content is too small to change the inner halo structure and the profile remains cuspy. The halo becomes more core-
like as M⇤/Mvir increases due to the strong feedback, the maximal core expansion occurs when log(M⇤/Mvir) ⇠ �2.5. The
contraction effect starts to dominate and the halo becomes cuspy again when the mass ratio increases further. For many dwarf
galaxies with density cores, the slopes inferred from the SIDM fits are consistent with the predictions in the CDM simulations
such as the outliers DDO 064, UGC 05750 and IC 2574. However, overall the SIDM fits exhibit a much larger spread in ↵ for
a given ratio of M⇤/Mvir. For galaxies with log(M⇤/Mvir) ⇠ �1.5, ↵ varies from �2.5 to �0.5 in the both SIDM fits, while
both CDM simulations predict ↵ in a much smaller range from �1.0 to �0.7. Among the eight outliers shown in Fig. 1, four of
them have ↵ below �1.5 in the SIDM fits (UGC05721, UGC 08490, NGC1705). According to the CDM simulations, their ↵
values would be larger than �1.0 given their M?/Mvir ratios. Thus, to fit their rotation curves, one expect that the simulations
would produce higher baryon concentration compared to the one inferred from the SIDM fits to these galaxies. However, this is
not the case as shown in Fig. 1 (right). Another option would be to increase the scatter of CDM in the horizontal direction. For
example, we could relax the abundance matching relation imposed in the simulations and shift Mvir for given M?. From Fig. 2,
we see that the required variation is about ±0.5 dex and it is interesting to see whether the CDM simulations can reproduce the
scatter. Note the SIDM fits [37] recover the trend of the abundance matching interference as in [59].

Fig. 3 (left), we plot the logarithmic slope vs the stellar mass surface density. There is a clear pattern that ↵ is strong correlated
with ⌃0. For ⌃0 . 100 M� kpc�2, the baryonic influence on the halo is small and SIDM thermalization produces large density
cores that are required to match with observations. When ⌃0 becomes larger, the core size shrinks and the density increases
accordingly. This is exactly what is observed, i.e., no large constant density cores in high surface brightness galaxies. Note the

Figure 2.16 – Baryon impact: Inner DM density slope α at r =0.015rvir as a function of M∗/Mvir at z = 0
from SIDM fits [Ren et al., 2019], NIHAO [Tollet et al., 2016] and FIRE-2 [Fitts et al., 2019; Hopkins
et al., 2018] hydrodynamical CDM simulations. The SIDM fits of the SPARC sample [Lelli et al., 2016],
which contains 135 galaxies, including the impact of baryons on the halo profile and compatible with a
unique cross-section of 3 cm2 g−1. The shaded grey band shows the expected range of DM profile slopes
for the NFW profile as derived from CDM-only simulations by including concentration scatter. The slope
α of SIDM fits spans a large range from -0.5 to -2.5, indicating that the SIDM model predicts both cored
and cuspy halos. It was also pointed out that this reflects different baryon distributions in galaxies, which
have a large impact on SIDM halos. As a result, the SIDM model predicts cored DM density profiles in low
surface brightness galaxies and cuspy density profiles in high surface brightness galaxies, and agrees best
with observations. As halos that host concentrated stellar populations exhibit few differences in density
profiles between CDM and SIDM models in the presence of baryons, the resulting DM core is effectively
indistinguishable between CDM and SIDM. Maybe signatures in stellar kinematics could distinguish these
two core formation mechanisms, one impulsive (feedback) and the other adiabatic (SIDM) [Burger &
Zavala, 2019]. This figure is taken from Kaplinghat et al. [2019].

[Kaplinghat et al., 2014]. Moreover, baryons can cause SIDM halos to core-collapse and become
denser than DM halos in presence of baryons [Balberg et al., 2002; Coĺın et al., 2002; Kochanek &
White, 2000; Koda & Shapiro, 2011; Vogelsberger et al., 2012]. As long as the baryonic component
dominates the central region, core-collapse can occur for σ/m = 0.5 cm2 g−1 [Elbert et al., 2018].
This is the reason why SIDM model predicts both cored and cuspy profiles, depending on baryon
concentration. As a result, the coupling between the SIDM and baryons also provides an explanation
for the uniformity of the rotation curves [Creasey et al., 2017; Kamada et al., 2017; Ren et al., 2019].

Figure 2.16 shows that the logarithmic slope of the DM density profile, at 1.5% of the virial
radius inferred from the SIDM fits, is correlated with the stellar mass [Ren et al., 2019]. Then,
SIDM+baryons model with an interaction cross-section of 3 cm2 g−1 can reproduce galaxy rotation
curves from ∼ 50 to 300 km s−1 [Kamada et al., 2017; Kaplinghat et al., 2019; Ren et al., 2019].
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The slope α of SIDM fits, which include the baryonic impact, spans a large range from -0.5 to
-2.5, indicating that the SIDM model predicts both cored and cuspy halos. It was also pointed
out that this reflects different baryon distributions in galaxies, which have a large impact on SIDM
halos. Thus, the SIDM model predicts cored DM density profiles in low surface brightness galaxies
and cuspy density profiles in high surface brightness galaxies and agrees best with observations.
This coupling works because within the characteristic scale of these galaxies, the DM and baryonic
masses are comparable. As halos that host concentrated stellar populations exhibit few differences in
density profiles between CDM and SIDM models in the presence of baryons, the resulting DM core is
effectively indistinguishable between CDM and SIDM (see Figure 2.16). Maybe signatures in stellar
kinematics could distinguish between these two core formation mechanisms, one impulsive (feedback)
and the other adiabatic (SIDM) [Burger & Zavala, 2019]. However, the impact of baryonic physics
in ultra-faint galaxies is negligible, such that it is difficult to imagine how a population of dense
ultra-faint galaxies can be accommodated with a constant cross-section of σ/m = 3 cm2 g−1 (see
Figure 2.16) [Zavala et al., 2019].
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Quataert E., Murray N., 2015, MNRAS, 454, 2092 20, 23

Oh S.-H., de Blok W. J. G., Walter F., Brinks E., Kennicutt Robert C. J., 2008, AJ, 136, 2761 13,
14

Oh S.-H., de Blok W. J. G., Brinks E., Walter F., Kennicutt Robert C. J., 2011, AJ, 141, 193 13,
14, 18

Oh S.-H., et al., 2015, AJ, 149, 180 13, 14

Oman K. A., et al., 2015, MNRAS, 452, 3650 17, 18, 22, 23

Peñarrubia J., Pontzen A., Walker M. G., Koposov S. E., 2012, ApJ, 759, L42 22, 23

Peebles P. J. E., 2000, ApJ, 534, L127 19, 25

Peirani S., de Freitas Pacheco J. A., 2008, Phys. Rev. D, 77, 064023 22

Peirani S., et al., 2017, MNRAS, 472, 2153 20, 22

Peter A. H. G., Rocha M., Bullock J. S., Kaplinghat M., 2013, MNRAS, 430, 105 30, 32

Petts J. A., Read J. I., Gualandris A., 2016, MNRAS, 463, 858 23

Pollack J., Spergel D. N., Steinhardt P. J., 2015, ApJ, 804, 131 33

Pontzen A., Governato F., 2012, MNRAS, 421, 3464 19, 21

41

http://dx.doi.org/10.1086/115438
https://ui.adsabs.harvard.edu/abs/1990AJ.....99.1548M
http://dx.doi.org/10.12942/lrr-2005-8
https://ui.adsabs.harvard.edu/abs/2005LRR.....8....8M
http://dx.doi.org/10.1086/161130
https://ui.adsabs.harvard.edu/abs/1983ApJ...270..365M
http://dx.doi.org/10.1086/324138
https://ui.adsabs.harvard.edu/abs/2002ApJ...564...60M
http://dx.doi.org/10.1103/PhysRevLett.123.141301
https://ui.adsabs.harvard.edu/abs/2019PhRvL.123n1301M
http://dx.doi.org/10.1038/370629a0
https://ui.adsabs.harvard.edu/abs/1994Natur.370..629M
http://dx.doi.org/10.1086/311333
https://ui.adsabs.harvard.edu/abs/1998ApJ...499L...5M
http://dx.doi.org/10.1093/mnras/283.3.L72
https://ui.adsabs.harvard.edu/abs/1996MNRAS.283L..72N
http://dx.doi.org/10.1086/177173
https://ui.adsabs.harvard.edu/abs/1996ApJ...462..563N
http://dx.doi.org/10.1086/304888
https://ui.adsabs.harvard.edu/abs/1997ApJ...490..493N
http://dx.doi.org/10.1111/j.1365-2966.2009.15878.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.402...21N
http://dx.doi.org/10.1093/mnras/stu2217
https://ui.adsabs.harvard.edu/abs/2015MNRAS.446.1820N
http://dx.doi.org/10.1103/PhysRevD.101.063009
https://ui.adsabs.harvard.edu/abs/2020PhRvD.101f3009N
http://dx.doi.org/10.1093/mnras/sty2888
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.3227N
http://dx.doi.org/10.1093/mnras/stv2072
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454.2092O
http://dx.doi.org/10.1088/0004-6256/136/6/2761
https://ui.adsabs.harvard.edu/abs/2008AJ....136.2761O
http://dx.doi.org/10.1088/0004-6256/141/6/193
https://ui.adsabs.harvard.edu/abs/2011AJ....141..193O
http://dx.doi.org/10.1088/0004-6256/149/6/180
https://ui.adsabs.harvard.edu/abs/2015AJ....149..180O
http://dx.doi.org/10.1093/mnras/stv1504
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.3650O
http://dx.doi.org/10.1088/2041-8205/759/2/L42
https://ui.adsabs.harvard.edu/abs/2012ApJ...759L..42P
http://dx.doi.org/10.1086/312677
https://ui.adsabs.harvard.edu/abs/2000ApJ...534L.127P
http://dx.doi.org/10.1103/PhysRevD.77.064023
https://ui.adsabs.harvard.edu/abs/2008PhRvD..77f4023P
http://dx.doi.org/10.1093/mnras/stx2099
https://ui.adsabs.harvard.edu/abs/2017MNRAS.472.2153P
http://dx.doi.org/10.1093/mnras/sts535
https://ui.adsabs.harvard.edu/abs/2013MNRAS.430..105P
http://dx.doi.org/10.1093/mnras/stw2011
https://ui.adsabs.harvard.edu/abs/2016MNRAS.463..858P
http://dx.doi.org/10.1088/0004-637X/804/2/131
https://ui.adsabs.harvard.edu/abs/2015ApJ...804..131P
http://dx.doi.org/10.1111/j.1365-2966.2012.20571.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421.3464P


CHAPTER 2. THE CUSP-CORE PROBLEM

Pontzen A., Governato F., 2014, Nature, 506, 171 19

Power C., Navarro J. F., Jenkins A., Frenk C. S., White S. D. M., Springel V., Stadel J., Quinn T.,
2003, MNRAS, 338, 14 20

Read J. I., Gilmore G., 2005, MNRAS, 356, 107 19

Read J. I., Steger P., 2017, MNRAS, 471, 4541 15, 16

Read J. I., Wilkinson M. I., Evans N. W., Gilmore G., Kleyna J. T., 2006, MNRAS, 366, 429 24

Read J. I., Agertz O., Collins M. L. M., 2016a, MNRAS, 459, 2573 16

Read J. I., Iorio G., Agertz O., Fraternali F., 2016b, MNRAS, 462, 3628 18

Read J. I., Walker M. G., Steger P., 2019, MNRAS, 484, 1401 15, 16

Ren T., Kwa A., Kaplinghat M., Yu H.-B., 2019, Physical Review X, 9, 031020 35

Rhee G., Valenzuela O., Klypin A., Holtzman J., Moorthy B., 2004, ApJ, 617, 1059 14

Richardson T., Fairbairn M., 2014, MNRAS, 441, 1584 16

Robertson A., Massey R., Eke V., 2017, MNRAS, 465, 569 30

Robles V. H., et al., 2017, MNRAS, 472, 2945 30, 34

Robles V. H., Bullock J. S., Boylan-Kolchin M., 2019, MNRAS, 483, 289 27, 28

Rocha M., Peter A. H. G., Bullock J. S., Kaplinghat M., Garrison-Kimmel S., Oñorbe J., Moustakas
L. A., 2013, MNRAS, 430, 81 30, 31, 32, 33

Rodrigues D. C., del Popolo A., Marra V., de Oliveira P. L. C., 2017, MNRAS, 470, 2410 29, 30

Safarzadeh M., Spergel D. N., 2020, ApJ, 893, 21 26, 28, 29, 30

Salucci P., 2001, MNRAS, 320, L1 14

Sameie O., Yu H.-B., Sales L. V., Vogelsberger M., Zavala J., 2020, Phys. Rev. Lett., 124, 141102
34

Sawala T., et al., 2016, MNRAS, 457, 1931 20, 22

Schaller M., Robertson A., Massey R., Bower R. G., Eke V. R., 2015, MNRAS, 453, L58 19

Schaye J., et al., 2010, MNRAS, 402, 1536 20

Schive H.-Y., Chiueh T., Broadhurst T., 2014a, Nature Physics, 10, 496 25, 26, 27

Schive H.-Y., Liao M.-H., Woo T.-P., Wong S.-K., Chiueh T., Broadhurst T., Hwang W. Y. P.,
2014b, Phys. Rev. Lett., 113, 261302 29
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CHAPTER 3. FULLY GPU AND PURE GRAVITATIONAL N-BODY SIMULATIONS OF
COLLISIONLESS SYSTEMS

The N-body or Lagrangian methods work by following a collection of fluid elements or particles
while calculating the forces acting upon them. Gravitational N-body simulations are widely used
tools in astrophysics. Celestial mechanics, dense stellar systems, the sphere of influence of a massive
BH, and galaxy dynamics and cosmology are the four main astrophysical domains where N-body
simulations are extensively employed. In galaxy dynamics and cosmology, many computational
techniques, such as the particle-mesh method, the tree algorithm, and a hybrid combination of
the two, and dedicated codes such as RAMSES [Teyssier, 2002], GADGET [Springel, 2005], and
PKDGRAV [Stadel, 2001] have been developed over the last decades. This chapter outlines the
computer simulation techniques used in exploring the cusp-core problem in dwarf galaxies, focusing
on the methods used by the non-public Gravitational Oct-Tree code accelerated by HIerarchical time
step Controlling named GOTHIC [Miki & Umemura, 2017], which served as the base code of the
work in this thesis.

3.1 N-body technique

3.1.1 Boltzmann-Poisson system

Galaxies are very extended objects with typical sizes from tens to hundreds of kiloparsecs and can be
described as collections of particles that evolve under their mutual gravitational interaction. As dwarf
galaxies are devoid of gas, we neglect the hydrodynamical effects in the simulated galaxy dynamics.
In our pure N-body simulations, we consider only spherical isolated systems such as galaxy systems.
The principal components of these many-body systems relevant to this thesis are DM and stars.
CDM is considered to be collisionless particles that interact only through gravity. Stars, on the other
hand, are not collisionless, but their interaction cross-sections are small enough to rarely collide
head-on. Hence, they can be described as collisionless fluids, which obey the collisionless Boltzmann
equation:

d f

dt
= ∂ f

∂t
+ v

∂ f

∂r
− ∂Φ

∂r

∂ f

∂v
= 0, (3.1)

where the collective gravitational potential, Φ, is a solution of Poisson’s equations:

∇2Φ= 4πG
∫

f d v, (3.2)

where f = f (r, v, t ) corresponds to the mass density, with the positions r and velocities v , under the
influence of the collective gravitational potential. However, it is highly non-trivial to solve the above
two equations directly with finite difference methods.

3.1.2 A discrete set of N particles

In order to solve the previous equations, the N-body technique consists of sampling the distribution
function f (r, v, t ) with a discrete set of N particles, each described by a mass, position and velocity.
Indeed, it is not possible to resolve individual DM particles due to computational limitations. That
is the reason why it is common to simulate pseudo-particles, which represent hundreds to thousands
of solar masses. Thus, the Boltzmann-Poisson system is replaced with a system of N local tracers
of the mass density, which evolves according to the Hamiltonian equations of motion:

dri

dt
= vi , (3.3)

mi
dvi

dt
= ai , (3.4)
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where ai corresponds to the acceleration of the i th particle of N particles, which is given by Newton’s
equation of motion:

ai =
N−1∑

j=0, j 6=i

Gm j (r j − ri )(|r j − ri |2 +ε2
) , (3.5)

where G is the gravitational constant, ri and mi are, respectively, the positions and masses of the
i th particle of N particles. This Monte Carlo technique is subject to Poisson noise, and high particle
numbers are, therefore, required in order to reduce noise. ε corresponds to the gravitational softening
length. Hereafter, we label the particles which both experience and induce gravitational forces as i -
and j -particles, respectively, and denote their total numbers Ni or N j .

3.1.3 Leapfrog integrator

In order to evolve the N-body system, the next step is to update the positions and velocities of each
particle by integrating the equation of motion using the calculated accelerations. Several numerical
integrators have been developed to solve differential equations like Equation (3.4) such as the well-
known leapfrog method. The new position and velocities of a particle after a time step ∆t are given
by

vn+1/2
j = vn−1/2

j + ∆t

2
an

j , (3.6)

r n+1
j = r n

j + vn+1/2
j ∆t , (3.7)

where r n
j is the position of the j th particle at the nth time step. In the standard leapfrog integrator,

a single time step ∆t is used for all particles and is maintained constant throughout the integration.
The method is accurate to second-order and conserves energy.

3.1.4 Collisionless regime

Numerically, our many-body system can be treated as collisionless only if the simulation time is
significantly smaller than the relaxation time Tr given by Binney & Tremaine [2008]:

Tr(r ) ' v3(r )

8π(n̄m2)G2 ln
(a
ε

) , (3.8)

where n̄ and m are the number-density and mass of particles, respectively. v , ε, and a represent
the velocity, the softening length, and the size of the system, respectively. This relaxation time
represents the time after which the deviation from the original kinetic energy of a particle due to
two-body encounters is of the order of its initial kinetic energy. Hence, collisionless systems are
those in which two-body collisions are negligible.

3.1.5 Softening length

Introducing a softening length ε in the law of gravitation is an efficient solution adopted in collisionless
N-body simulations to avoid unphysical two-body scattering between nearby particles [Aarseth, 1963].
Since an N-body particle is not, in reality, a point mass, this results in numerical issues when the
distance |r j −ri | between two particles approaches zero in the absence of softening. More precisely,
this divergence can lead to high velocities and finally unbinding close particles. As a result, force
law saturates at close distances and then the particle collection represents a smoothed density field
at small scales. Softening value can be estimated using the following criterion:

ε∼ a/N1/3, (3.9)
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where N and a are the number of particles and the typical size of the smallest object in the simulation,
respectively. More precisely, a corresponds to the scale (core) radius of halos (globular clusters).
Convergence tests are necessary to set this value. Another benefit of the softening length is reducing
the numerical errors accumulated due to larger time steps by setting a maximum acceleration of
Gm/ε2 during a close encounter. Moreover, the inclusion of softening can theoretically reduce two-
body relaxation as the relaxation time depends on the softening length according to Equation (5.5).
It was shown that relaxation effects are not substantially suppressed by softening because relaxation
depends predominantly on the number of particles used in the simulation [Dehnen, 2001; Hernquist
& Barnes, 1990].

In a nutshell, choosing the appropriate softening length, time step, and the number of particles
is the crucial step to ensure properly converged simulations [Ludlow et al., 2019; Power et al., 2003;
Zhang et al., 2019]. This procedure helps in mitigating numerical issues.

3.2 Accelerating N-body simulations

The simplest way to solve the N-body problem is via the direct application of Equation (3.5). Since
this calculation must be repeated for each particle, it results in a O(Ni N j ) scaling in terms of the
number of operations. As a consequence, this calculation is computationally expensive and usually
not appropriate for galaxy and cosmological simulations. Indeed, it is only feasible for a limited
number of particles where an accurate force computation is required, such as close encounters or
stellar clusters. As the computational cost is too high to investigate realistic resolved astrophysical
phenomena, several methods have been proposed to accelerate N-body simulations.

3.2.1 Tree-method

One way to accelerate N-body simulations while keeping a large number of particles is to reduce
the number of calculations needed. Popular algorithms such as the particle-mesh, tree method,
and some hybrid techniques have been developed to solve the N-body problem with acceptable
accuracy and reduce the number of operations to O(Ni logN j ) [Barnes & Hut, 1986; Hockney &
Eastwood, 1988]. We will only focus on the tree method as it is employed in GOTHIC used for
the simulations presented in the subsequent chapters of this thesis. The fundamental assumption
of the tree algorithm is that the gravitational force of far-away particles can be approximated by
replacing this group of distant particles with a pseudo-particle located at the centre of mass and
encompassing the total mass of those bodies. A numerically efficient way to locate particles in space
and gather them into groups is the oct-tree method [Barnes & Hut, 1986]. This method builds
the tree in the following manner. The algorithm starts by constructing a root cube, which contains
all the particles of the system. Then, the tree code divides the main cube into eight subcubes.
Each subcube is then further subdivided into more subcubes by the same division scheme, and this
division continues as long as the number of particles in a cube exceeds one. As such, the oct-tree
strategy consists of a recursive division of the particle distribution, which leads to a tree that consists
of cubes at different levels. Figure 3.1 illustrates the 2-dimensional version of the N-body problem
using quadtrees instead of oct-trees. The upper right square has been recursively subdivided into 4
nodes at each level, until each cell in the tree contains at most one particle. In this case, four levels
in the tree are needed to fully subdivide the upper right square.

Figure 3.1 shows that the gravitational force of the closest tree region is explored in detail while
more distant regions are considered as pseudo-particles. In other words, each subcube of the main
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Figure 3.1 – Oct-tree method in 2D: The 2-dimensional version of the N-body problem using quadtrees
instead of oct-trees. The upper right square has been recursively subdivided into 4 nodes at each level
until each cell in the tree contains at most one particle. In this case, four levels in the tree are needed to
fully subdivide the upper right square. By grouping distant particles together, the far-field approximation
requires significantly fewer operations than the direct force calculation. Suppose we want to compute the
force exerted on the red particle in the upper right corner, particles in orange squares are sufficiently far
away from the considered particle that we can group them based on their center of mass (CM) and apply
the far-field force approximation. However, the green particle is sufficiently close to the target particle such
that we can apply the direct force calculation. As a result, this method requires only 5 force calculations
instead of 24 using the direct force calculation.

cube is considered for direct calculation only if a specific criterion is satisfied. If a cube, at a given
level, does not satisfy the criterion, the centre of mass is used for the calculation of the gravitational
force. To determine whether a pseudo j -particle is near or far, the Multipole Acceptance Criterion
(MAC) is employed. In GADGET-2, the acceleration MAC by Springel [2005] is given by

di j ≥
(

Gm j b j

∆acc|aold
i |

)
, (3.10)

where di j , aold
i and ∆acc are the distance to the particle from an i -particle, the acceleration of the

i-particle in the previous time step and an accuracy controlling parameter, respectively. By grouping
distant particles together, the far-field approximation requires significantly fewer operations than the
direct force calculation. Suppose we want to compute the force exerted on the red particle in the
upper right corner, particles in orange squares are sufficiently far away from the considered particle
that we can group them based on their centre of mass and apply the far-field force approximation,
as illustrated in Figure 3.1. However, the green particle is sufficiently close to the target particle
such that we can apply the direct force calculation. As a result, this method required only 5 force
calculations instead of 24 using the direct force calculation (cf. Figure 3.1).
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3.2.2 Block time step

In the standard leapfrog integrator, a shared time step ∆t is used for all particles and is constant
during the integration. However, because of the large dynamic range of lengths and timescales
involved in typical astrophysical systems, it causes unnecessary, additional computations to track
the evolution of the system. Indeed, particles in the central region of a galaxy will have a much
shorter dynamical time than one which is orbiting near the virial radius. This serves as the motivation
underlying the use of block (or hierarchical) time steps by both GOTHIC and GADGET-2, in which
a group of particles has the same time step [Aarseth, 1963; McMillan, 1986]. This method speeds
up the execution time by reducing the number of particles Ni .

3.2.3 GPU

Most of N-body codes run using multiple central processing units (CPUs) set by the workstation
or CPU nodes in clusters. Architecturally, a CPU is composed of just a few cores. As a result,
a large number of of CPUs, such as in CPU clusters, are required to perform galaxy simulations
in a reasonable amount of time (1-30 days). In contrast, a graphics processing unit (GPU) is
composed of hundreds of cores. Even if the GPU was originally developed as a processor dedicated
to image processing, it is widely used as an accelerator device and is suitable for parallel computing
in astrophysics. Indeed, GPUs are best suited for repetitive and highly-parallel computing tasks such
as tree calculations. Recently, some of N-body codes running on CPUs were accelerated by GPUs
such as PKDGRAV3 [Potter et al., 2017].

3.3 GOTHIC

In all the projects described in this thesis, we performed our simulations with the high performance
collisionless N-body code GOTHIC [Miki & Umemura, 2017]. In contrast to PKDGRAV3, this
gravitational oct-tree code runs entirely on GPU. For the simulations, we used a NVIDIA GeForce
GTX 1080 Ti (CUDA 9.0) on Intel Xeon Silver 4114 (GCC 4.8). The N-body code is accelerated by
the use of the block time step as in GADGET-2. More precisely, particles contained in a common
subcube share the same time step. The latter in GOTHIC is defined as:

∆t = η ·min

(
ε

vmax
,

√
ε

amax

)
, (3.11)

where ε and η are the softening length and the time-step parameter, respectively. The default value of
the time-step parameter is η= 0.5. As the block time step is employed, a second-order Runge–Kutta
method is adopted to integrate the particle orbit. The acceleration MAC was designated to be the
optimal choice for this GPU architecture. Further details pertaining to the implementation and the
performance of GOTHIC are provided in Miki & Umemura [2017] and Miki [2018]

To generate our initial conditions or live objects for simulations, we used the initial-condition gen-
erator for N-body simulations called MAGI [MAny-component Galaxy Initialiser Miki & Umemura,
2018]. Adopting a distribution-function-based method, the generator ensures that the final realiza-
tion of the system is in dynamical equilibrium. The computation of the distribution functions was
done with Eddington’s formula for spherically symmetric components assuming an isotropic velocity
distribution. MAGI also has the functionality to represent various kinds of density profiles.
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3.4 Simulation analysis

In post-processing, an important technical aspect of numerical simulations is how to extract infor-
mation. We used the python module toolbox designated as pnbody 4.0 [Revaz, 2013] to analyze
our data and extract our results.

In the context of the cusp-core problem, the main purpose is to establish the spherically averaged
density profile of the DM halo. Determining the halo centre is subsequently a crucial task, especially
as the halos are not spherically symmetric. Throughout all our studies presented in this thesis,
the centre of the stellar component or the DM halos was determined using the iterative technique
suggested by Power et al. [2003]. We computed recursively the centre of mass of particles within
a shrinking sphere until a convergence criterion is met. At each iteration, we calculated the mass
centre within the considered sphere, which is then set as the new centre of the system. The next
iteration starts with a new sphere with a radius reduced by 2.5 per cent.

During their orbits, globular clusters or DM subhalos are subjected to mass loss induced by the
tidal field of the galaxy. Reconstructing accurately the mass loss history of these systems is essential
for the understanding of the galaxy dynamics. We follow the iterative method of Baumgardt &
Makino [2003] to determine the number of bound particles over time. First, it is assumed that all
particles are bound in order to calculate the initial tidal radius rt. Next, we calculated the mass of
all particles inside rt and used it for evaluating the new radius for the following step.

3.5 References

Aarseth S. J., 1963, MNRAS, 126, 223 47, 50

Barnes J., Hut P., 1986, Nature, 324, 446 48

Baumgardt H., Makino J., 2003, MNRAS, 340, 227 51

Binney J., Tremaine S., 2008, Galactic Dynamics: Second Edition 47

Dehnen W., 2001, MNRAS, 324, 273 48

Hernquist L., Barnes J. E., 1990, ApJ, 349, 562 48

Hockney R. W., Eastwood J. W., 1988, Computer simulation using particles 48

Ludlow A. D., Schaye J., Bower R., 2019, MNRAS, 488, 3663 48

McMillan S. L. W., 1986, ApJ, 307, 126 50

Miki Y., 2018, arXiv e-prints, p. arXiv:1811.02761 50

Miki Y., Umemura M., 2017, New Astron., 52, 65 46, 50

Miki Y., Umemura M., 2018, MNRAS, 475, 2269 50

Potter D., Stadel J., Teyssier R., 2017, Computational Astrophysics and Cosmology, 4, 2 50

Power C., Navarro J. F., Jenkins A., Frenk C. S., White S. D. M., Springel V., Stadel J., Quinn T.,
2003, MNRAS, 338, 14 48, 51

51

http://dx.doi.org/10.1093/mnras/126.3.223
https://ui.adsabs.harvard.edu/abs/1963MNRAS.126..223A
http://dx.doi.org/10.1038/324446a0
https://ui.adsabs.harvard.edu/abs/1986Natur.324..446B
http://dx.doi.org/10.1046/j.1365-8711.2003.06286.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.340..227B
http://dx.doi.org/10.1046/j.1365-8711.2001.04237.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.324..273D
http://dx.doi.org/10.1086/168343
https://ui.adsabs.harvard.edu/abs/1990ApJ...349..562H
http://dx.doi.org/10.1093/mnras/stz1821
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.3663L
http://dx.doi.org/10.1086/164400
https://ui.adsabs.harvard.edu/abs/1986ApJ...307..126M
https://ui.adsabs.harvard.edu/abs/2018arXiv181102761M
http://dx.doi.org/10.1016/j.newast.2016.10.007
https://ui.adsabs.harvard.edu/abs/2017NewA...52...65M
http://dx.doi.org/10.1093/mnras/stx3327
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.2269M
http://dx.doi.org/10.1186/s40668-017-0021-1
https://ui.adsabs.harvard.edu/abs/2017ComAC...4....2P
http://dx.doi.org/10.1046/j.1365-8711.2003.05925.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.338...14P


CHAPTER 3. FULLY GPU AND PURE GRAVITATIONAL N-BODY SIMULATIONS OF
COLLISIONLESS SYSTEMS

Revaz Y., 2013, pNbody: A python parallelized N-body reduction toolbox (ascl:1302.004) 51

Springel V., 2005, MNRAS, 364, 1105 46, 49

Stadel J. G., 2001, PhD thesis, UNIVERSITY OF WASHINGTON 46

Teyssier R., 2002, A&A, 385, 337 46

Zhang T., Liao S., Li M., Gao L., 2019, MNRAS, 487, 1227 48

52

http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.364.1105S
http://dx.doi.org/10.1051/0004-6361:20011817
https://ui.adsabs.harvard.edu/abs/2002A&A...385..337T
http://dx.doi.org/10.1093/mnras/stz1370
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.1227Z


Chapter 4

Our solution to the Fornax cusp-core
problem

The work presented in this chapter is based on Boldrini et al. (2019) (arXiv:1903.00354)

and Boldrini et al. (2020b) (arXiv:1909.07404)
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CHAPTER 4. OUR SOLUTION TO THE FORNAX CUSP-CORE PROBLEM

4.1 The Fornax timing problem

Fornax, the most massive dwarf spheroidals (dSphs) of the MW, is the only one to have five (or
perhaps six) globular clusters (GCs) orbiting in a dense background of DM [Wang et al., 2019] (see
Figure 4.1). For instance, another major dSph, such as the Sagittarius dSph, has many GCs. Four
clusters are found in its main body (M 54, Arp 2, Terzan 7 and Terzan 8) [Da Costa & Armandroff,
1995] and a few halo clusters have been associated with the stream across the sky (Sbordone et al.
[2015] and references therein). The study of GC dynamics can place powerful constraints on the
Fornax DM halo type.

GC1

GC5

GC4

GC2

GC3

Fornax

GC6

GC1

GC2

GC3

GC5

Figure 4.1 – GC distribution: Images of the Fornax dwarf galaxy and its five (or six) GCs with masses of
about 105 M¯ and the average projected distance of these clusters is about 1 kpc. Credits: ESO/Digital
Sky Survey 2 and NASA, ESA, S. Larsen (Radboud University, the Netherlands).

One apparent paradox about these clusters is that we do not expect to see any of them because
they should have sunk to the centre of Fornax due to dynamical friction [Chandrasekhar, 1943].
It is precisely because of this drag force that GCs are expected to sink to the centre of their host
galaxy and form a nuclear star cluster [Tremaine, 1976; Tremaine et al., 1975]. However, there is
no bright stellar nucleus and we are still observing GCs orbiting in Fornax (see Figure 4.2). This
has become known as the Fornax timing problem [Oh et al., 2000]. Since the dynamical friction
force depends directly on the density of DM halo, the timing problem could be used to probe the
cusp-core problem. Changing the density profile could delay dynamical friction. Simulations agree
well with Chandrasekhar’s analytic calculation for a cuspy halo such as NFW halo, which is the most
commonly used model for DM halos [Goerdt et al., 2006]. Enhancement of the infall time can be
achieved by changing the density profile of the DM halo.

Numerous simulations have been performed to study the timing problem [Cole et al., 2012;
Goerdt et al., 2006; Oh et al., 2000; Read et al., 2006b]. A live system is necessary to capture tidal
stripping and dynamical friction. Thus, Fornax has to be modelled as a live galaxy with its GCs,
i.e. a self-gravitating system composed of star and DM particles. Concerning the determination of
the DM density distribution, previous simulations showed that the existence of five globular clusters
in Fornax is inconsistent with the hypothesis of a cuspy halo due to dynamical friction because the
GCs would have sunk into the centre of Fornax in a relatively short time [Arca-Sedda & Capuzzo-
Dolcetta, 2016, 2017; Goerdt et al., 2006; Sánchez-Salcedo et al., 2006]. According to Goerdt et al.
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z=0
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Fornax
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Dynamical
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TheoryObservations

Figure 4.2 – Fornax timing problem: Theory predicts that the five GCs should have sunk to the centre of
Fornax due to dynamical friction and form a nuclear star cluster. However, there is no bright stellar nucleus
and we are still observing GCs orbiting in Fornax. This has become known as the timing problem.

[2006], a solution to the timing problem is that Fornax has a cored DM halo. In this model, GCs
stop sinking at the core radius because of a resonance/scattering effect. Later work provided further
support for a large DM core for Fornax [Cole et al., 2012]. The GCs did not fall to the centre
because of ‘dynamical buoyancy’ created by the Fornax core. It was also proposed that GCs did not
form within Fornax, but that they have been accreted by Fornax, which has a small cored halo.

In this work, we re-investigate the Fornax cusp-core problem using N-body simulations with
entirely live objects i.e. fully composed of particles, in order to take into account correctly dynamical
friction and tidal effects between Fornax and its GCs. The Section 4.2 is organized as follows.
Section 4.2.1 provides a clear description of the Fornax system and the N-body modelling. In
Section 4.2.2, we present details of our numerical simulations. In Section 4.2.3, we present our
results of simulations and discuss the implications of our result on the DM halo profile of Fornax.

4.2 Constraints from globular cluster distribution

4.2.1 Fornax-GC system

The dSph galaxy Fornax is one of the most DM-rich satellites of the MW with a stellar mass of
about 108 M¯ at a distance of around 147 kpc [de Boer & Fraser, 2016]. We consider only the
first five GCs with masses of about 105 M¯ and average projected distances of about 1 kpc (see
Figure 4.1). Various details are given in Table 4.1. In this subsection, we present the models for
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Object Ma r b
c r d ,e

t Db
p Da

MW
[105 M¯] [pc] [pc] [kpc] [kpc]

Fornax 382 ± 12 668 ± 34c - - 147 ± 4
GC1 0.42 ± 0.10 10.03 ± 0.29 59.06 ± 1.70 1.6 147.2 ± 4.1
GC2 1.54 ± 0.28 5.81 ± 0.19 108.19 ± 3.54 1.05 143.2 ± 3.3
GC3 4.98 ± 0.84 1.60 ± 0.07 108.17 ± 4.73 0.43 141.9 ± 3.9
GC4 0.76 ± 0.15 1.75 ± 0.18 115.62 ± 11.89 0.24 140.6 ± 3.2
GC5 1.86 ± 0.24 1.38 ± 0.11 25.69 ± 2.05 1.43 144.5 ± 3.3

Table 4.1 – Observed data for the Fornax system: rc is the half-light radius for Fornax dwarf galaxy
and the King model core radius for the GCs with their tidal radius rt. Dp is the projected distance of the
GC from the centre of Fornax. The last column is the line-of-sight distance from MW. References: (a)
de Boer & Fraser [2016], (b) Mackey & Gilmore [2003], (c) Strigari et al. [2010], (d) Webbink [1985],(e)
Smith et al. [1996].

Fornax and its GCs that provide the initial conditions for our simulations.

Fornax modelling

We construct Fornax as a live galaxy composed of stars and DM particles only, since dSph galaxies
contain little or no gas today. The Fornax stellar component is modelled due to the presence of the
dSph core (r0 = 0.668 kpc) by a Plummer profile [Plummer, 1911]:

ρ(r ) = 3r 2
s M0

4π
(r 2 + r 2

s )−5/2, (4.1)

where rs and M0 are the scale parameter and the mass, respectively.

For the DM halo of Fornax, we employ two different density profiles: NFW and Burkert profiles
in order to deal with the cusp-core problem. For cuspy halos, we assume a NFW form [Navarro
et al., 1996]:

ρ(r ) = ρ0

(
r

rs

)−1 (
1+ r

rs

)−2

, (4.2)

with the central density ρ0 and scale length rs. For cored halos, we assume that the DM is distributed
in a spherical halo with a Burkert density profile [Burkert, 1995; Salucci & Burkert, 2000]:

ρ(r ) = ρ0r 3
0

(r + r0)(r 2 + r 2
0 )

, (4.3)

where r0 and ρ0 are the core radius and the central density, respectively. In order to determine the
halo parameters (see Table 4.2), we fitted the data of Fornax mass with a mass model that includes
a stellar component and a dark halo:

Mmodel(r ) = M∗(r )+Mh(r ), (4.4)

for all halos in Figure 4.3. The data points correspond to the mass estimates by Walker & Peñarrubia
[2011] for two chemically distinct sub-populations. There are other mass estimators for Fornax
[Amorisco et al., 2013; Errani et al., 2018]. Plots of density profiles are illustrated in Figure 4.3. In
order to test halo stability during the simulation, we compared our halo profiles at the beginning
(T = 0 Gyr (solid line)) and at the end (T = 12 Gyr (dotted line)) of the simulation, which matches
almost exactly for all radii.
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Figure 4.3 – Enclosed mass (left panels) and density distributions (right panels) for cored (top panels) and
cuspy (bottom panels) DM halo models. The data points correspond to the mass estimates by Walker &
Peñarrubia [2011] for two chemically distinct subpopulations and by Amorisco et al. [2013] for three distinct
stellar subpopulations in the red giant branch. Radial density profiles at the beginning T = 0 Gyr (solid line)
and at the end of the simulation T = 12 Gyr (dotted line), which are the same, show the stability of our
halos. All halo parameters are summarized in Table 4.2.

GC modelling

There are five surviving GCs orbiting in Fornax. Our N-body realizations of GCs assume a King
[1962] stellar density distribution,

ρ(r ) = ρ0

[(
1+

(
r

rk

)2)−1/2

−C

]
, C =

[
1+

(
rt

rk

)2]−1/2

, (4.5)

where rc and rt are the King and tidal radii, respectively. For most of the simulations, we chose
a King radius rk = 1 pc lower than the observed radius (see Table 4.1) because it is susceptible to
increase through dynamical processes such as mass loss. The projected distances for the GCs are
from 0.24 to 1.6 kpc, which is the minimum distance between GCs and the Fornax centre. Based on
the observed line-of-sight distance with uncertainties (see Table 4.1), as a function of the projected
distance, we calculate all possible radial distances from the centre of Fornax for all GCs, which
are summarized in Figure 4.4. According to this figure, the radial distance can be larger than the
projected distance. We also estimate the maximum pericentre of observed GCs with eccentricity
parameter e = 0.9 thanks to the fitted cluster tidal radius of Table 4.2 for each halo model. These
radii will be used as constraints on GC final orbital radii (see Figure 4.4).

To generate the initial conditions, we use the numerical code, nbodygen [Sadoun et al., 2014].
This C++ code draws positions and velocities of each particle such that the resulting distribution
follows the desired density profile ρ(r ). The code ensures that the final realization of the galaxy is
in dynamical equilibrium.

MW tidal field

According to Gaia DR2 data [Gaia Collaboration et al., 2018], the orbit of Fornax has an eccentricity
of 0.29 and its pericentre is about 85.9 kpc. We estimate the tidal radius for Fornax using the
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Model Density profile rs Mh rt mp

[kpc] [M¯] [kpc] [M¯]

B1 Burkert 0.25 0.318×109 2.81 89
B2 Burkert 0.5 0.88×109 3.95 230
B3 Burkert 0.75 1.1×109 4.52 285
B4 Burkert 1 1.28×109 4.98 329
N1 NFW 0.5 0.6×109 3.87 160
N2 NFW 1.0 1.2×109 4.87 310
N3 NFW 1.5 1.6×109 5.25 410
N4 NFW 2 2.0×109 5.77 510

Table 4.2 – Parameters for halo models used in the simulations. rs and Mh are the scale radius (core
radius for Burkert profile) in density profiles and mass for the halo respectively. rt is the tidal radius for
Fornax estimated from Eq (4.6). We run cored halos Bn modelled by a Burkert profile and cuspy halos Nn

modelled by a NFW profile. The halo and the stellar component are represented by N = 106 particles. mp

is the mass resolution for our N-body realization.

equation of Read et al. [2006a]:

rt = rp

(
Ms

Mg(3+e)

)1/3

, (4.6)

where rp, Ms, Mg and e are the pericenter radius, the satellite mass, the galactic mass and the
eccentricity respectively. We find tidal radii of 2.81-5.77 kpc, based on the range of masses for
Fornax given in Table 4.2 and using a total mass for the MW of 2×1012 M¯. Within these radii,
we can expect that tidal effects do not profoundly alter the structure and kinematics of Fornax.
However, the MW tidal field can have a significant impact on GCs on eccentric orbits (see Appendix
B). Our host galaxy potential, based on the model of Allen & Santillan [1991], consists of a stellar
bulge as a Plummer sphere [Plummer, 1911], a disc represented by the potential from [Miyamoto
& Nagai, 1975] and a spherical DM halo described by NFW profile [Navarro et al., 1997]. For this
model, we used the revised parameters from Irrgang et al. [2013] (see their Table 1).

4.2.2 N-body simulations

Fornax is dominated by metal-rich stars whereas GCs are dominated by metal-poor stars [de Boer
& Fraser, 2016]. If we compare the total mass of metal-poor ([Fe/H]<-2) clusters of (8.81 ±
0.92)×105M¯ to the metal-poor stellar mass in Fornax of (44.9 ± 5.3)×105 M¯, this yields you a
mass fraction of 19.6 ± 3.1 %, which implies that a large fraction of the metal-poor stars in Fornax
still belong to the GCs [de Boer & Fraser, 2016]. GC4 was excluded from this estimation because
this cluster is possibly more metal-rich than the other clusters. This high mass fraction of 19.6 ± 3.1
% suggests that each of these four surviving metal-poor GCs has likely lost several times 105 M¯
due to dynamical processes such as dynamical friction, tidal effects, and evaporation as a result of
two-body relaxation. These processes act to destroy GCs on Gyr time-scales [Fall & Zhang, 2001;
Jordán et al., 2007]. Based on this hypothesis, we supposed that GCs were initially much more
massive in the past and belonged to Fornax. Thus, the GC initial radii have to be lower than the
approximate Fornax tidal radii depending on the halo mass.

We ran 75 simulations with five GCs orbiting in all our halo models. The initial parameters are
orbital radii Ri = [1.0,1.5,2.0,2.5,3.0] kpc and GC masses Mi = [2.5,5.0,7.5,10] ×105M¯. All runs
were made with eccentricity parameters e = 0 and e = 0.9. They correspond to circular and high
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Figure 4.4 – All possible radial distances from the centre of Fornax for the five GCs, based on the observed
line-of-sight distance with uncertainties, as a function of the projected distance. The minimal values
correspond to the current projected distance Dp of each GC. The radial distance can be much bigger than
the projected distance. The colour lines represent the maximum pericentre of observed GCs resulting from
the fitted cluster tidal radius of Table 4.2 for each halo models. We applied this last constraint only for
high eccentric orbit with e = 0.9.

eccentric orbit, respectively, with an orbital velocity which depends on the density profile of Fornax
ρ(u). In order to put constraints on the DM halo, we consider only these two limit cases. In fact,
the lifetime of clusters can be increased on high eccentric orbit, because tidal effects decrease with
eccentricity (see Equation (4.6)).

We performed our simulations with the N-body code of gadget2 (Springel [2005]). We create,
for each Fornax mass model, initial conditions for the Fornax-GCs system and evolve them for 12
Gyr because the Fornax GCs are all dominated by ancient (>10 Gyr) populations of stars [de Boer
& Fraser, 2016].

The halo and the stellar components are represented by N = 4×106 particles. The mass ratio for
these two components determines the particle number for each component. GCs are represented by
about 103 particles depending on the halo particle mass. In fact, we impose that the particle mass
of all components is set to be equal in order to reduce numerical artefacts. Based on convergence
tests of decaying radial distances and mass loss of the GCs (see Appendix A), the forces between all
particles are softened with the same softening length of ε= 1 pc. The softening length is similar to
the King radius in order to maintain the dynamical stability of an isolated GC. We did not use this
radius as a constraint on halo models because we recognize that we do not have enough resolution
in some halo models for the GC, especially with a low initial masses.

In such systems, two mechanisms are responsible for orbital decay and mass loss: tidal effects
and dynamical friction induced by the DM halo. The cluster mass plays an important role in its
evolution and survival and dynamical friction is responsible for the orbital decay. These two processes
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compete with and regulate each other: orbital decay increases the tidal field, which reduces the GC
mass and hence slows down the orbital decay. To describe cluster orbital decay, we calculated the
distance between the cluster mass centre and Fornax mass centre at each snapshot, in order to
get the orbital radius. In order to estimate the GC mass loss, we count only bound particles. The
dissolution times were defined to be the time when 95% of the mass was lost from the GC.

4.2.3 Results

We present and discuss our simulation results. To analyze our data and extract our results, we use
a python module toolbox, pnbody 4.0 [Revaz, 2013].

We start the discussion of our results by presenting the orbital radius as a function of mass loss
for B1 model for clusters with eccentricity parameter e = 0, in greater detail. The first three plots
of Figure 4.5 depict the final radii and masses between 10 and 12 Gyr, due to the uncertainty on
GC ages, for clusters with initial orbital radii Ri = [0.5,1.0,1.5,2.0,2.5] kpc, initial masses Mi =
[2.5,5.0,7.5,10] ×105M¯. Final states compatible with cluster observed distributions, i.e. projected
distance and mass with their uncertainties, are represented by a grey area for each GC. Cluster
initial states (T = 0 Gyr), represented by black points, are connected by dashed lines to final states
(T = 10−12 Gyr), represented by black squares and diamonds. The right bottom panel of Figure 4.5
summarizes all results for the B1 model with eccentricity parameter e = 0 for the whole range of initial
GC orbital radii and masses considered in this work. Blue regions represent the initial parameter
range, where clusters were destroyed by the tidal field.

For instance, clusters with 2.5 ≤ Mi ≤ 5×105M¯ started at Ri ≤ 2 kpc, will suffer from Fornax
tidal field and be destroyed (see left upper panel of Figure 4.5). Only clusters, initialized at Ri > 2
kpc, can survive. Thus, the beige regions represent the range of initial parameters, where clusters
can survive over 10 - 12 Gyr. Some survival regions (beige regions) are compatible with observed GC
distributions. As an example, the left upper panel shows also that clusters with 5 ≤ Mi ≤ 7.5×105M¯
and 2 ≤ Ri ≤ 3 kpc can reproduce the observed mass and spatial distributions of GC2. Orange regions
represent the initial parameter range, where clusters have suffered from dynamical friction and have
sunken to the galactic centre. For instance, clusters with 7.5 ≤ Mi ≤ 10×105M¯ started at Ri ≤ 1.5
kpc, will fall into Fornax centre (see left bottom panel).

It is important to notice there is a transition from disrupted clusters to fallen clusters due to an
initial mass increase for 5 ≤ Mi ≤ 7.5×105M¯ and Ri ≤ 1.5 kpc . We did not investigate sufficiently
this initial range to know precisely the transition mass and radius. For Ri < 1 kpc, we expect the
same final state, destroyed or fallen, than GCs started at Ri = 1 kpc, because dynamical friction
and tidal effects are stronger at lower radii. The left bottom panel indicates also the dynamical
behavior of clusters with Mi ≥ 10×105M¯. All clusters with Mi = 10×105M¯ will sink to the centre
of Fornax. According to these results, we expect that more massive clusters will also fall due to
dynamical friction at these same initial radii. We also represented the core region with green stars
(see right bottom panel of Figure 4.5).

All our empirical results from our simulations can be summarized in Figures 4.6 and 4.7 for
cuspy and cored halos. Hovewer, more details about GC dynamic are presented in Figures 4.8
and 4.9 for cored halos, and Figures 4.10 and 4.11 for cuspy halos in order to highlight the range of
initial parameters entailing that GCs will fall towards the centre of the galaxy (orange regions), be
dissolved (blue regions) and survive within 10-12 Gyr (beige regions). We marked the GCs which are
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Figure 4.5 – GC orbital radius as a function of mass loss for B1 model with initial orbital radii Ri =
[0.5,1.0,1.5,2.0,2.5] kpc, initial masses Mi = [2.5,5.0,7.5,10] ×105M☼ and eccentricity parameter e = 0.
According to the uncertainty on GC ages, we consider the positions and masses of the GCs between T =
10 Gyr and T = 12 Gyr. Cluster initial states (T = 0 Gyr), represented by black points, are connected by
dashed lines to final states (T = 10− 12 Gyr), represented by black squares and diamonds. Final states
compatible with observations, i.e. projected distance and GC mass with their uncertainties, are represented
by a grey area for each GC. The bottom left panel summarizes all results for the B1 model. Blue (orange)
regions represent the initial parameter range, where clusters were destroyed by the tidal field (have suffered
from dynamical friction and have sunken to the galactic centre). The beige regions represent the range of
initial parameters, where clusters can survive over 10-12 Gyr. Some of these regions are compatible with
observed GC distributions. We also represented the core region with green stars. Observed data for GCs
are summarized in Table 4.1. All halo parameters are summarized in Table 4.2.

61



CHAPTER 4. OUR SOLUTION TO THE FORNAX CUSP-CORE PROBLEM

Figure 4.6 – Cored halo models: Number of Fornax
GCs reproduced by cored halo models Bn with both
eccentricity parameters e = 0 and 0.9 for our range of
initial conditions. The initial parameters are orbital
radii Ri = [1.0,1.5,2.0,2.5,3.0] kpc and GC masses
Mi = [2.5,5.0,7.5,10] ×105M¯. B2, B3 and B4 mod-
els can reproduce observations for a relevant range
of initial cluster orbital radii and masses.

Figure 4.7 – Cuspy halo models: Same as Fig-
ure 4.6, except for cuspy halo models Nn. N2 (rs = 1
kpc) model can reproduce GC distributions compat-
ible with observations for both eccentric parameters.
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in agreement with survival regions. These figures compare the cored halo models Bn and cuspy halo
models Nn for our range of initial cluster orbital radii and masses with an eccentricity parameter
e = 0 and e = 0.9, respectively.

Theoretically, we expect that low initial cluster mass entails that the GCs are destroyed by the
tidal field . On the contrary, high initial cluster mass results in the GC spiralling towards to the centre.
Blue and orange regions represent clearly this expected dynamical behaviour for all halo models. Not
surprisingly, we obtain more survival regions compatible with GC observations for e = 0.9 than for
e = 0, because clusters with high eccentric orbit are less affected by dynamical friction and tidal
disruption. Indeed, these clusters spend too little time in high density regions. This result is valid
for both cored and cuspy halos. For all halo models, we claimed that GCs have to be initially more
massive in order to be in agreement with present observations. They need to be about 1.3 to 18
times more massive than the current clusters. We state also that initial orbital radii of clusters have
to be at a distance greater than 1 kpc from the centre of Fornax for all halo models. In fact, clusters
with Ri < 1 kpc are subject to a higher tidal disruption and dynamical friction, because they orbit in
a high density region.

B2, B3 and B4 models hold for the five GCs of Fornax for both eccentric parameters with B1

model being the sole exception. For e = 0 (e = 0.9), B1 model is not valid for GC1 and GC5 (GC1
and GC3). GC1 proves to be the tightest constraint, ruling out B1 model (rc = 0.25 kpc). In
fact, this cluster requires at the same time a weak orbital decay and a very weak or huge mass
loss induced by the DM halo. Concerning cuspy halos, simulations predict that N2 (rs = 1 kpc)
model can reproduce GC distributions compatible with observations for both eccentric parameters
(see Figure 4.7). Otherwise, GC3 distributions remain a challenge for N1, N3 and N4 models with
our initial mass range. However, we expect that GCs with Mi > 10×105M¯ could be compatible
with GC3 observations for the N3 (rs = 1.5 kpc) model (see Figures 4.10 and 4.11 for more details).
Even if direct dynamical modelling of stellar population [Amorisco et al., 2013; Walker & Peñarrubia,
2011] attest against the presence of a divergent cusp in Fornax, we find a cuspy halo, which can
reproduce the observed distributions. Indeed, the NFW profile can be reconciled with observations.

Concerning cored halos, Figure 4.6 imply that B2, B3 and B4 models can reproduce observations
for a relevant range of initial cluster orbital radii and masses. As observed above, B1 model (rc =
0.25 kpc) cannot reproduce all the observed GCs, especially GC1 in both circular and high eccentric
orbits (see Figures 4.8 and 4.9 for more details). In this context, using GC distributions, it is possible
to put constraints on the core radius. Thus, we derive a lower limit of rc& 0.5 kpc. We ruled out
the model with rc = 0.25 kpc, but we did not investigate core sizes between 0.5 and 0.25 kpc.
We expect that the true lower limit is in this core size range. Our lower limit (rc & 0.5 kpc) is
in disagreement with Strigari et al. [2006], who found a upper limit of rc . 0.3 kpc, based on a
constraint on central phase-space density of Fornax. However, Amorisco et al. [2013] showed that
Fornax DM halo has a core with rc = 1+0.8

−0.4 kpc by exploiting three distinct stellar subpopulations of
Fornax. Their limit is totally compatible with our prediction from the B2, B3 and B4 models (see
Table 4.2). According to Walker & Peñarrubia [2011], the slope of the halo mass profile measured
in Fornax suggests rc& 1 kpc.
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Figure 4.8 – Final states (T = 10−12 Gyr) for initial GC orbital radii Ri = [0.5,1.0,1.5,2.0,2.5] kpc and
masses Mi = [2.5,5.0,7.5,10] ×105M¯ with eccentricity parameter e = 0 for cored halo models Bn. Blue
(orange) regions represent the initial parameter range, where clusters were destroyed by the tidal field (have
suffered from dynamical friction and have sunken to the galactic centre). The beige regions represent the
range of initial parameters, where clusters can survive over 10-12 Gyr. Some of these regions are compatible
with observed GC distributions. We also represented the core region with green stars. Only B2, B3 and
B4 models can reproduce the five GCs. Observed data for GCs and halo parameters are summarized in
Table 4.1 and Table 4.2.
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Figure 4.9 – Same as Figure 4.8, except with eccentricity parameter e = 0 for cored halo models Bn. Only B2,
B3 and B4 models can reproduce the five GCs. Observed data for GCs and halo parameters are summarized
in Table 4.1 and Table 4.2.
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Figure 4.10 – Same as Figure 4.8, except with eccentricity parameter e = 0 for cuspy halo models Nn. Only
N2 model can reproduce the five GCs. Observed data for GCs and halo parameters are summarized in
Table 4.1 and Table 4.2.
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Figure 4.11 – Same as Figure 4.8, except with eccentricity parameter e = 0.9 for cuspy halo models Nn.
Only N1 and N2 models can reproduce the five GCs. Observed data for GCs and halo parameters are
summarized in Table 4.1 and Table 4.2.
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Figure 4.12 – Impact of softening length on the radial and tidal evolutions of GCs on a circular orbit with
initial mass Mi = 0.75 and 1 ×106M¯ for B4 model. Top and bottom panels show the evolution of orbital
radius and cluster mass, respectively. We ran simulations with three different softening lengths ε = [0.5,
1, 2] pc in order to ensure that our simulations do not suffer from numerical noise. Our simulations are
well converged between 10 and 12 Gyr for ε = 0.5 and 1 pc. We chose ε = 1 pc as the softening length
for all our simulations.

4.2.4 Appendix

Numerical convergence

We assess the impact of a numerical parameter that controls the accuracy of our simulations; the
softening length ε0 = 1 pc. To test how the softening length impacts on the radial and tidal evolution
of GCs, we ran simulations with three different softening lengths ε = ε0/2, ε0 and 2ε0 in order to
ensure that our simulations do not suffer from numerical noise. The evolution of the orbital radius
and the mass loss of five clusters moving on a circular orbit in model B4 (see Table 4.2) is shown in
Fig 4.12 for three different softening lengths. It can be seen that orbital orbital and tidal evolutions
are very similar for ε = 0.5 and 1 pc. However, for ε = 2 pc, numerical noise causes artificial decay
and enhanced disruption of the cluster. Our simulations are well converged between 10 and 12 Gyr
for ε = 0.5 and 1 pc. We chose ε = 1 pc as the softening length for all our simulations. For all runs,
the energy relative error is lower than 5%. We state that the energy of the system is conserved in
all our simulations.

MW tidal field

Our host galaxy potential is modelled from Allen & Santillan [1991] consists of a stellar bulge as
a Plummer sphere [Plummer, 1911], a disc represented by the potential from [Miyamoto & Nagai,
1975] and a spherical DM halo described by NFW profile [Navarro et al., 1997]. For this model,
we used the revised parameters from Irrgang et al. [2013] (see their Table 1). Nevertheless, MW
tidal field can have a significant impact on GCs on eccentric orbits. In Figure 4.13, we represented
the orbital radius and mass of GCs on an eccentric orbit (e = 0.9) with initial mass Mi = 0.5 and
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Figure 4.13 – Impact of MW tidal field on the radial and tidal evolution of GCs on a eccentric orbit (e = 0.9)
with initial mass Mi = 0.5 and 1 ×106M¯ for B1 model. Top and bottom panels show the evolution of
orbital radius and cluster mass, respectively. We ran simulations with and without static potential in order
to measure the importance of MW tidal field. MW tidal field was taken into account in our simulations,
especially for high eccentric orbit

1 ×106M¯as a function of time for B1 model. It can be seen in this figure that the orbits tend to
be spread by the MW tidal field. In other words, the apocentre and pericentre are increased by the
Galactic field. This effect becomes more important as the ratio between the initial orbital radius and
the tidal radius increases. Thus, MW tidal field was taken into account in our simulations, especially
for high eccentric orbit.

4.3 Embedding GC in DM minihalos

Recent simulations of the Fornax dwarf galaxy found that the observed GCs are not necessarily
incompatible with a cuspy DM profile (NFW) and that this depends strongly on GC initial conditions
[Boldrini et al., 2019]. However Fornax GCs remain a puzzle for understanding their survival over a
Hubble time.

GCs are gravitationally bound groupings of mainly old stars, formed in the early phases of galaxy
formation. The origin of GCs is one of the key unsolved astrophysical problems. There are also various
unresolved open questions regarding the formation and evolution of GCs during galaxy formation
and assembly within a cosmological framework [Forbes et al., 2018]. Despite their relevance to star
formation, galaxy evolution and cosmology, there is no clear consensus on the formation of GCs.
One can classify all proposed scenarios for old GC formation into two broad categories. Firstly,
GCs originated as gravitationally bound gas clouds in the early Universe and are formed inside
their present-day host galaxies. This corresponds to a primary in-situ formation process[Kravtsov &
Gnedin, 2005; Kruijssen, 2015; Peebles & Dicke, 1968]. Secondly, GCs can be formed around the
time of reionization in DM minihalos that later merge to become a part of the present-day host
galaxy. It corresponds to a secondary galactic origin in a similar way to formation of dwarf galaxies
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[Bromm & Clarke, 2002; Mashchenko & Sills, 2005; Peebles, 1984; Ricotti et al., 2016]. Little star
formation can take place during the reionization epoch inside these DM minihalos with virial masses
less than 108 M¯, as the heated gas can escape [Barkana & Loeb, 1999]. However, the reionization
of the Universe can actually trigger star formation in DM minihalos through different reionization-
regulated positive feedback mechanisms [Cen, 2001; Ricotti et al., 2002]. While most GCs are old,
there are also young GCs such as Terzan 7 and Whiting 1 [Law & Majewski, 2010; Massari et al.,
2017], as well as the populations of young GCs in the MagellanIc Clouds and many other nearby
star-forming galaxiers. These GCs could be formed via a different mechanism from that of the old
GCs. Here, we focus on the second scenario where GCs are formed at the centres of their own DM
minihalos.

Positions and proper motions for GCs in the Galaxy from the second data release of the Gaia
mission will offer unique insights into GC dynamics [Gaia Collaboration et al., 2018]. Until now,
these DM minihalos have not been detected, but there are GC features and perhaps observational
signatures [Sollima et al., 2016]. For instance, an extended diffuse stellar envelope can highlight
whether GCs might be embedded in DM minihalos [Kuzma et al., 2016; Olszewski et al., 2009;
Peñarrubia et al., 2017]. Also, GCs orbiting in the inner regions of the Galaxy may lose a large
fraction of any DM minihalo mass [Bromm & Clarke, 2002].

In this work, we embed GCs in DM minihalos in order to simultaneously resolve the timing
and the cusp-core problems in Fornax with the most prevalent initial conditions from the Illustris
cosmological simulation [Pillepich et al., 2018]. Our N-body simulations performed on GPU allow
us to study the evolution of the DM density profile in the centre of Fornax at high resolution. The
Section 4.3 is organized as follows. Subsection 4.3.1 provides a description of the Fornax system
and the N-body modelling. In Subsection 4.3.2, we outline details of our numerical simulations. In
Subsection 4.3.3, we illustrate our simulation results and discuss the implications of DM minihalos
of GCs on the timing and cusp-core problems.

4.3.1 Fornax-GC system

The dSph galaxy Fornax is one of the more DM-rich satellites of the MW Galaxy with a stellar mass
of about 108 M¯ at a distance of around 147 kpc [de Boer & Fraser, 2016]. We consider only the
first five GCs with masses of about 105 M¯ and average projected distances of about 1 kpc. In
this section, we present the models for Fornax and its GCs that provide the initial conditions for
our simulations. A live gravitational system is necessary to capture tidal stripping and dynamical
friction. Thus, Fornax has to be modelled as a live galaxy with its GCs, i.e. a self-gravitating system
composed of star and DM particles.

It has been shown that simulated GCs formed within Fornax, modelled with a cuspy or cored DM
halo, are compatible with observations [Boldrini et al., 2019]. However, the origin of the Fornax DM
core remains unsolved. Here, we consider two scenarios to explain the timing problem. We assume
that GCs have experienced either early accretion 10-12 Gyr ago (z=3) or recent accretion 2-4 Gyr
ago (z=0.36) by the Fornax galaxy. Fornax GCs are all dominated by an old population (>10 Gyr),
which gives an uncertainty in the GC age determinations [de Boer & Fraser, 2016].
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Figure 4.14 – Tidal impact of MW: Ratio between the tidal radius and the typical size of GCs as a function
of the orbital radius centered on Fornax for GCs with and without a DM minihalo. For GCs composed
only of stars, we assume that a = rtmax , where rtmax is the highest initial tidal radius of our GCs in Fornax.
However, we set a = rvir, where rvir is the virial radius of the 2×107 M¯ minihalo for GCs embedded in a
DM minihalo. Solid (dashed) line represents the influence of the MW (Fornax) on GCs. For the MW, the
error bands are due to the uncertainty on pericentre and apocentre of Fornax [Gaia Collaboration et al.,
2018]. The MWG has no major impact on Fornax GCs, because the tidal radius is always higher than the
typical size of the GCs at any radii. This is the reason why we assume that tidal disruptions are mostly
driven by Fornax and that our dSph model is in isolation.

Fornax galaxy

We construct Fornax as a live galaxy composed of stars and DM particles only, since dSph galaxies
contain little or no gas today. The Fornax stellar component is modelled, due to the presence of a
stellar core (r0 = 0.668 kpc [Strigari et al., 2010]), by a Plummer profile [Plummer, 1911]:

ρ(r ) = 3a2M0

4π
(r 2 +a2)−5/2, (4.7)

where a = r0(
p

2−1)−1/2 and M0 = 3.82×107 M¯ are the scale parameter and the mass, respectively
[de Boer & Fraser, 2016]. For the DM halo of Fornax, we assume a NFW form [Navarro et al.,
1996]:

ρ(r ) = ρ0

(
r

rs

)−1 (
1+ r

rs

)−2

, (4.8)

with the central density ρ0 and scale radius rs. For the simulations, we consider a Fornax-like dSph
with mass of 109 M¯ at redshift z depending on the considered scenario. Given the halo mass and
redshift, the scale radius rs of the Fornax halo was estimated from cosmological N-body simulations
[Prada et al., 2012].

Globular Clusters

In our model, GCs with a stellar mass M∗ are formed at the centre of DM minihalos with a virial
mass Mmh. We fix the mass ratio M∗/Mmh to 0.05. For the five surviving GCs orbiting in Fornax,
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Redshift Object r vx vy vz |v |
[kpc] [km/s] [km/s] [km/s] [km/s]

z = 3 E1 2.11 20.22 1.6 8.1 21.8
E2 2.74 16.42 3.28 15.75 22.99
E3 1.1 38.62 15.44 18.94 39.97
E4 1.76 13.46 21.46 26.87 36.94
E5 1.14 32.81 6.93 7.89 34.37

z = 0.36 O1 5.32 13.9 1.31 14.38 20.04
O2 2.07 9.43 19.05 21.42 30.18
O3 1.95 37.49 4.55 6.21 38.28
O4 2.19 3.51 3.87 34.0 34.39
O5 2.05 19.62 29.8 15.1 38.75

Table 4.3 – Initial conditions for five GCs Ei at z=3 (' 12 Gyr) and five GCs Oi at z=0.36 (' 4 Gyr),
determined by using Illustris TNG-100 data. We consider two scenarios to explain the timing problem. We
assume that GCs have experienced early accretion onto the Fornax galaxy 10-12 Gyr ago, or alternatively
have undergone recent accretion 4 Gyr ago (z=0.36). This is the reason why we determine the most
prevalent positions and velocities of 7.5×106 M¯ particles at these two redshifts, which have the same
projected distances Dobs as Fornax GCs at z=0 using multidimensional binned statistics. The Illustris DM
mass resolution is of the same order as our minihalo mass.

we assume a two-component model that includes a stellar component and a DM minihalo:

Mmodel(r ) = M∗(r )+Mmh(r ). (4.9)

Our N-body realizations assume a King [1962] stellar density distribution,

ρ(r ) = ρ0

[(
1+

(
r

rk

)2)−1/2

−C

]
, C =

[
1+

(
rt

rk

)2]−1/2

, (4.10)

where rk and rt are the King and tidal radii, respectively. For all the simulations, we chose a
King radius rk = 1 pc lower than the observed radius, because it is susceptible to increase through
dynamical processes such as mass loss [Mackey & Gilmore, 2003]. The DM minihalos are distributed
in a spherical halo following a NFW profile with a mass of 2×107 M¯ (see Equation (7.1)) at redshift
z = 3 or z = 0.36 depending on the accretion scenario. Given the halo mass and redshift, the halo
concentration c200 of the DM minihalos can be estimated from cosmological N-body simulations
[Prada et al., 2012].

We wish to provide relevant GC initial conditions from cosmological simulations. We found 7395
isolated subhalos with mass of about 109 M¯ in the Illustris TNG-100 simulation [Pillepich et al.,
2018]. The mass resolution of TNG-100 is 7.5×106 M¯, which is of the same order as our minihalo
mass. The current projected distances Dobs for the GCs are from 0.24 to 1.6 kpc, which is the
minimum distance between GCs and the Fornax centre. In order to determine the GC positions and
velocities at these redshifts, we select particles of the isolated subhalos at z=0, which have the same
projected distances as Fornax GCs at z=0 and we find corresponding particles at redshift z=3 and
z=0.36. We subsequently compute multidimensional binned statistics for this 6-dimensional space in
order to determine the maximum weights for each dimension. We applied Scott’s rule to determine
the optimal bin width given by

∆b = 3.5σ

n1/3
, (4.11)
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where σ is the standard deviation of one dimension, and n is the number of points. Our initial
conditions for GCs, positions and velocities, calculated with this method are listed in Table 7.1.

MW Galaxy tidal field

As Fornax is a galaxy satellite of the MW, we may expect that the MW tidal field to have an
impact on GCs. We estimated this by calculating the theoretical tidal radius of our GCs with and
without a DM minihalo in the simulation [Küpper et al., 2010]. The tidal radius marks the distance
beyond which stars can escape the GC. For our calculation, we assume that the MW potential,
based on the model of Allen & Santillan [1991], consists of a stellar bulge as a Plummer sphere
[Plummer, 1911], a disc represented by the potential from Miyamoto & Nagai [1975] and a spherical
DM halo described by a NFW profile [Navarro et al., 1997]. For this model, we used the revised
parameters from Irrgang et al. [2013] (see their Table 1). The tidal radius is calculated at the mean
radius, because it is currently overestimated at the pericentre. Indeed, the variation of the tidal
field over time is sufficiently fast that the cluster cannot adapt to the changing environment, but
rather behaves as if it experiences a single mean tidal field along its orbit. Fig. 4.14 describes the
ratio between the tidal radius and typical size of GCs as a function of the orbital radius centered
on Fornax of GCs with and without a DM minihalo. We assume that the size of a GC (with a DM
minihalo) corresponds to its initial tidal (virial) radius in Fornax. For GCs composed only of stars,
we consider the highest initial tidal radius rtmax of our GCs in Fornax as the typical size a. However,
we set the virial radius rvir of the 2×107 M¯ minihalo as the typical size for GCs embedded in a DM
minihalo. For the MW, the error bands are due to the uncertainty in pericentre and apocentre of
Fornax [Gaia Collaboration et al., 2018]. We showed that the MW (solid line) has no major impact
on Fornax GCs, because the tidal radius is always higher than the typical size of the GCs at any
radii. On the contrary, Fornax (dashed line) will give rise to tidal disruptions of the GCs, especially
those with DM minihalos. Finally, we assume that this dynamical process is mostly driven by Fornax
and that our dSph model is in isolation.

4.3.2 N-body simulations

To generate our live objects, we use the initial condition code magi [Miki & Umemura, 2017a].
We perform our simulations with the high performance collisionless N-body code gothic [Miki &
Umemura, 2017b]. We run N-body simulations with five GCs orbiting in Fornax galaxy by adopting
a softening length of ε0 = 1 pc and an accuracy control parameter of A0 = 2−7. Considering a
softening length similar to the King radius maintain the dynamical stability of an isolated GC (see
Fig.s 4.25. We assess the impact of the softening length ε on the stellar density profile for an
isolated GC with and without a DM minihalo, and the orbital decay and the mass loss of GCs and
the evolution of the DM profile of Fornax (see in Fig.s 4.25, 7.7, 4.27 and 4.28). We consider both
early and recent accretion of GCs by Fornax. For these two scenarios, we run simulations with five
GCs embedded in their own DM minihalo and five GCs composed only of stars as usual. Initially,
GCs with and without DM minihalo have the same most prevalent positions and velocities (see in
Table 7.1). The halo and the stellar components of Fornax are represented by N = 107 particles.
The mass ratios for these two components determine the particle number for each component. DM
minihalos and GC stars are represented by about 105 and 104 particles, respectively. In fact, we
require that the particle masses of all components are set to be equal in order to reduce numerical
artifacts. To analyze our data and extract our results, we use a python module toolbox, pnbody 4.0
[Revaz, 2013].
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Figure 4.15 – DM minihalos accelerate GC infall: Orbital decay of the 5 GCs without (upper) and with
(lower panel) in a 2×107 M¯ DM minihalo over 12 Gyr because the Fornax GCs are all dominated by ancient
(>10 Gyr) populations of stars [de Boer & Fraser, 2016]. These radii correspond to the distances between
each GC mass centre and Fornax mass centre. Initially, 106 M¯ GCs with and without DM minihalos have
the same most prevalent positions and velocities at z = 3 from Illustris TNG-100 cosmological simulations
(see objects Ei in Table 7.1). Our initial conditions entail an accretion process by the Fornax galaxy with
eccentric orbits for all the GCs. The infall of GCs with and without a DM minihalo rules out the early
accretion scenario for Fornax GCs as this dSph has five orbiting GCs observed at the present day.

4.3.3 Results

Next, we present and discuss our simulation results. To describe cluster orbital decay, we calculate
the distance between the cluster and Fornax mass centres at each snapshot, in order to get the
orbital radius. To estimate the GC mass loss, we count only bound particles. The main challenge
with the Fornax timing problem is to find a way to delay GC orbital decay in order to observe GCs
in orbit today instead of a nuclear star cluster at the centre of the galaxy. The GC infall is due to
dynamical friction generated by the Fornax DM field. Compared to stellar GCs, DM minihalos are
expected to fall more rapidly towards the galaxy centre due to their higher masses. We consider two
scenarios for Fornax GCs, as described in the following sections.
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Figure 4.16 – DM minihalos accelerate tidal stripping: Evolution of the mass loss of the GC stellar
component for the 5 GCs without (left panel) and with (right panel) a 2×107 M¯ DM minihalo over 12
Gyr. The initial stellar masses of GCs are 106 M¯. In order to estimate the GC mass loss, we count only
bound particles. GCs with a 2×107 M¯ DM minihalo lost more stars compared to stellar GCs, because
minihalos induce major tidal stripping. All stellar GCs survive in this early accretion scenario. However, we
observe that three GCs with a DM minihalo are completely tidally stripped within 8 Gyr.

Early accretion

First, we assume that GCs with and without a DM minihalo were accreted 10-12 Gyr ago by Fornax.
Figure. 4.15 depicts the orbital decay of five GCs with and without a DM minihalo over 12 Gyr in
this scenario. Initially, they have the same most prevalent positions and velocities at z = 3 from
Illustris TNG-100 cosmological simulation (see objects Ei in Table 7.1). Our initial conditions entail
an accretion process by the Fornax galaxy with eccentric orbits for all the GCs. The orbital period
is higher for the stellar GCs than for GCs with a DM minihalo. In Figure. 4.15, orbital radii confirm
that DM minihalos accelerate the infall of the five GCs. The stellar mass loss of all the GCs over 12
Gyr is presented in Figure. 4.16. GCs with DM minihalos lose more stars compared to stellar GCs,
because minihalos induce major tidal stripping. Indeed, stripping by the Fornax tidal field is more
efficient at small radii. We also observe that three GCs with DM minihalos are completely tidally
stripped within 8 Gyr.

Fornax is dominated by metal-rich stars whereas GCs are dominated by metal-poor stars. The
metal-poor stellar mass in Fornax was estimated to be about (44.9 ± 5.3)×105 M¯ [de Boer &
Fraser, 2016]. This large quantity of metal-poor stars in Fornax could suggest that each of these
four surviving metal-poor GCs has likely lost several times 105 M¯ due to dynamical processes.
GC4 is excluded from this estimate, because this cluster is possibly more metal-rich than the other
clusters. Another explanation is that GCs have sunk to the galaxy centre and were destroyed such
as our three GCs with DM minihalos. Hence, these metal-poor stars could correspond to relics of
destroyed GCs with DM minihalos. This could be also possible for stellar GCs, but this scenario
within 12 Gyr is more reliable for DM minihalos as the latter accelerate the tidal stripping (see in
Figure. 4.16). Fornax observations reveal that Fornax has no NSC at its centre. In order to verify
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Figure 4.17 – Formation of a nuclear star cluster (NSC): Mass difference between stars of the 5 GCs
without (left panel) and with (right panel) a DM minihalo and Fornax stars at T = 12 Gyr. We represented
only bins with a size of 5 pc, which have a positive mass difference. The latter allows us to highlight a
stellar overdensity induced by GCs at the Fornax centre. This mass difference exhibits the presence of a
double nucleus for stellar GCs and single nucleus for GCs with DM minihalo. Infalling GCs, which are not
completely tidally stripped, will contribute to the formation of a NSC. As Fornax exhibits the absence of a
nuclear star cluster at the centre, the formation of a NSC ruled out the early accretion scenario for Fornax
GCs.

that no NSC was formed in our scenario, Figure. 4.17 illustrates the mass difference between stars
of the 5 GCs, without and with a DM minihalo, and Fornax stars at T = 12 Gyr. We represent only
bins with a size of 5 pc, which have a positive mass difference. The latter allows us to highlight an
overdensity for stars. In other words, we want to clearly separate a NSC from the stellar component
of the galaxy. Figure. 4.17 showed the presence for a double nucleus for stellar GCs and single
nucleus for GCs with DM minihalo formed by infalling GCs, which are not completely destroyed by
the Fornax tidal field. Thus, we rule out the early accretion scenario for Fornax GCs due to the infall
of the five GCs and the formation of a NSC. We point out that stars of GCs with a DM minihalo,
which are completely tidally stripped, will not contribute to the formation of a nuclear star cluster
at the centre.

Our GPU simulations allow us to also study the impact of GCs with or without a DM minihalo
on the evolution of the DM density profile of Fornax. We observe the formation of cores in the
cold DM halo of Fornax. As all GCs have eccentric orbits, they can perturb the DM halo of Fornax
by their multiple crossings near the Fornax centre (see Figure. 4.15). Initially, the Fornax DM halo
assumes a NFW profile. We consider DM particles from both Fornax halo and GCs to determine the
DM density profile of Fornax over the time. In order to determine precisely if there is core formation
in the Fornax halo, we did a fit for the DM profile. As shown in Figure. 4.18, we found that all our
profiles are well fitted by the following five-parameter formula:

ρ(r ) = ρcW(r )+ [1−W(r )]ρNFW(r ), (4.12)
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Figure 4.18 – Heating of the DM central region: DM density profile of Fornax at different times with
its corresponding core radius (marked by arrows). We represent only cored profiles due to the heating by
GCs with a DM minihalo in the early accretion scenario. Initially, the Fornax DM halo assumes a NFW
profile. We consider DM particles from both Fornax halo and GCs to determine the DM density profile of
Fornax. The fitting function described by Equation (4.12) reproduces the simulated density structures and
captured the rapid transition from the cusp to the core. We set Poissonian errors for fitting weights. The
DM distribution of Fornax halo is divided in bins of groups composed of Ng = 1024 particles.

where ρc is the core constant density and W(r ) is defined as

2W(r ) = 1−erf
(r − rc

2δ

)
, (4.13)

where rc is the core radius and δ is a parameter to control the sharpness of the transition from the
cusp to the core and the converse. It reproduces the simulated density structures and captured the
rapid transition from the cusp to the core (see Figure. 4.18). We set Poissonian errors for fitting
weights. The DM distribution of Fornax halo is divided in bins of groups composed of Ng = 1024
particles. The smallest core size in the simulations is of the order of 10 pc, which corresponds to
our spatial resolution. Thus, we assume that a cusp-to-core transition occurred when the core size
rc becomes greater than our spatial resolution. As the value of the core size depends entirely on the
fitted DM profile, we did not use this radius as a constraint on the DM halo core size of Fornax.
Figure. 4.19 describes the evolution of the fitted core radius rc of the Fornax halo over 12 Gyr due
to heating by GCs with and without a DM minihalo. We consider the core radii rc to determine
whether a transition appears in our simulation. Non-zero core sizes rc means that a cusp-to-core
transition occurred for the Fornax DM halo. The absence of cores (rc = 0) means that DM halo
is cuspy and is still described by a NFW profile. For stellar GCs, the absence of core shows that
these 106 M¯ orbiting objects can’t generate DM cores. The energy transfer is not sufficient to
perturb the DM distribution at the centre of the galaxy due to their low mass. However, once they
are spiralling into the centre of the galaxy, they induce a cusp-to-core transtion. Then, we observe
a DM core of about 100-150 pc for the Fornax halo. Contrary to stellar GCs, dynamical heating of
the DM field from DM minihalo crossings drives core formation. These core sizes are between 150
and 400 pc, and depend on the frequency of the crossings. Besides, between crossings, the halo can
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Figure 4.19 – Fornax DM core in the early accretion scenario: Fitted core radius rc of the DM cored
halo (see Equation (4.12)) induced by crossings of GCs with (in purple) and without (in green) a DM
minihalo as a function of time. rc 6= 0 (rc = 0) means that there is a (no) cusp-to-core transition for the
Fornax DM halo. The absence of a core within the first 5 Gyr states that stellar GCs in orbit cannot
generate DM cores due to their low mass impact. However, once they are spiralling into the centre of
the galaxy, they induce a cusp-to-core transition. Contrary to stellar GCs, dynamical heating of the DM
field from DM minihalo crossings drives the core formation. The core sizes depend on the frequency of
the crossings. Besides, between crossings, the halo can re-form the cuspy halo owing to the new orbits of
DM particles initially at the Fornax centre as they gained energy from the GCs. We observed these reverse
transitions (marked by black arrows) of the Fornax DM halo.

re-form the cuspy halo owing to the new orbits of DM particles initially at the Fornax centre as they
gained energy from the GCs. Figure. 4.19 shows cusp-to-core transitions and the reverse transitions
(marked by black arrows) of the Fornax DM halo. In this early accretion scenario, GCs with and
without a DM minihalo cannot explain both DM core formation and timing problem. Despite the
core formation in cold DM, they are ruled out by the GC infall and consequent NSC formation.

Recent accretion

In this section, we assume that GCs with and without a DM minihalo were accreted 4 Gyr ago by
Fornax. Figure. 4.20 describes the orbital decay of GCs with and without a DM minihalo over 4
Gyr in this scenario. Initially, they have the same most prevalent positions and velocities at z=0.36
from Illustris TNG-100 cosmological simulation (see objects Oi in Table 7.1). According to the
initial orbital radii, stellar GCs (upper panel) stay in orbit beyond 2 kpc from the centre, whereas
GCs with a DM minihalo (lower panel) are accreted by Fornax and are falling towards the Fornax
centre. But, as all the 5 GCs with a DM minihalo are still orbiting before 3 Gyr, they cannot form a
NSC in accordance with observations. Table 7.2 depicts orbital radii and masses of GCs embedded
in a DM minihalo at 3 Gyr. For each observed Fornax GC, we propose a GC with a DM minihalo
as a candidate in order to reproduce the spatial distribution of observed GCs if GCs were accreted
less than 3 Gyr ago. Their orbital radii are higher than the projected distances Dobs, which are
the minimum distances between observed GCs and the Fornax centre. Concerning the GC observed
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Figure 4.20 – DM minihalos stay in orbit: Orbital decay of the 5 GCs without (upper panel) and with
(lower panel) a 2× 107 M¯ DM minihalo over 4 Gyr. These radii correspond to the distances between
the mass centre of each GC and Fornax. Initially, 106 M¯ GCs with and without DM minihalo have the
same most prevalent positions and velocities at z = 0.36 from Illustris TNG-100 cosmological simulation
(see objects Oi in Table 7.1). Our initial conditions entail an accretion process by Fornax galaxy only for
GCs with a DM minihalo. Stellar GCs experienced stable eccentric orbits beyond 2 kpc.

mass, we found a higher mass from the simulations for each GC with a DM minihalo. As the GC
dynamical evolution is entirely determined by the DM minihalo, we could easily set lower stellar mass
limits to the initial GCs in order to reproduce the observed masses. Reducing the stellar mass of
GCs could contribute to their survival. Similarly to GCs with a DM minihalo, the spatial distribution
of stellar GCs over 4 Gyr is also compatible with observations of Fornax GCs. Thus, both GC types
can resolve the Fornax timing problem in this recent accretion scenario.

Nevertheless, Figure. 4.21 highlights that there is no cusp-to-core transition for stellar GCs in
this scenario. As they stay on orbit beyond 2 kpc, they cannot transfer energy to DM particles at
the centre of the galaxy. Moreover, we established previously that their crossings cannot perturb the
DM halo due to their low mass compared to DM minihalos. With stellar GCs, the DM profile does
not change over time as shown by Boldrini et al. [2019]. Concerning GCs with a DM minihalos, we
observe a cusp-to-core transition induced by their crossings. More precisely, there are forward and
reverse transitions from the cusp to the core. However, most of the time, Fornax is expected to
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Object M(a)
obs D(b)

obs r M
[105 M¯] [kpc] [kpc] [105 M¯]

GC1 0.42 ± 0.10 1.6 O3 5.38 9.98
GC2 1.54 ± 0.28 1.05 O5 3.26 9.91
GC3 4.98 ± 0.84 0.43 O1 2.33 8.57
GC4 0.76 ± 0.15 0.24 O2 0.28 6.83
GC5 1.86 ± 0.24 1.43 O4 1.64 9.67

Table 4.4 – Comparison with GC observations: The final radii and masses of GCs embedded in DM
minihalos at 3 Gyr. We found GC candidates Oi compatible with the observed projected distances Dobs.
However, we found higher masses for simulated GCs than for those observed. We note that we could set
lower stellar mass to the initial GCs in order to reproduce the observed masses. DM minihalo of GCs solve
the Fornax timing problem if GCs were accreted less than 3 Gyr ago. References: (a) de Boer & Fraser
[2016], (b) Mackey & Gilmore [2003].
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Figure 4.21 – Fornax DM core in the recent accretion scenario: Fitted core radius rc of the DM cored
halo induced by crossings of GCs with (in purple) and without (in green) a DM minihalo as a function of
time. rc 6= 0 (rc = 0) means that there is a (no) cusp-to-core transition for the Fornax DM halo. In this
scenario, the complete absence of core confirms again that stellar GCs on orbit cannot generate DM cores
due their low mass impact. Contrary to stellar GCs, dynamical heating of the DM field from DM minihalo
crossings entails the core formation.

have a core due to DM minihalo crossings according to our simulation results. In addition, in the
recent accretion scenario, we show that only GCs with a DM minihalo can explain both the DM core
formation and timing problem in Fornax.

As the recent accretion scenario with GCs with a DM minihalo is compatible with Fornax ob-
servations, especially for the DM core formation and GC spatial distribution, we are interested by
the mass loss of DM minihalos. Figure. 4.22 illustrates the mass of remnant DM minihalos centered
on the stellar component of the five GCs Oi between 2 and 3 Gyr. It is shown that all the DM
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Figure 4.22 – DM minihalo remnants: Masses of remnant DM minihalos centered on the stellar com-
ponent of Oi GCs between 2 and 3 Gyr. The blue dashed line represents the initial distribution of 2×107

M¯ minihalo centered on its stellar component. It is shown that all the DM minihalos have been tidally
stripped by the tidal field of Fornax. We have found that GCs are embedded in DM minihalos less massive
than 107 M¯ inside the central 500 pc after 2-3 Gyr, which is in agreement with the observed prediction
on a MW GC, NGC 2419 [Baumgardt et al., 2009; Ibata et al., 2013]

minihalos have been tidally stripped by the tidal field of Fornax. Even if GCs are not proven to have
a significant amount of DM, this does not preclude them from having been formed originally inside a
DM minihalo. Indeed, we showed that our GCs lost a large fraction of their DM minihalos. We have
found that GCs are embedded in DM minihalos less massive than 107 M¯ inside the central 500 pc
after 2-3 Gyr, which is also in agreement with the observed prediction on a MW GC, NGC 2419,
based on the observed velocity dispersion [Baumgardt et al., 2009]. We found also good agreement
with the prediction of Ibata et al. [2013], who established that the virial mass of the minihalo of
NGC2419 cannot exceed ∼ 4×106 M¯.

Enhancement of the core formation

For both GCs with and without a DM minihalo, we noticed previously that spiralling GCs at the
centre of the galaxy enhance the core formation (see in Figure. 4.15 and 4.19). However, the infall
of GCs can entail the formation of a NSC at the centre of the galaxy. For NSC formation, GCs
at the centre have to be completely tidally stripped. Thus, the GC tidal stripping needs to be
accelerated as in the case of the DM minihalo (see in Figure. 4.16). Adding an infalling GC with
a DM minhalo is also motivated by the fact that Fornax has a large quantity of metal-poor stars,
which could correspond to relics of destroyed GCs with DM minihalos. In addition, according to
its stellar kinematics, Fornax is expected to have a large core [Amorisco & Evans, 2011; Kowalczyk
et al., 2019; Pascale et al., 2018; Read et al., 2019; Walker & Peñarrubia, 2011]. Adding a falling GC
with a DM minihalo, which is going to be completely disrupted, could contribute to the formation
of a larger DM core. We test this hypothesis by running a simulation with the five Oi GCs with a
DM minihalo and one additional GC with a DM minihalo. We want to improve the degree of core
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Figure 4.23 – Infall without forming a NSC: Orbital decay of the 6 GCs with a 2×107 M¯ DM minihalo
over 4 Gyr. These radii correspond to the distances between mass centre of each GC and Fornax. The
first five GCs have the same initial conditions as in Figure. 4.20. Stellar distribution of the mass difference
between the O6 GC with a DM minihalo and Fornax stellar component (inset) highlights that there is no
NSC at the centre of the galaxy despite the rapid infall of this additional GC with a DM minihalo. Finally,
we establish that Fornax could have more than five 5 GCs. The extra GCs have fallen to the Fornax centre
and were destroyed, which is compatible with the large quantity of the metal-poor stars found in Fornax.
The absence of NSC on this timescale is only possible because DM minihalos accelerate the tidal stripping.

formation in the recent accretion scenario. Figure. 4.23 describes the orbital decay of the 6 GCs
with a 2×107 M¯ DM minihalo over 4 Gyr. The first five GCs have the same initial conditions
as in Figure. 4.20. We notice that O6 GC with a DM minihalo spirals to the centre after 1 Gyr.
Stellar distribution of the mass difference between the O6 GC with a DM minihalo and Fornax stellar
component (upper subplot) highlights that there is no NSC at the centre of the galaxy despite the
rapid infall of this additional GC with a DM minihalo. As expected, O6 GC is completely destroyed
after 3 Gyr (see inset in Figure. 4.23). Finally, we establish that Fornax could have more than five
5 GCs. More than one extra GC could have fallen to the Fornax centre a long time ago and could
have been destroyed, which is compatible with the large quantity of the metal-poor stars found in
Fornax. The absence of NSC on our timescale is only possible because DM minihalos accelerate the
tidal stripping. Figure. 4.24 compares the fitted core radius as a function of time for the five Oi

GCs with a DM minihalo (in purple) and these five GCs plus one additional GC with a DM minihalo
(in blue). We show that the rapid infall of O6 GC with a DM minihalo enhances the core formation
due to crossings of the five GCs with a DM minihalo. Thus, if Fornax had more than five 5 GCs,
they could contribute to form a larger core.

As the value of the core size rc depends entirely on the fitted DM profile, we can’t use this radius
as a constraint on the DM halo core size of Fornax. However, the DM density at 150 pc of Fornax was
estimated to be around 108 M¯.kpc−3 for a virial mass of ∼ 2×1010 M¯ by using stellar kinematics
[Read et al., 2019]. Assuming a virial mass of 109 M¯, we found a similar density at this specific
radius in our simulation with 6 GCs embedded in a DM minihalo. As core formation is entirely driven
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Figure 4.24 – Enhancement of the core formation: Fitted core radius rc of the DM cored halo induced
by crossings of the five Oi GCs with a DM minihalo (in purple) plus one additional GC with a DM minihalo
(in blue) as a function of time. rc 6= 0 (rc = 0) means that there is a (no) cusp-to-core transition for the
Fornax DM halo. In this scenario, the rapid infall of O6 GC with a DM minihalo enhances the core formation
due to crossings of the five GCs with DM minihalos.

by energy transfers via dynamical friction, it will be harder to induce a core with this density at 150
pc for a 1010 M¯ halo with only five GCs, because the center of the higher mass halo is less dense.
Thus, dynamical friction will be less efficient in these halos. Nevertheless, DM substructures will
have the same behaviour as our GCs with a DM minihalo. As the GC dynamical evolution is entirely
determined by the DM minihalos, these substructures could have also interacted with Fornax and
induced a cusp-to-core transition. In addition to GCs, subhalos could be responsible for the large
core formation in Fornax. The dynamics of DM subtructures in dwarf galaxies is investigated in
Boldrini et al. (in prep.).

4.3.4 Appendix

In this section, we assess the impact of a numerical parameter that controls the accuracy of our
simulations; the softening length ε. To test how the softening length impacts on the stellar density
profile for isolated GCs with and without a DM minihalo, and the orbital radius and the mass loss of
GCs with a DM minihalo and the Fornax DM density profile, we ran simulations with three different
softening lengths, ε = 2, 1 and 0.5 pc, in order to ensure that our simulations do not suffer from
numerical noise. We apply these tests to the simulation over 12 Gyr in the early accretion scenario
for GCs with a DM minihalo.

As our softening length is similar to the stellar core radius of the GCs, we studied the impact of
the softening on the evolution of the stellar density profile over time in Figure. 4.25 for an isolated
GC with and without a DM minihalo. Initially, GC stars assume a King profile with a King radius
rk = 1 pc. The stellar distribution is divided in bins of groups composed of Ng = 256 particles.
Figure. 4.25 shows that our mass resolution does not allow us to resolve the 1 pc core radius of GCs.
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Figure 4.25 – Impact of softening on GC stellar density profiles: Stellar density profile of an isolated
GC with and without a DM minihalo for different times and three different softening lengths. Initially, GC
stars assume a King profile with a King radius rk = 1 pc. The stellar distribution is divided in bins of groups
composed of Ng = 216 particles. Our mass resolution does not allow us to resolve the 1 pc core radius of
GCs. We noticed that the dynamics of GCs is subject to numerical effects for ε= 2 pc. Our convergence
test states that the stellar density profiles for ε= 0.5 and 1 pc are nearly identical.

We noticed that the dynamics of GCs is subject to numerical effects for ε= 2 pc. The convergence
of the stellar density profiles confirm that it is sufficient to consider a softening length of 1 pc, which
is similar to the King radius for our study.

The evolution of the orbital radius of the five clusters in an accretion process with eccentric orbits
(see objects Ei in Table 7.1) is shown in Figure. 7.7 for three different softening lengths. It can be
seen that the orbital decays of GCs are very similar for all the softening lengths. The evolution of the
mass loss for the GC stellar component embedded in a DM minihalo is also providing in Figure. 4.27
for different softening lenghts. Our simulations are well converged for ε= 0.5 and 1 pc. However,
for ε= 2 pc, numerical noise causes enhanced disruption of the clusters as in Figure. 4.25.

In order to determine how the DM density profile depends on the softening length, Figure. 4.28
presents the evolution of fitted DM core radius over time for three different softening lengths. We
observe a deviation of the core radius for a softening of 2 pc compared to the other softening lengths.
For 1 and 0.5 pc, we deduce that the softening length do not affect the DM core radius. As our
simulations with a numerical parameter of 1 and 0.5 pc are well converged over 12 Gyr, we chose ε
= 1 pc as the softening length for all our simulations and ensured that our simulations do not suffer
from numerical noise.
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Figure 4.26 – Impact of softening on orbital decay: Orbital radius of the five GCs with a DM minihalo in
an early accretion process with eccentric orbits (see objects Ei in Table 7.1) as a function of time for three
different softening lengths. The orbital decays of GCs are nearly identical for all the softening lengths. As
the stellar density profiles for ε= 0.5 and 1 pc are very similar (see Figure. 4.25), the orbital radius behaves
the same for these softenings.
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Figure 4.27 – Impact of softening on mass loss: Evolution of the mass loss of the stellar component
embedded in a DM minihalo over 12 Gyr for three different softening lengths. Our simulations are well
converged for ε= 0.5 and 1 pc. As the stellar density profiles for ε= 0.5 and 1 pc are nearly identical (see
Figure. 4.25), the mass loss behaves the same for these softenings.
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Figure 4.28 – Impact of softening on DM halo core size: Fitted DM core radius as a function of time
for three different softening lengths. The core formation is due to crossings of GCs with a DM minihalo in
the early accretion scenario. We observe a deviation of the core radius for a softening of 2 pc compared
to the other softening lengths. For 1 and 0.5 pc, we noticed that the softening length does not affect the
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the DM halo core size behaves the same for these softenings.
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Chapter 5

Primordial black holes as dark matter
candidates: a new solution to the
cusp-core problem

The work presented in this chapter is based on Boldrini et al. (2020a) (arXiv:1909.07395)
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CHAPTER 5. PRIMORDIAL BLACK HOLES AS DARK MATTER CANDIDATES: A NEW
SOLUTION TO THE CUSP-CORE PROBLEM

5.1 Primordial black holes as dark matter candidates

The nature of DM is one of the major unsolved problems in astrophysics. The most popular
DM candidates include weakly interacting massive elementary particles (WIMPs), such as super-
symmetric neutralinos or axions [Bergström, 2000; Bertone et al., 2005; Jungman et al., 1996]. An
alternative proposal to explain the nature of DM is that DM could be made of macroscopic compact
halo objects (MACHOs) such as primordial black holes (PBHs) (Hawking [1971]; Zel’dovich &
Novikov [1967] and more recently Clesse & Garćıa-Bellido [2018]; Khlopov [2010]). These PBHs
could naturally be produced in the early Universe via cosmic inflation, without the need to appeal
to new physics beyond the standard model [Clesse & Garćıa-Bellido, 2015; Inomata et al., 2017].
There are currently three allowed mass windows around 4× 10−17, 2× 10−14 and 25 - 100 M¯
[Carr et al., 2017]. PBHs can constitute much or even all of the DM in these mass windows by
considering only the most well-established bounds and neglecting those that depend on additional
astrophysical assumptions. However, taking into account all of the astrophysical constraints means
that the PBH+CDM fraction can still be as much as ∼ 0.1 [Carr et al., 2017], and even larger in
the lowest mass windows. Despite the fact that there is still no direct evidence for PBHs, the 25
- 100 M¯ mass window is of special interest in view of the recent detection of black-hole mergers
by LIGO [Abbott et al., 2016]. Moreover, the observed LIGO detection rates can be explained for
a PBH mass fraction of order 0.001 to 0.01[Kovetz, 2017; Sasaki et al., 2016]. In the future, the
Laser Interferometer Space Antenna (LISA) could potentially also detect PBHs in this mass window
[Amaro-Seoane et al., 2017].

In collisionless systems, stellar particle encounters lead to the relaxation of particles with similar
kinetic energy and drive the system to energy equipartition. Systems comprised of particles of
differing masses will also drive mass segregation processes (see Figure 5.1). As an example, massive
stars or MACHOs fall towards the center of the potential well and their energy is transferred to the
lighter stars, which move away from the center [Chandrasekhar, 1943; Spitzer, 1969]. Consequently,
the system can expand and the density profile of the system can change due to this diffusion process
[Brandt, 2016; Koushiappas & Loeb, 2017; Zhu et al., 2018].

Here, in the numerical experiments, we explore the consequences of assuming the DM in galaxies
consists of both CDM and PBHs. We propose that PBHs, as DM candidates, can induce a cusp-to-
core transition in PBH+CDM halos through gravitational heating from two principal mechanisms,
dynamical friction by CDM particles on PBHs and two-body relaxation between PBH and CDM. We
explore this transition using high performance N-body simulations on GPU to probe the PBH+CDM
mass fraction fm in 107 M¯ dwarf galaxies. Our simulations allow a mass resolution of 1 M¯ for
DM particles. We work with PBHs in the 25-100 M¯ mass window, which is consistent with the
LIGO detections. Chapter 5 is organized as follows. Section 5.2 provides a description of N-body
modelling and our numerical simulations. In Section 5.3, we show our simulation results and discuss
the implications of PBH as a DM candidate.

5.2 N-body modelling

In this work, we consider that a fraction of the DM consists of 25-100 M¯ PBHs. Then, a DM halo
is composed of CDM particles and PBHs (DM = PBH + CDM) (see Figure 5.1). We define the
PBH+CDM mass fraction as

fm = MPBH

MCDM
, (5.1)
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Mass  
segregation

fm=MPBH/MDM

DM (1 M⊙) 

PBHs 
(25-100 M⊙)

Figure 5.1 – Mass segregation in a PBH+CDM halo: Our halo is composed of DM and PBH particles
with a total mass of 107 M¯. A fraction of the DM consists of 25-100 M¯ PBHs. Our simulations allow
a mass resolution of 1 M¯ for DM particles. This DM halo comprised of particles of differing masses will
drive mass segregation processes.

where MPBH and MCDM are the total masses of PBHs and CDM particles. For our halo, we assume
the NFW form [Navarro et al., 1996]:

ρ(r ) = ρ0

(
r

rs

)−1 (
1+ r

rs

)−2

, (5.2)

with scale density ρ0 and scale length rs. The relaxation time is proportional to N/ln(N), where
N is the number of particles. Assuming 100 M¯ PBHs and 107 M¯ halo, the particle relaxation
will take between 1 and 12 Gyr depending on fm considered between 1 and 0.01. In comparison,
the relaxation time for 108 (109 M¯) halos are 10 (100) times longer than for 107 M¯ and longer
than the age of the Universe, which is why we focus here on a 107 M¯ dwarf galaxy, starting at
redshift z = 2 in the simulations. Given the halo mass and redshift, the halo concentration c200 can
be estimated from cosmological N-body simulations [Prada et al., 2012]. Our halo is composed of
DM and PBH particles with a total mass of 107 M¯ (see Figure 5.1).

To generate our NFW halos, we use the initial-condition generator, magi [Miki & Umemura,
2018]. We perform our simulations with the high performance collisionless N-body code, gothic
[Miki & Umemura, 2017]. We evolve different PBH+CDM halos composed of 25, 50, 75 and
100 M¯ PBHs over 11 Gyr by adopting the softening length of ε0 =1.331 pc and the accuracy
control parameter of 2−7. All runs were made with CDM particles of 1 M¯. We explored also
PBH+CDM halos with different mass fractions fm = [0.01,0.1,0.5]. In our simulations, we assume
that the CDM and PBH components of PBH+CDM halos initially follow NFW profiles with the
same concentration. We tested two different scale lengths for the profile of the PBH component:
r PBH

s = r CDM
s and r PBH

s = r CDM
s /2. The second corresponds to a scenario where the density of PBHs is

enhanced in the central region. Indeed, we suppose that mass segregation of PBHs would occur, and
this increases the density of PBHs at the centre. This scenario should also enhance the formation of
cores due to dynamical heating of the CDM by PBHs. It will also accelerate the two-body relaxation.
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Figure 5.2 – Tests of numerical accuracy: Density profiles of a halo composed of 100 M¯ PBHs to
test the impact of the accuracy control parameter A (left panel) and softening length ε (middle panel) in
simulations. We tested the impact of the accuracy control parameters of 2−6 (orange points), 2−7 (black
points), 2−8 (grey points) and 2−9 (red points) for a halo with fm = 0.1 and r PBH

s = r CDM
s . Density profiles of

PBH+CDM halo (left panel) hold the initial distribution for all the different parameter values. The middle
panel shows our softening convergence test for the density profiles of the CDM component of fm=0.5
halo with a softening length ε = ε0/2, ε0 and 2ε0, where ε0=1.331 pc. Indeed, the core size of the CDM
component is independent of the softening length. The right panel describes density profiles of a halo
composed only with CDM particles ( fm=0) and a halo composed only with PBH particles ( fm=1). The
CDM profiles at the beginning T = 0 Gyr (dashed line) and at the end of the simulation T = 11 Gyr (red
points), which are nearly identical, show the stability of our halo. However, there is core formation for
fm=1 due only to two-body relaxation between PBHs.

5.3 Results

5.3.1 Evidences for core formation from gravitational heating by PBHs

First, we assess the impact on the PBH+CDM halo density profiles in our simulations of the two
numerical parameters, which are the accuracy control parameter and the softening length ε. We
tested 2−6, 2−7, 2−8 and 2−9 for the accuracy control parameter in a PBH+CDM halo with fm = 0.1
and mPBH = 100 M¯. The left panel of the Figure 5.2 shows that PBH+CDM density profiles
hold the initial distribution for all the different values of the accuracy control parameter. Additional
accuracy tests confirmed also that the density profile hold the initial distribution for the considered
fm and mPBH values. To test how the softening length impacts on the density profile of the CDM
component and the CDM core size, we ran simulations with three different softening lengths ε =
ε0/2, ε0 and 2ε0 in order to ensure that our simulations do not suffer from numerical noise. We
applied this test on a PBH+CDM halo with fm = 0.5 and mPBH = 100 M¯ expected to have core
formation. The middle panel of Figure 5.2 reveals that softening length (or particle size) does not
affect the density profile of CDM component and its core size. Thus, numerical artifacts are not
responsible for core formation. We tested also the stability of our halo composed only with CDM
particles ( fm=0) over 11 Gyr. We compare our halo profiles at the beginning (T=0 Gyr) and at
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Figure 5.3 – Auto-redistribution of CDM particles and PBHs: Comparison between T = 0 Gyr (dashed
line) and T = 11 Gyr (solid line) of the interior mass of the CDM component (left panel) and 100 M¯
PBHs (right panel) as a function of radius for the three different mass fraction fm and and r PBH

s = r CDM
s .

The profiles show that CDM particles moved to outer regions and PBHs felt to the halo center. This
phenomenon is due to dynamical friction by the CDM environment on PBHs and to a lesser extent by
two-body relaxation between PBHs and CDM.

0 2 4 6 8 10

t [Gyr]

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

σ
r(
f m

=
0.

5)
/σ

r(
f m

=
0)

r= 15 pc

r= 30 pc

r= 60 pc

r= 100 pc

Figure 5.4 – Heating of the CDM component: Ratio between CDM radial velocity dispersion for fm = 0.5
and fm = 0 halos as a function of time at different radii. The PBH+CDM halo with fm = 0.5 contains
100 M¯ PBHs following an initial NFW profile with r PBH

s = r CDM
s . Over time, the velocity dispersion

ratio increases, especially at the center, due to PBH heating processes, which are two-body relaxation and
dynamical friction effect of PBHs. This leads to core formation.

the end (T=11 Gyr) of the simulation, which are nearly identical for all radii, on the right panel
of Figure 5.2. We added the density profile of a halo composed only with PBHs ( fm=1), which
highlights core formation due to two-body relaxation between PBHs.

As we show that numerical effects do not initiate core formation, we need to provide evidence
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for the dynamical mechanism which will induce the cusp-to-core transition. Figure 5.3 compares the
interior mass of the CDM component (left panel) and 100 M¯ PBHs (right panel) as a function
of radius for three different mass fractions fm between T = 0 Gyr and T = 11 Gyr. Profiles in
Figure 5.3 illustrate that contrary to the CDM particles, the number of PBHs increases in the
central region. This results in the PBH infalling towards the central region. By falling in, PBHs
will transfer energy to the CDM field via dynamical friction. This is the reason why CDM particles
move to the outer regions as we see in the left panel of Figure 5.3. Another important dynamical
effect is two-body relaxation between PBHs, which enhances the CDM particle migration. The
CDM velocity dispersion is sensitive to these energy exchanges between CDM particles and PBHs.
Figure 5.4 compared the CDM radial velocity dispersion for fm = 0.5 and fm = 0 halos as a function
of time at different distances from the halo center. The PBH+CDM halo with fm = 0.5 contains
100 M¯ PBHs following an initial NFW profile with r PBH

s = r CDM
s . We highlight that the velocity

dispersion ratio increases rapidly, especially in the central region over time, due to PBH heating
processes, which are two-body relaxation and dynamical friction effect of PBHs. This leads to core
formation. In addition, Figure 5.5 shows the evolution of the CDM density profiles and the CDM
mass-weighted velocity distribution projected face-on through a 100 pc slice during a cusp-to-core
transition for the CDM component in a PBH+CDM halo with fm = 0.01, 0.1 and 0.5 by assuming
100 M¯ PBHs and r PBH

s = r CDM
s . As the CDM velocity increases in the central region, the CDM

density profile changes until core formation occurs. This figure demonstrates that core formation
goes along with dynamical heating of CDM particles.
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Figure 5.5 – Cusp-to-core transition due to heating: Density profiles of the CDM component (left
panels) for fm = 0.01 (yellow), 0.1 (red) and 0.5 (blue) with 100 M¯ PBHs and r PBH

s = r CDM
s and their

corresponding maps of the CDM mass-weighted velocity distribution projected face-on through a 100 pc
(right panels) at 0, 3 and 11 Gyr. As the CDM velocity increases in the central region, the CDM density
profile changes until core formation occurs. All the maps show that core formation goes with dynamical
heating of DM particles.
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5.3.2 Core size and core formation time

Figure 5.6 shows the overall density profiles of the PBH+CDM halo and the density profiles of the
CDM and PBH components of the PBH+CDM halo separately after T = 11 Gyr for different initial
mass fractions fm, initial scale radii for the PBH component r PBH

s and initial PBH masses mPBH. As
we expect, two-body relaxation between PBHs and dynamical friction effects from CDM particles
modified all the density profiles. In order to determine if there is core formation in our halos, we did
a single-component fit for the PBH+CDM profile and separate fits for CDM and PBH profiles. We
tested many profiles such as Einasto [Einasto, 1965], Burkert [Burkert, 1995] and Zavala (Eq.(4)
in Zavala et al. [2013]) profiles. However, we found that all of our profiles are well fitted by the
following five-parameter formula:

ρ(r ) = ρcW(r )+ (1−W(r ))ρNFW(r ), (5.3)

where ρc is the central core density and W(r ) is defined as

2W(r ) = 1−erf
(r − rc

2∆

)
, (5.4)

where rc is the core radius and ∆ is a parameter to control the sharpness of the transition from the
core to the NFW profile. The error function corresponds to a switching function here. Our fitting
formula reproduces the simulated density structures and captures the rapid transition from the cusp
to the core. We set Poissonian errors for fitting weights. Our results suggest that it is natural to
have multiple cores for a two component halo. Indeed, the core radii of the PBH+CDM halo, the
CDM component and the PBH component differ. Based on a reduced chi-squared method, fits of
the CDM component of the PBH+CDM halo provide the best-fit values of core radii (see Table
5.1). We consider these core radii to determine whether a transition appears in our simulation.
The smallest core size in the simulations is of the order of 10 pc, which corresponds to our spatial
resolution. Thus, we assume that a cusp-to-core transition occurred when the core size rc becomes
greater than our spatial resolution. Table 5.1 describes the best fit values for core sizes for the CDM
component of the PBH+CDM halo for all our simulation scenarios. In the case where the density of
PBHs is enhanced in the central region (r PBH

s = r CDM
s /2), the dynamical heating by PBHs generate

larger core sizes (see also Figure 5.6).

Now, we have the relation between the core radius rc (t ) of the CDM component of the PBH+CDM
halo and the time t when the cusp-to-core transition occurs in the simulations. We invert this func-
tion in order to calculate the time ratio Tc(rc)/Tr(rc), where Tc(rc) and Tr(rc) are the core formation
time and the relaxation time, respectively. The relaxation time Tr is given by [Binney & Tremaine,
2008]:

Tr(r ) ' v3(r )

8π(nCDMm2
CDM +nPBHm2

PBH)G2 ln
( r200

ε

) , (5.5)

where nCDM and mCDM (nPBH and mPBH) are the number-density and mass of CDM (PBH) par-
ticles, respectively. v , ε and r200 represent the velocity, the softening length and the virial radius,
respectively.

Figure 5.7 illustrates the time ratio Tc(rc)/Tr(rc) as function of the core formation time Tr(rc)
for all the simulation runs where a cusp-to-core transition occurred (see Table 5.1). We notice that
the ratio Tc(rc)/Tr(rc) is almost constant over the time in most of simulation runs. Furthermore, it
does not strongly depend on the fraction fm, the PBH mass mPBH or the PBH scale radius r PBH

s .
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Figure 5.6 – Cusp-to-core transitions in PBH+CDM halos: In each subset, the left panel corresponds
to the overall density profiles of the PBH+CDM halo, the middle and right panels to the density profiles
of the CDM and PBH components of the PBH+CDM halo separately after T = 11 Gyr. Initially, the PBH
and CDM components of the PBH+CDM halo with a total mass of 107 M¯ follow NFW density profiles
(dashed lines). We tested two different scale lengths for the profile of the PBH component: r PBH

s = r CDM
s

(left column) and r PBH
s = r CDM

s /2 (right column). We explore three different PBH+CDM mass fractions
fm = [0.01, 0.1, 0.5] (see Equation (5.1)). Heating processes between PBH and CDM particles induce a
transition from cusp to core in a PBH+CDM halo. In order to determine if there is this transition in our
PBH+CDM halo, we did fits (black lines) for the three different density profiles and the size of formed cores
are marked by arrows. Our results suggest that it is natural to have multiple cores for a two component
halo. Indeed, the core radii of the PBH+CDM halo, the CDM component and the PBH component differ.
In the case where the density of PBHs is enhanced in the central region (r PBH

s = r CDM
s /2), the dynamical

heating by PBHs generate larger core sizes (see also Table 5.1).

We derive that a cusp-to-core transition occurred for Tc(r )/Tr(r ). 300. The discrepancy between
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fm r PBH
s /r CDM

s mPBH CCT rc χ2/ν
[M¯] [pc]

0.5 1 25 X 17.6 1.01
0.5 1 50 X 31.28 1.02
0.5 1 100 X 34.32 1.0
0.1 1 25 X 10.01 1.01
0.1 1 50 X 14.48 1.0
0.1 1 100 X 19.33 1.03
0.01 1 25 × - -
0.01 1 50 × - -
0.01 1 100 × - -
0.5 1/2 25 X 19.7 1.05
0.5 1/2 50 X 22.48 0.99
0.5 1/2 100 X 34.63 1.06
0.1 1/2 25 X 15.1 1.02
0.1 1/2 50 X 21.55 1.02
0.1 1/2 100 X 32.23 1.01
0.01 1/2 25 × - -
0.01 1/2 50 × - -
0.01 1/2 100 X 11.73 0.99

Table 5.1 – Best fit values for core sizes for the CDM component of the PBH+CDM halo with their
corresponding reduced chi-squared χ2/ν for all our simulation scenarios. From left to right, the columns
give: the PBH-CDM mass fraction; the scale length for the PBH component; the PBH mass; if or no
cusp-to-core transition (CCT) occurs; the core radius of the CDM component; the reduced chi-squared. All
these cores are resolved in simulations based on our resolution of about 10 pc when a cusp-to-core transition
(CCT) occurs. In the case where the density of PBHs is enhanced in the central region (r PBH

s = r CDM
s /2),

the dynamical heating by PBHs generate larger core sizes (see Figure 5.6).

the time ratio values is certainly due to our core estimation based only on the CDM component.

Figure 5.8 represents core size and core formation time maps in ( fm, mPBH) space for both for
r CDM

s models and r CDM
s /2 models. The core radii were calculated for Tc =11 Gyr. In order to draw

these maps, we predict rc and Tc by setting the time ratio Tc(rc)/Tr(rc) at 300 and calculating the
relaxation time (see Equation 5.5). Indeed, the white line in top panels of Figure 5.8, which marks
the limit of the cusp-to-core transition, is consistent with the shape of the CDM distribution from
simulations (triangles and squares) under this latter assumption. As one can see, core radius maps
in Figure 5.8 demonstrates that higher PBH mass and mass fraction in PBH+CDM halo generates
larger core sizes. Enhancing the density of PBHs in the central region (r PBH

s = r CDM
s /2) lowers

the threshold of the cusp-to-core transition (white line). Moreover, our maps show that at least a
mass fraction of 1% is needed to induce cores in PBH+CDM halo depending on the PBH mass and
r PBH

s . The core formation time was calculated at rc = 10 pc because we assume that a cusp-to-core
transition occurred when the core size rc becomes greater than our spatial resolution of about 10 pc.
These maps (see bottom panels in Figure 5.8) reveal that the cusp-to-core transition takes between
1 and 8 Gyr to occur depending on the fraction fm, the PBH mass mPBH and the PBH scale radius
r PBH

s . Enhancing the density of PBHs in the central region accelerate the formation of cores.

We highlighted that the dynamical heating of the CDM component by PBHs can induce cusp-
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Figure 5.7 – Estimating core formation time: Ratio between the core formation time Tc(rc) and the
relaxation time Tr(rc) as a function of the core formation time Tc(rc) for all the simulation scenarios where
a cusp-to-core transition occurred (see Table 5.1). This ratio is almost constant over the time in most
of simulation scenarios and does not strongly depend on the fraction fm , the PBH mass mPBH or the
PBH scale radius r PBH

s . Indeed, we establish that the time ratio is O (100) for both scale radii of the PBH
component r PBH

s

to-core transitions without the presence of baryons and happens automatically in all PBH+CDM
halos. Experimentally, annihilation rates from pure CDM halos can prove or prove or disprove this
scenario quite clearly[Diemand et al., 2005; Ishiyama et al., 2010]. A baryonic feedback scenario
requires starbursts that occur at a particular resonance frequency for a given galaxy potential [Ogiya
& Mori, 2011]. A single event blowout, results in a temporary core that quickly reverts back to
a cusp. This mechanism shown in this work can work even in such failed cases. In addition, low
mass galaxies, such as our PBH+CDM halos, can merge after the cusp-to-core transition in order to
form more massive galaxies (108 M¯) with a larger halo cores, which are consistent with observed
galaxies. In fact, only a merger of two cored halos yields a cored halo, because a merger of a cuspy
halo with a cored halo or a second cuspy halo produces cuspy halo [Boylan-Kolchin & Ma, 2004].
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Figure 5.8 – Core size and core formation time: Core size (top panels) and core formation time (bottom
panels) maps in ( fm, mPBH) space for both for r CDM

s models and r CDM
s /2 models. The core radii were

calculated for Tc =11 Gyr. Triangles (squares) on maps specify that a PBH+CDM halo for a given fm

and mPBH has a cored (cuspy) profile based on our simulation results. The white line in top panels, which
marks the limit of the cusp-to-core transition, is consistent with the shape of the CDM distribution from
the simulations (triangles and squares) under this latter assumption. Core radius maps demonstrates that
higher PBH mass and mass fraction in PBH+CDM halo generates larger core sizes. Enhancing the density
of PBHs in the central region (r PBH

s = r CDM
s /2) lowers the threshold of the cusp-to-core transition (white

line). At least a mass fraction of 1% is needed to induce cores in PBH+CDM halos depending on the PBH
mass and r PBH

s . The core formation time maps (bottom panels) reveal that the cusp-to-core transition
takes between 1 and 8 Gyr to occur depending on the fraction fm , the PBH mass mPBH and the PBH scale
radius r PBH

s . The core formation time was calculated at rc = 10 pc because we assume that a cusp-to-core
transition occurred when the core size rc becomes greater than our spatial resolution of about 10 pc.
Enhancing the density of PBHs in the central region accelerate the formation of cores.
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Chapter 6

Quenching any BH feedback: one
consequence of off-center massive black
holes

The work presented in this chapter is based on Boldrini et al. (2020c) (arXiv:2003.02611).
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6.1 Off-center massive black holes

Most galaxies are known to harbour supermassive black holes (SMBHs), formed within a billion years
after the Big Bang. They reside in the centres of present day galaxies with masses of ∼ 106 −1010

M¯ based on observations of high-redshift quasars (see Kormendy & Ho [2013] for a review). The
radio source Sgr A∗ the MW Galaxy is an evidence for the presence of a SMBH at its centre [Issaoun
et al., 2019]. Moreover, dwarf galaxies may frequently host massive black holes (MBHs) at their
centres according to X-ray observations, among others (see Greene et al. [2019] for a recent review).
These MBHs are in the mass range ∼ 103 −105 M¯ and are expected to play key roles in SMBH
formation scenarios that invoke galaxy mergers.

Intriguingly, some observations of active galactic nuclei (AGN) in dwarf galaxies claim that MBHs
are not located at the centers of their host galaxies. This offset varies between tens of parsecs to
a few kiloparsecs [Menezes et al., 2014, 2016; Reines et al., 2020; Shen et al., 2019]. Different
scenarios have been proposed to explain these off-center BHs. Plausibly, the offset could be due to
the presence of a binary system before the merger (e.g. Sundararajan et al. [2010] and references
therein), or via tidal stripping during mergers (see Tremmel et al. [2018] and references therein),
the incomplete MBH inspiraling phase of the two merging galaxies [Barth et al., 2009; Comerford &
Greene, 2014], or the recoil of merging BHs [Komossa, 2012; Loeb, 2007; Merritt & Milosavljević,
2005; Volonteri & Perna, 2005]. Furthermore, recent simulations show that BHs in dwarf galaxies
are expected to be wandering around the central regions after the occurrence of mergers or due to
tidal stripping [Bellovary et al., 2010, 2019; Pfister et al., 2019]. The merging mechanism seems
important for blue dwarfs, whereas the old dwarfs dominate [Kado-Fong et al., 2020]. Moreover,
major mergers of dwarf galaxies seems also very rare after z ∼ 3 [Fitts et al., 2018]. As the frequencies
of dwarf galaxy mergers and MBH binaries are uncertain, we propose below an alternative explanation
for off-center MBH.

6.2 Dark matter subhalos and off-center massive black holes

The CDM paradigm predicts that a very large number of dark matter substructures exist inside
galactic halos [Diemand et al., 2008; Springel et al., 2008]. Recently, Gaia DR2 data has provided
additional evidence for these substructures [Banik et al., 2019]. DM halos are growing with time,
either through mergers with DM halos or by accretion of smaller halos. The latter, considered as
DM subhalos, have crossed the virial radius of a larger halo at some point in the past. Subhalos
interact gravitationally with all the components of the galaxy before becoming remnants of disrupted
halos [Zavala & Frenk, 2019]. In the central regions, the MBH dominates the central mass content
of the galaxy [Ferrarese & Merritt, 2000; Gebhardt et al., 2000]. This is the reason why passages
of subhalos near the central regions of the host galaxy can lead to energy exchange with MBHs in
dwarf galaxies.

In this work, we show that subhalo crossings during their infall phase can heat the central regions
of dwarf galaxies and kick the central MBH on average out to tens of parsecs from the galaxy centre
over a significant fraction of the dwarf history. Assuming average initial conditions for the subhalos,
we performed N-body simulations with GPUs, which allow parsec resolution, to study this heating
process that naturally creates off-center MBHs in dwarf galaxies. This section is organized as follows.
Section 6.2.1 provides a description of the N-body modelling of the dwarf galaxy and its subhalos,
along with details of our numerical simulations. In Section 6.2.2, we present our simulation results,
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Figure 6.1 – Subhalo accretions: Average number of subhalos per Gyr as function of redshift (left
panel) and cumulative average number of subhalos (right panel) as function of time with a mass ratio
10 < Mhost/Msub < 100 in 109 and 1010 M¯ DM host halos. This estimate is an average of the number of
mergers based on the extended Press-Schechter (EPS) formalism [Neistein & Dekel, 2008].

and Section 6.2.3 discusses the implications of off-center BHs for the cusp-core problem.

6.2.1 Dwarf galaxy-subhalo simulation

As our host galaxy, we consider a dwarf galaxy that has accreted DM subhalos with mass ratio
10 < Mhost/Msub < 100. We construct a live dwarf galaxy composed of a central MBH (105 −106

M¯), with only stars and DM particles, since dwarf galaxies contain little or no gas today. The
stellar component is modelled by a Plummer profile [Plummer, 1911]:

ρ(r ) = 3a2M0

4π
(r 2 +a2)−5/2, (6.1)

where a and M0 are the scale parameter and the mass, respectively. We assume an average half-light
radius of 294 pc and a mass of 107 M¯ for the stellar component of the dwarf galaxy based on
Table 1 of Read et al. [2019]. For the host halo and subhalos, we assume a NFW density profile
[Navarro et al., 1996]:

ρNFW(r ) = ρ0

(
r

rs

)−1 (
1+ r

rs

)−2

, (6.2)

with central density ρ0 and scale-length rs. For the simulations, we consider DM host halos
of Mhost = 109 and 1010 M¯ at redshift z = 3. Given the halo mass and redshift, both halo con-
centrations c200 can be estimated from cosmological N-body simulations [Dutton & Macciò, 2014].
The abundance of subhalo accretion for a specific host halo mass range can be determined by the
extended Press-Schechter (EPS) formalism [Bond et al., 1991; Lacey & Cole, 1993]. Fig. 7.2 rep-
resents the average number of subhalos per Gyr as function of redshift (left panel) and cumulative
average number of subhalos (right panel) as function of time with mass ratio 10 < Mhost/Msub < 100
in 109 and 1010 M¯ DM host halos. We determine this rate from analytic merger rates for DM
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halos within the EPS formalism [Neistein & Dekel, 2008]. The left panel in Fig. 7.2 shows that
a 109 (1010) M¯ host halo has accreted on average 3-4 (4-5) subhalos per Gyr for the adopted
mass ratio at z = 3 (see Fig. 7.2). Moreover, galaxies continuously accrete smaller halos. Over
their history, 109 (1010) M¯ host halos have accreted 10-11 (13-14) subhalos with a mass ratio
10 < Mhost/Msub < 100 (see right panel in Fig. 7.2). In the simulations, the subhalo position was
drawn randomly under the requirement that the initial separation between the centre of the galaxy
and subhalos is the virial radius of the host halo, rvir. The subhalo orbit has an initial circularity
η depending on the host halo mass and redshift. As the orbital distributions of subhalo circularity
are given to good approximation by Wetzel [2011], we determine the average circularity η = 0.52
(η= 0.47) at z = 3 for a 109 (1010) M¯ host halo. Here, the MBH is represented by an additional
particle of mass 10−4 and 10−3 Mhost, placed initially at the center of the dwarf galaxy. We assume
also in this study that our dwarf galaxy is in isolation.

To generate our live objects, we use the initial condition code magi [Miki & Umemura, 2018].
We perform our simulations with the high performance collisionless N-body code gothic, which runs
entirely on GPUs [Miki & Umemura, 2017]. We evolve the dwarf galaxy-subhalo system over 12 Gyr
for 109 and 1010 M¯ host halos. We performed simulations for 1 and 4 subhalos with mass ratios
Mhost/Msub = 12.5 and 50, as limiting cases. We set the particle resolution of all the live objects
to 100 M¯ and the gravitational softening length to 2 pc. We also assess the impact of numerical
effects on BH dynamics by running simulations for three different softening lengths, ε = 4, 2 and
1 pc. We apply these tests to the simulation over 12 Gyr for a 109 M¯ DM host halo hosting a
105 M¯ BH and accreting one DM subhalos with a mass of 8×107 M¯. Our simulations are well
converged for ε= 1 and 2 pc. Our system was centered on the mass center of the stellar component
for all our results. The system corresponds to all particles (DM, stars and MBH) in the simulation.
The reason why we centered on the stellar component is precisely because observations establish
displacements of MBH from the stellar component.

6.2.2 Results

We consider the accretion of DM subhalos by a dwarf galaxy, which hosts a central MBH. Details
of all our scenarios are given in Table 7.1. The inset plot in Fig. 7.3 depicts the orbital decays of
four subhalos with a mass of 8×107 M¯ by a a dwarf galaxy embedded in a 109 M¯ DM halo over
12 Gyr. These radii correspond to the distance between the subhalo and the centre of the dwarf
stellar component. Dynamical friction induced by the DM field is responsible for the infall of these
subhalos. As a result, the central region of the galaxy experiences multiple subhalo crossings (see in
Fig. 7.3). Indeed, DM subhalos are extended objects following a NFW profile with a scale radius of
∼ 600 pc and their outerparts interact with the host galaxy’s centre during crossings. Furthermore,
subhalos also experience tidal disruptions from the dwarf galaxy. As shown in the inset plot in
Fig. 7.3, all subhalos are completely disrupted after 6-8 Gyr.

Subhalo crossings heat the central region and more particularly the MBH via dynamical friction.
Indeed, subhalos add energy to the BH, causing it to leave the galaxy centre. Fig. 7.1 illustrates
the orbital radius of a 105 M¯ MBH, initially at the galaxy centre, over 12 Gyr. This distance
corresponds to the distance between the BH and the mass centre of the dwarf stellar component. In
the absence of perturbers such as subhalos, the MBH remains at the centre of the dwarf galaxy. This
scenario ensures the stability of the BH against numerical effects (black curve in Fig. 7.1). However,
taking into account the subhalo interactions results in a kick of the MBH to tens of parsecs from
the galaxy centre. Indeed, the MBH has gained kinetic energy via dynamical friction. As subhalos
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Figure 6.2 – Energy transfer via dynamical friction: Kinetic energy over 12 Gyr gained by the MBH in
different scenarios (see Table 7.1 for details). As subhalos reach their velocity peak during its first infall in
the galaxy, the energy transfer is maximal at their first pericentre of subhalos. Inset figure: Orbital decay of
the four subhalos with a mass of 8×107 M¯ accreted by a dwarf galaxy embedded in a 109 M¯ host halo
over 12 Gyr. These radii correspond to the distance between the subhalo and the centre of the dwarf stellar
component. The initial separation between the centres of the galaxy and subhalos is the virial radius of the
host halo, rvir. Dynamical friction induced by the DM field is responsible for the infall of these subhalos.
Thus, the central region of the galaxy experienced multiple subhalo crossings.

reach their velocity peak during its first infall in the galaxy, the energy transfer is maximal at their
first pericentre of subhalos (see Fig. 7.3). Fig. 7.1 also highlights that the displacement of the
MBH depends strongly on the number of subhalos and their masses. We assume that the MBH is
off-center when its orbital radius is greater than the mean displacement of the MBH calculated over
12 Gyr in the absence of any perturbers (Nsub = 0) and this phenomenon is characterized by the
offset time Toffset. Table 7.1 shows that the MBH is off-center most of the time in all scenarios. We
also calculate the time spent by the MBH at rBH > 15 pc. Before kicking the MBH, subhalos need a
characteristic time to transfer energy to the central BH, defined to be the heating time Theating. The
maximum offset reached by the MBH due to heating from subhalos is between 35 (run12) and 134
pc (run18) depending on the scenarios (see Table 7.1). According to Fig. 7.2, 109 M¯ DM halos
accrete on average 3-4 DM subhalos at redshift z=3. Based on run42 and run48, we predict that
the MBH will spend on average 1.9-2.5 Gyr beyond 15 pc due the crossings of the four subhalos
after the heating time (0.25-0.35 Gyr). Thus, we expect that MBH are off-center for a significant
time during the early epochs (z=1.5-3) of dwarf galaxies. Furthermore, as the subhalo accretion is
a continuous process in galaxies, we expect that most of the time, MBH are offset from the galaxy
centre due to repeated heating by subhalo crossings. At low redshift, 1-2 DM subhalos are still be
accreted by dwarf galaxies (see Fig. 7.2) and we expect that most of MBHs will be off-center by
tens of parsecs even if these substructures are less concentrated at this recent epoch (see run12
and run18 in Table 7.1). Hovewer, our mechanism cannot explain the large displacement of MBHs
observed for nearby dwarf galaxies [Reines et al., 2020].
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Figure 6.3 – Off-center MBH: BH orbital radius over 12 Gyr for different subhalo numbers and masses
(see Table 7.1 for details). This radius corresponds to the distance between the BH and the mass centre
of the dwarf stellar component. The reason why we centered on the stellar component is precisely because
observations establish displacements of MBH from the stellar component. The MBH of mass 105 M¯ is
initially at the centre of the dwarf galaxy. Subhalo crossings heat the central regions and more particularly
affect the MBH via dynamical friction. Indeed, subhalos add energy to the MBH, causing it to leave the
galaxy centre. In the absence of perturbers, the MBH remains at the centre of the dwarf galaxy. This
scenario ensures the stability of the BH against numerical effects (black curve). However, taking into
account the subhalo interactions results in a kick of the MBH to tens of parsecs from the galaxy centre,
depending sensitively on the number of subhalos and on their masses. We assume that the MBH is off-
center when its orbital radius is greater than the orbital radius of the MBH in the absence of any perturbers
(Nsub = 0)

According to this scenario, we expect that the host halo and MBH masses play an important
role. Indeed, this heating mechanism is based on the efficiency of dynamical friction, which strongly
depends on the DM density at the galaxy centre. Run48 and run48b confirm that increasing the
BH mass reduces its offset time because more massive objects fall in more rapidly due to dynamical
friction (see Table 7.1). We explored the host halo mass impact in Fig. 7.4 by comparing the MBH
offset induced by subhalos in 109 M¯ and 1010 M¯ host halos over 12 Gyr. Fig. 7.4 shows that
MBH are off-center for a longer time in higher mass DM hosts. Indeed, the MBH spends on average
3.8 Gyr beyond 15 pc after the heating phase in a 1010 M¯ host halo. According to our simulation
results, we predict that MBHs are going to be off-center for a longer time in higher mass galaxies.
This offset time is directly related to dynamical friction, which strongly depends on the DM density
profile. Assuming a NFW profile, we determine the density profiles of DM host halos with different
masses at redshift z = 0 in Fig. 7.5. Given the halo mass and redshift, both halo concentrations
c200 can be estimated from cosmological N-body simulations [Dutton & Macciò, 2014]. We show
that the density at the centre decreases as the halo mass grows (see Fig. 7.5). At high redshift, the
difference between the central density as function of the DM halo mass is reduced but the same trend
is respected. Consequently, we predict that off-center BHs are more common in higher mass galaxies
because after the kick, dynamical friction on BHs becomes significantly weaker and then BHs take
more time to sink towards the centre of these galaxies. Moreover, in high mass galaxies, MBHs are
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Simulation Nsub MBH Msub Mhost M∗ Theating Toffset T(rBH > 15 pc) r BH
max

[M¯] [M¯] [M¯] [M¯] [Gyr] [Gyr] [Gyr] [pc]

run42 4 105 2×107 109 107 0.35 10.7 1.9 37
run48 4 105 8×107 109 107 0.25 9.4 2.5 96
run12 1 105 2×107 109 107 0.4 9.95 1.15 35
run18 1 105 8×107 109 107 0.3 9.5 2.2 134

run48b 4 106 8×107 109 107 0.25 8.25 1.9 92
run48m 4 105 8×108 1010 107 0.3 9.95 3.8 129

Table 6.1 – Simulation parameters for all the scenarios. From left to right, the columns give: the number
of subhalos; the MBH mass; the subhalo mass; the DM host halo mass; the stellar mass; the heating time;
the offset time; the time spent by the MBH at rBH > 15 pc; the maximal distance reached by the MBH.
We set the particle resolution of all the live objects to 100 M¯ and the gravitational softening length to
2 pc. The maximum offset reached by the MBH due to heating from subhalos is between 35 and 134 pc.
MBHs will spend on average 1.9-2.5 Gyr beyond 15 pc due the crossings of the four subhalos after the
heating time (0.25-0.35 Gyr). Thus, we expect that MBHs are off-center during a significant time in the
early epoch (z=1.5-3) of dwarf galaxies.
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Figure 6.4 – Host halo mass impact: BH orbital radius over 12 Gyr in 109 and 1010 M¯ DM host halos
accreting four DM subhalos with a mass of 8×107 M¯. MBHs are off-center more time in higher mass
DM host. Indeed, the MBH spent on average 3.8 Gyr beyond 15 pc after the heating phase in a 1010 M¯
host halo (see Table 7.1). We predict that MBHs are going to be off-center for a longer time in higher
mass galaxies.

going to have less inertia due to the lower galaxy potential and thus they will reach farther distances
as demonstrated in Fig. 7.4. Our result reinforces our prediction of a population of wandering black
holes, particularly in higher mass galaxies [Bellovary et al., 2019; Governato et al., 1994; Islam et al.,
2004; Micic et al., 2011; Rashkov & Madau, 2014; Schneider et al., 2002; Volonteri et al., 2003].
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Figure 6.5 – Dynamical friction in halo centres: Density profiles of DM host halos with different masses
as function of the radius normalized by their scale radius, assuming a NFW profile at redshift z = 0. The
offset time is related to the efficiency of dynamical friction, which strongly depends on the DM density at
the galaxy centre. The density at the centre decreases as the halo mass grows. Consequently, the dynamical
friction on BHs becomes significantly weaker and BHs take more time to sink towards the centre of higher
mass galaxies after the kick.

6.2.3 The cusp-core problem

Solutions invoking baryonic feedback cycles can potentially reconcile observed dwarf galaxy anomalies
with ΛCDM predictions. This challenge at small scales occurs precisely where baryons play an
important role, notably through BH feedback that generates significant movements of the gas. BH
feedback can expel large amounts of gas from the central of galaxies. A fraction of this gas then
cools and returns to the centre, generating repeated cycles of significant outflows which in turn
cause rapid fluctuations of the gravitational potential. These potential fluctuations dynamically
heat the DM and lead to the formation of a core [e.g. Martizzi et al., 2013; Peirani et al., 2017; Silk,
2017]. The gradually dispersion of the DM particles away from the center of the halo is ultimately
responsible for core creation.

Numerical simulations show that the peak of AGN activity happens between z ∼ 3 and z ∼ 1.6.
We sould be able to observe the flattening of the DM density profile induced by high BH activity.
Especially during this early phase of galaxy evolution, we predict that MBHs are off-center according
to our simulation results. Due to the heating by subhalos, we have shown that BHs remain on
average tens of parsecs away throughout most of the halo’s history. However, BHs accrete gas
inefficiently away from the galaxy centre as gas clumps are centrally located [Smith et al., 2018].
Then, the conditions required to alter the deep potential of galaxies appear to be missing. Without
BH feedback, the inner density profiles of DM halos will remain cuspy. In addition, off-center BHs
entail the quenching of BH feedback in dwarf galaxies. Consequently, it seems difficult to induce
DM core formation in dwarfs from BH feedback. Baryonic feedback cycles are the preferred option
[Pontzen & Governato, 2012].
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Chapter 7

Andromeda galaxy (M31): a test case

The work presented in this chapter is based on Boldrini (2020d) (arXiv:2007.03010)

and Boldrini et al. (2020e) (arXiv:2002.12192).
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CHAPTER 7. ANDROMEDA GALAXY (M31): A TEST CASE

7.1 A dark matter core in M31

7.1.1 Andromeda galaxy (M31)

Due to its proximity, the Andromeda galaxy (M31) provides a wealth of high precision observational
data for understanding the history of M31 and the Local Group, and more generally, galaxy formation
models in a cold dark matter-dominated universe. M31 exhibits challenging features on different
scales ranging from the double nucleus at its centre on a scale of a few parsecs [Kormendy & Bender,
1999; Tremaine, 1995] to the giant stellar stream (GSS) in its outskirts which extends to tens of
kiloparsecs [Ibata et al., 2001].

It is widely believed that the phase structures of M31, namely its giant stream and its shell-like
features, are results of the accretion of a satellite galaxy [Fardal et al., 2006, 2007; Font et al., 2006;
Ibata et al., 2004]. The mass, radial velocity and distance to the stream are observed with good
accuracy. The accretion scenario has been simulated with high resolution and the high quality data
on the stream and the shell-like features have been used to strongly limit the initial parameter space.
In a previous work, we ran high resolution simulations of a live M31 and an infalling satellite, and
showed that in the cosmological scenario, the infalling satellite traced a highly eccentric orbit after
reaching its turn-around radius, and then fell towards the centre of M31 [Sadoun et al., 2014]. The
satellite was disrupted by M31, formed the giant stream and its subsequent passages through the
centre of M31 led to the formation of the shell-like features that we observe today. Our work showed
that the infalling satellite was dark matter-rich and in the same plane as most of the present-day
satellites of M31.

In this work, we show yet another consequence of the satellite accretion in a ΛCDM Universe
and show that the density profile of M31 could have been strongly influenced by this mechanism.
We demonstrate that the passage of the satellite, which is at the origin of the giant stream, the
shells and the warp of the disc of M31, should have also caused a cusp-to-core transition at the
centre of the DM distribution in M31. A more general consequence of our work is that accreting
satellites on highly eccentric orbits can induce a cusp-to-core transition in CDM haloes. These
cores are a common feature of many DM haloes that have been initially cuspy but have accreted
subhaloes on highly eccentric orbits. In most cosmological simulations, we expect to see this effect
only for DM haloes with masses higher than 1012 M¯ by assuming they have a sufficient resolution
to determine the shapes of DM density profiles [Gao & White, 2007; Laporte & White, 2015; Ma
& Boylan-Kolchin, 2004]. The DM density profile of the Aquarius simulation revealed that density
profiles become shallower inwards down to the innermost resolved radius [Navarro et al., 2010]. This
slight deviation from the NFW model could be evidence for the proposed cusp-to-core mechanism
[El-Zant et al., 2001; Ma & Boylan-Kolchin, 2004]. Indeed, most haloes have suffered multiple
subhalo mergers, especially at early epochs (z∼ 2-3) [Neistein & Dekel, 2008]. However, the cusp
can regenerate itself. As such the cuspy profiles are more common in recent epochs, which could
explain the presence of transient cores (see Boldrini et al. [2020]; Dekel et al. [2003]; Laporte &
Penarrubia [2015])

In this work, we perform high resolution N-body simulations with GPUs, which allow parsec
resolution, to study the effect of the accretion of a satellite on the central density profile of the
DM halo of M31. The initial conditions of our simulations are determined by observations of the
mass, density profile, radial velocities and distances of the giant stream which provide high precision
tests of our model. We consider infalling satellite scenarios from Sadoun et al. [2014] and Fardal
et al. [2007]. By analysing the density profile of the halo of M31, we see that the initial cuspy
profile becomes shallower as the DM particles are heated during the satellite passage and some
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The host galaxy

Component Profile a r200 Mass (x0,y0,z0)
[kpc] [kpc] [1010M¯] [kpc]

M31 DM halo NFW 7.63 195 88 0
Bulge Hernquist 0.61 - 3.24 0
Disk Exponential Rd = 5.4 - 3.66 0

disk zd = 0.6 - - -

The infalling
satellite

Scenario

Sadoun et al. [2014]
((MDM/M∗)sat = 20) DM halo Hernquist 12.5 20 4.18 (-84.41,152.47,-97.08)

Stars Plummer 1.03 - 0.22 (-84.41,152.47,-97.08)
(vx0,vy0,vz0)

[km.s−1]
(0,0,0)

Fardal et al. [2007]
((MDM/M∗)sat = 0) Stars Plummer 1.03 - 0.22 (-34.75,19.37,-13.99)

(vx0,vy0,vz0)
[km.s−1]

(67.34,-26.12,13.5)

Table 7.1 – Simulation parameters: From left to right, the columns give for each component: the initial
density profile; the scale length; the virial radius; the mass; the initial positions in a reference frame centered
on M31 with the x-axis pointing east, the y-axis pointing north and the z-axis corresponding to the line-of-
sight direction; the velocities in this reference frame. We set the particle resolution of all the live objects
to 4.4×104 M¯ and the gravitational softening length to 10 pc for all components.

migrate outwards from the central region of M31. As the cusp-to-core transition occurs for these
two different minor merger scenarios and we expect that increasing satellite mass would only enhance
this effect (i.e. for majer merger scenarios), we propose that the central DM core of M31 could form
irrespective of different models.

This work is organized as follows. In Section 7.1.2 we present a brief summary of observational
data. Section 7.1.3 provides a description of the N-body modelling of M31 and its satellite, along with
details of our numerical simulations. Then, we assess our model by making a detailed comparison
with M31 observations in Section 7.1.4. In Section 7.1.5, we present the results from simulations
and discuss the implications for the cusp-core problem.

7.1.2 Observation: Giant stellar stream and shell-like features of M31

A significant fraction of observed galaxies exhibit tidal features such as tidal tails, streams and shells
[Malin & Carter, 1980, 1983]. These features are widely believed to be the products of merger
events [Hernquist & Quinn, 1988, 1989]. The observations of tidal structures that could arise during
mergers of galaxies – as shown by numerical simulations – have been used to put bounds on various
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Figure 7.1 – Orbital evolution of satellite: Orbital radius as function of time in both Fardal and Sadoun
scenarios (see Table 7.1). The orbital radius is colour coded according to the bound stellar mass in the
satellite at each time. Satellites with (MDM/M∗)sat = 0 and 20 have reached their pericentre at 0.18 and
1.6 Gyr and were completely tidally stripped within 0.37 and 1.93 Gyr, respectively.
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Figure 7.2 – Giant southern stream of M31: Simulated stellar density maps in standard sky coordinates
corresponding to stars of the satellite at 2.1 Gyr. We represent the observed stellar fields by black boxes
[McConnachie et al., 2003]. We find MGSS = 2.15×108M¯ in good agreement with the value of 2.4×108M¯
derived from observations with a mass-to-light ratio of 7 [Fardal et al., 2006; Ibata et al., 2001]
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Figure 7.3 – Comparison with kinematic data of the observed GSS: Simulated radial velocity of
satellite particles as a function of the distance along the stream at 2.1 Gyr. We represent the radial velocity
measurements in five fields by red points with error-bars [Fardal et al., 2006; Ibata et al., 2004]. A good
agreement with observations for the radial velocity measurement is shown.

parameters, such as the orbital parameters and the masses of the host galaxies and their satellites.

In this work, we consider M31 which is an example of a spiral galaxy that exhibits tidal features,
such as streams and shells. The Andromeda galaxy contains two rings of star formation off-centred
from the nucleus [Block et al., 2006, and references therein] and most notably a Giant Southern
Stream (GSS) [Bellazzini et al., 2003; Brown et al., 2006; Ferguson et al., 2002; Ibata et al., 2001,
2005, 2007; McConnachie et al., 2009; Richardson et al., 2008; Zucker et al., 2004]. The GSS is
a faint stellar tail located at the southeast part of M31. It extends radially outwards of the central
region of M31 for approximately 5◦, corresponding to a projected radius of about 68 kpc on the
sky. The stream luminosity is 3.4×107 L¯ corresponding to a stellar mass of 2.4×108 M¯ for a
mass-to-light ratio of 7 [Fardal et al., 2006; Ibata et al., 2001]. In the follow-up observations of the
GSS, two other structures corresponding to stellar overdensities, which are now believed to be two
shells, have been discovered [Fardal et al., 2007, 2012; Ferguson et al., 2002; Tanaka et al., 2010].
The colour–magnitude diagram of the north-eastern shelf is similar to that of the GSS [Ferguson
et al., 2005; Richardson et al., 2008]. This similarity has been a strong argument in favour of models
which predict that both the GSS and the NE are the results of a single merger event between M31
and a satellite galaxy [Fardal et al., 2007; Font et al., 2006; Ibata et al., 2004].

An empirical minor merger scenario has been studied extensively in which a satellite galaxy falls
on to M31 from a distance of a few tens of kpc, on a highly radial orbit (of pericentre of a few
kpc) less than one billion years ago. The satellite is tidally disrupted at the pericentre passage and
forms the observed M31 stream and the two shell-like features [Fardal et al., 2006, 2007]. Although
this empirical model provide good fits to the observations it suffers from simplifications. First, M31
is not modelled as a live galaxy but is only represented by a static potential, and consequently the
effects of dynamical friction are not properly taken into account. Secondly, there is no DM in the
progenitor satellite whereas a good fraction of satellite galaxies in the Local Group seems to be DM-
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rich. Finally, the origin of the infalling satellite and its trajectory in the past has been overlooked.
It is highly implausible that a satellite on a highly radial orbit could have survived to arrive within
easy reach of M31.

We have proposed an alternative cosmologically-plausible scenario for the origin of the giant
stream and also the warped structure of the M31 disc itself [Sadoun et al., 2014]. In our model, a
dark-matter-rich satellite is accreted and falls from its first turnaround radius on an eccentric orbit
onto M31. The best agreement with the observational data is obtained when the satellite lies on
the same plane that contains many of the present dwarfs of M31 [Conn et al., 2013; Ibata et al.,
2013]. Unlike the previous model, the disc of M31 is perturbed by the infall of the massive satellite
in our model and becomes warped. A major merger scenario, dating back to a few Gyr, from which
M31, its giant stream, and many of its dwarf galaxies emerged, has also been proposed [D’Souza &
Bell, 2018; Hammer et al., 2010, 2013, 2018].

In this paper, we use this cosmologically-motivated scenario to set up our simulations. To show
that our results are universal and hold for a wide range of initial conditions, we also run simulations
for the model proposed by Fardal et al. [2007] in which the satellite is DM poor and starts its infall
from a much closer distance to the centre of M31.

Here we gain in mass resolution by a factor of 100 by using a fully GPU-scaled code which allows
us to study the impact of the infalling satellite not just on the outer parts of M31 but also on the
DM distribution at its centre. The rich observational data on the giant stream and shells of M31
provide rather demanding tests of our model. In the following section we discuss the details of our
numerical simulations.

7.1.3 Simulation: High resolution fully GPU code

The initial conditions for the M31 satellite are taken from Sadoun et al. [2014] and Fardal et al.
[2007] (see details in Table. 7.1). To generate our live objects, we use the initial condition code
magi [Miki & Umemura, 2018]. Adopting a distribution-function-based method, it ensures that the
final realization of the galaxy is in dynamical equilibrium [Miki & Umemura, 2018]. We perform our
simulations with the high performance collisionless N-body code gothic [Miki & Umemura, 2017].
This gravitational octree code runs entirely on GPU and is accelerated by the use of hierarchical
time steps in which a group of particles has the same time step [Miki & Umemura, 2017]. We evolve
the M31 galaxy-satellite system over 3 Gyr in each scenario. We set the particle resolution of all
the live objects to 4.4×104 M¯ and the gravitational softening length to 10 pc. Softening value
was estimated using the following criterion: ε∼ a/N1/3, where N and a are the number of particles
and the scale length of the component, respectively. As all components in our simulations share
the same softening, we set the smaller one, which is given by the stellar component of the satellite.
As in Gadget-2 [Springel, 2005], the acceleration Multipole Acceptance Criterion is employed in our
GPU code [Miki & Umemura, 2017]. The time-step parameter η= is set to 0.5.

7.1.4 Tests of the models with M31 observations

We consider these two common scenarios for the formation of the giant stream of M31. The
original empirical scenario in which the satellite has no DM [Fardal et al., 2007] and the cosmological
motivated scenario in which the satellite is DM-rich [Sadoun et al., 2014] (see Table 7.1). Figure 7.1
depicts the orbital evolution of satellites in these two scenarios up to their passages through the
centre of M31 and their subsequent disruptions. The orbital radius is colour coded according to
the bound stellar mass in the satellite at each time. We follow the iterative method of Baumgardt
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Figure 7.4 – Energy transfer via dynamical friction: In the left panel we show the evolution of the
energy distribution for DM particles of M31 within a fixed radius of 500 pc in the Sadoun scenario (see
Table 7.1). The time for the snapshots are chosen because the pericentre passage occurs at about 1.6 Gyr
and the simulation is stopped at 2.1 Gyr when the best agreements with observations are achieved. The
figure confirms that not only the DM particles that remain within the 500 pc have gained in energy but
also some of them have migrated out of this region. In the right panel, we follow the DM particles which
were initially inside the 500 pc radius and show the evolution of the distribution of the energy at the same
time intervals as the left panel. Hence in this figure unlike the left panel the number of DM particles is
fixed. The histogram clearly shows that most of the particles that were initially inside the 500 pc radius,
whether migrated or not, have heated up which could be the mechanism for the core formation.

& Makino [2003] to determine the number of bound particles over time. Satellite galaxies with
(MDM/M∗)sat = 0 and 20 have reached their pericentre at 0.18 and 1.6 Gyr and were completely
tidally stripped within 0.37 and 1.93 Gyr, respectively. These two scenarios will naturally lead to the
formation of the phase structures of M31.

We confirm our model by making a detailed comparison with M31 observations in the Sadoun
scenario (see Table 7.1). Figure 7.2 shows the stellar density maps in standard sky coordinates
corresponding to stars of the satellite at 2.1 Gyr. We represent the observed stream fields as solid
rectangles with proper scaling. We note that the simulated stream is in good agreement with the
observations regarding the morphology and spatial extent of the GSS. We find MGSS = 2.15×108 M¯
in excellent agreement with the value of 2.4×108 M¯ derived from observations [Fardal et al., 2006;
Ibata et al., 2001]. Furthermore, we test the Sadoun model against kinematic data. Figure 7.3 shows
radial velocities of satellite particles as a function of the distance along the stream. We obtain a
good agreement with observations of the radial velocity measurement in the five fields [Fardal et al.,
2006; Ibata et al., 2004].

Although these tests have previously been carried out in Sadoun et al. [2014] using nbodygen for
initial conditions and gadget-2, here we test the same model using our fully GPU code gothic and
magi as the initial condition generator, which allows us to achieve 100 times higher mass resolution.
This higher resolution enables us to study the impact of the satellite on the central DM density
profile of M31.

7.1.5 Results: A model-independent cusp-to-core transition in M31

Heating and migration of dark matter in M31

Our GPU simulations enable us to study the impact of the accretion of a DM-rich satellite on the DM
distribution in the central regions of M31. We use the method of Power et al. [2003] to determine
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Figure 7.5 – Migration and heating of dark matter in the central region of M31 during the passage
of satellite: Density-weighted projected mass (top panel) and total energy maps (bottom panel) for M31
DM particles at different times in Sadoun scenario (see Table 7.1). Top panel show the migration of DM
particles in the central region of M31, especially after the pericentre passage of the satellite (1.6 Gyr). The
bottom panel shows the heating of the DM particles that remains within the 500 pc radius central region.

Figure 7.6 – Change in the potential profile and flattening of the density profile of M31: Profile
of the DM potential of M31 normalized by the norm of its initial central value |Φ0| at different times in
Sadoun scenario (see Table 7.1) is shown in the left panel. Spherically averaged DM density profile of M31
in Sadoun scenario in 26 pc thick radial shells at different times is shown in the right panel. Initially, the
M31 DM halo assumes a NFW profile (black dashed curve). The convergence radius of 73 pc for the M31
DM halo is shown by the vertical dashed green line below which the simulations cannot be considered to
be fully converged according to the criterion of Power et al. [2003]. Beyond this region, the flattening of
the cusp over almost one decade is evident. The time for the snapshots are chosen because the pericentre
passage occurs at about 1.6 Gyr and the simulation is stopped at 2.1 Gyr when the best agreements with
observations are achieved. Both panels demonstrate the gradual flattening of the initial cuspy profile.
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Figure 7.7 – Impact of softening on M31 DM core: DM density profile of M31 halo for ε= 10 and 5 pc
in Sadoun scenario (see Table 7.1). As the softening length ε does not affect the DM density profile, our
simulation results are thus free from such numerical artifacts.
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Figure 7.8 – Model-independent DM core in M31: Spherically averaged DM density profile for
(MDM/M∗)sat = 0 (Fardal model) and 20 (Sadoun model) in 26 pc thick radial shells. Initially, the M31 DM
halo assumes a NFW profile (black dashed line). We consider DM particles from both the M31 and satellite
haloes to determine the DM density profile of M31. The fitting function described by Equation (7.1) re-
produces the simulated density structures and captures the rapid transition from the cusp to the core. We
set Poissonian errors for fitting weights. We stress that our best-fit core radii are larger than the numerical
convergence radius. We observe a DM core of about 1.1 (0.59) kpc for the M31 halo in the Sadoun (Fardal)
scenario (see Table 7.1).
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the halo centre. We apply the shrinking sphere method to the M31 (DM halo and the satellite), the
M31 halo and the M31 bulge and have found similar centres of mass at each time. We have further
checked our result against this method by finding particles with the lowest potential as the center
of the halo in order to have a robust determination of the center.

As the satellite has a radial orbit, its crossings near the centre perturb the M31 halo by heating
its DM particles via dynamical friction. The pericentre passage of the Sadoun satellite occurs at 1.6
Gyr. Figure 7.4 depicts the total energy distribution for DM particles of M31, which are within the
500 pc (left panel) and in the right panel we follow the particles that were initially within the 500
pc at different times in the Sadoun scenario. As the number of particles is not conserved in the left
panel of Figure 7.4, it confirms that some DM particles have gained in energy and have migrated
outwards from the central region of M31. The right panel demonstrates that the particles that were
initially within 500 pc have gained in energy.

To further confirm the mechanism of migration and heating behind the core formation, we also
show density-weighted projected mass maps in Figure 7.5. The top panel of this figure clearly
demonstrates the migration from the central region as the mass within the 500 pc radius decreases
after the pericentre passage of the satellite at 1.6 Gyr. Not only the migrated DM particles but also
those that remain within the 500 pc have gained in energy through dynamical friction which slows
down the satellite.

The heating and particle migration in the central region of M31 is excepted to lead to the
flattening of DM density profile. In Figure 7.6, we demonstrate the change in the potential (left
panel) and the flattening of the cuspy initial density profile of M31 after the passage of the satellite
(at 1.6 Gyr). Initially, the M31 DM halo assumes a NFW profile. We consider DM particles from
both M31 and satellite haloes to determine the spherically averaged DM density profile of M31 in 26
pc thick radial shells over the time. We have conservatively applied the Power et al. [2003] criterion
to our DM haloes to estimate the radius within which the two-body relaxation time is shorter than
the simulation time. We find a convergence radius of 73 pc for the M31 DM halo. The green dashed
line marks this region where the simulations are not fully converged according to the criterion of
Power et al. [2003]. Beyond this region, Figure 7.6 clearly demonstrates the flattening of the cusp
over almost one decade.

The profile of the potential of M31 plotted in the left panel of Figure 7.6 is determined by
computing the gravitational potential at different radii using all DM particles. The potential at
a specified position is obtained by summing all interactions with the surrounding point masses.
However, the softening factor models the interaction between two Plummer point masses. In order
to test and assure that our simulation results are robust and reliable, we have performed softening
tests. Figure 7.7 shows the DM density profile for a set of simulations that only differ in the value
of the softening length ε. This figure demonstrates that our simulations are robust to changes in ε,
and subsequently our results are free from this numerical artifact.

In the next subsection, we provide the fit to the new flattened profile and study the same
migration and heating mechanism in other models of formation of giant stream in M31.

Model-independent dark matter core in M31

We consider DM particles from both M31 and satellite haloes to determine the spherically averaged
DM density profile. As shown in Figure 7.8, we find that our profile is well-fitted by the following
four-parameter formula: [Dehnen, 1993; Hernquist, 1990; Saha, 1992; Zhao, 1996]:

ρ(r ) = ρc

(1+ (r /rc)1/β)γ
, (7.1)
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where ρc is the core constant density and rc is the core radius which we find to be about 1.1 kpc
for the M31 halo in the Sadoun scenario (see Table 7.1). We stress that our best-fit core radii are
larger than the numerical convergence radius and persist over almost one decade. However, as the
value of the core size depends on the fitted DM profile, we defer from imposing the precise value
of the radius as a constraint on the M31 core and here we wish to only demonstrate that a minor
merger can indeed flatten the central density profile and the resulting profile is well-fitted by a DM
core.

In order to affirm the model-independent nature of the cusp-to-core transition in M31, we also
study the Fardal model [Fardal et al., 2007] for the formation of the giant stream whose precised
parameters are given in Table 7.1 and described in Section 2. Using the same numerical precision
and constraints, in Figure 7.8 we also show the density profile at the end of the simulation for the
Fardal model, which is at 0.85 Gyr when the best-match with observations is once again obtained.
In spite of the satellite being far less massive in this scenario still a core profile shows a good fit
to the data. However, the core size is relatively smaller as it is expected because the heating and
migration mechanisms are less effective for the low-mass satellite.

As the satellite in Sadoun model is 20 times more massive than that in the Fardal model, the
core size is larger in the former scenario. Hovewer, in both scenarios, the cusp-to-core transition
takes place, which highlight the formation of a model-independent core in CDM Universe. It was
also pointed out that a major merger scenario could also explain the phase features of M31 [D’Souza
& Bell, 2018; Hammer et al., 2010, 2018]. This scenario was not investigated here as it is necessary
to invoke hydrodynamics due to the presence of gaseous disk. However, we have demonstrated
that a minor merger with M31 is sufficient to form a DM core. Consequently, a major merger
scenario with a satellite on highly eccentric orbit should also trigger a cusp-to-core formation for
M31 halo. Besides, the resulting DM core is expected to be larger as larger perturber masses lead
to larger constant density central region [Goerdt et al., 2010]. Furthermore, we have considered a
ratio (MDM/M∗)sat = 20 for the DM-rich scenario. Interestingly, this implies that the satellite lies
below the stellar to halo mass relation as galaxies in this mass range should have a mean halo mass
of ' 2×1011M¯ [Behroozi et al., 2010; Henriques et al., 2015; Moster et al., 2013].

To confirm with this present observation of dwarf galaxies, we have also run a simulation for a
ratio (MDM/M∗)sat = 100 for the satellite by keeping 109M¯ for the stellar component as the mass of
the giant stream is well constrained by the observations. We find that the DM in the satellite prevents
the stellar component to be tidally stripped after the first pericentre passage and consequently the
resulting giant stream is far less massive than required by the observations. Subsequent passages
will be necessary to completely strip the satellite but which once again fail to reproduce the observed
tidal features of M31.

7.2 The origin of the black hole offset in M31

It was pointed out that the majority of off-centered BHs are present in host galaxies showing signs
of interactions/mergers [Reines et al., 2020]. One of the most striking features of the Andromeda
galaxy is the presence of a doubled-peak nucleus in the central region. These two peaks, P1 and
P2, are separated by 0”.49 corresponding to a projected distance of 1.8 pc at the distance of M31
[Kormendy & Bender, 1999; Lauer et al., 1993]. The optically faint peak P2 has been identified as
hosting a MBH of mass 1.5×108 M¯. [Gültekin et al., 2009; Kormendy & Bender, 1999; Kormendy
& Richstone, 1995]. It was shown that the M31 BH is offset by 0.26 pc from P2 considered as the
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centre of the galaxy [Kormendy & Bender, 1999]. As there are several strong indications of a recent
merger activity in M31, we propose below a new explanation for this off-centre MBH.

M31 is predicted to arise from the merger and accretion of many smaller sub-systems [White &
Frenk, 1991; White & Rees, 1978]. This hypothesis is supported by the discovery of tidal features
such as giant stellar stream (GSS) to its south as well as giant stellar shells to the east and west of its
centre [Ferguson et al., 2002; Guhathakurta et al., 2006; Ibata et al., 2001, 2004, 2005; Koch et al.,
2008; McConnachie et al., 2003]. It is widely believed that the phased features of M31 result from
the accretion of a satellite galaxy [Fardal et al., 2006, 2007; Font et al., 2006; Ibata et al., 2004].
After examining the orbits and the mass of an accreting satellite galaxy, numerous high-resolution
N-body simulations have been extremely successful in reproducing these structures [Fardal et al.,
2006, 2007, 2013; Font et al., 2006; Hammer et al., 2010; Kirihara et al., 2014, 2017; Miki et al.,
2014, 2016; Mori & Rich, 2008; Sadoun et al., 2014].

In this work, we show that the accreting satellite, as the origin of the GSS and stellar shells,
heated the central region of M31 and kicked the central MBH from the galaxy centre. Assuming
the cosmologically plausible scenario from Sadoun et al. [2014] for the satellite, we performed
state-of-the-art N-body simulations with GPUs, which allow parsec resolution, to study this heating
process that naturally explains the present BH offset in M31. The section is organized as follows.
Section 7.2.1 provides a description of the N-body modelling of M31 and its satellite, along with
details of our numerical simulations. In Section 7.2.2, we present our simulation results and discuss
the origin of the BH offset in M31.

7.2.1 High-resolution fully GPU N-body simulation

The initial conditions for the M31 satellite are taken from Sadoun et al. [2014] (see details in
Table 7.2). The dark matter rich satellite starts at its first turnaround radius at (x0,y0,z0)=(-
84.41,152.47,-97.08) with a null velocity in a reference frame centered on M31 with the x-axis
pointing east, the y-axis pointing north and the z-axis corresponding to the line-of-sight direction.
We add a massive BH with a mass of 1.5×108 M¯ as a point mass in the center of M31 [Gültekin
et al., 2009]. To generate our live objects, we use the initial condition code magi [Miki & Umemura,
2018]. Adopting a distribution-function-based method, it ensures that the final realization of the
galaxy is in dynamical equilibrium [Miki & Umemura, 2018]. We perform our simulations with the
high performance collisionless N-body code gothic [Miki & Umemura, 2017]. This gravitational
octree code runs entirely on GPU and is accelerated by the use of hierarchical time steps in which
a group of particles has the same time step [Miki & Umemura, 2017]. We evolve the M31 galaxy-
satellite system over 2.5 Gyr in each scenario. We set the particle resolution of all the live objects
to 4.4×104 M¯ and the gravitational softening length to 2 pc.

7.2.2 Results

We consider the accretion of a dark matter rich satellite by M31, which hosts a central MBH (see
details in Table 7.2). Dynamical friction induced by the dark matter (DM) field of M31 is responsible
for the infall of the satellite. As a result, the central region of the galaxy experiences multiple satellite
crossings. The latter heat the central region and more particularly the MBH via dynamical friction.
After the first pericentric passage, the dark matter rich satellite adds energy to the BH, causing it to
leave the galaxy centre. Fig. 7.9 illustrates the orbital radius of a 1.5×108 M¯ MBH, initially at the
galaxy centre, over 2.2 Gyr. This radius corresponds to the distance between the BH and the mass
centre of the M31 stellar component. In the absence of satellite, the MBH should remain at the

124



CHAPTER 7. ANDROMEDA GALAXY (M31): A TEST CASE

Component Profile a r200 Mass
[kpc] [kpc] [1010M¯]

M31 halo NFW 7.63 195 88
M31 bulge Hernquist 0.61 - 3.24
M31 disk Exponential Rd = 5.4 - 3.66

disk zd = 0.6 - -
M31 black hole Point mass - - 0.015

Satellite halo Hernquist 12.5 20 4.18
Satellite stars Plummer 1.03 - 0.22

Table 7.2 – Simulation parameters: From left to right, the columns provide for each component: the
density profile, the scale length, the virial radius, the mass. We set the initial positions in a reference frame
centered on M31 with the x-axis pointing east, the y-axis pointing north and the z-axis corresponding to
the line-of-sight direction. We consider an infalling scenario of a dark matter rich satellite [Sadoun et al.,
2014] where the satellite starts at its first turnaround radius at (x0,y0,z0)=(-84.41,152.47,-97.08) with a
null velocity. We set the particle resolution of all the live objects to 4.4×104 M¯ and the gravitational
softening length to 2 pc. We also add a massive BH as a point mass in the center of M31 with a mass of
1.5×108 M¯ [Gültekin et al., 2009].
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Figure 7.9 – Off-centered MBH: M31 BH orbital radius over 2.1 Gyr. This radius corresponds to the
distance between the BH and the mass centre of the M31 stellar component. The MBH of mass 1.5×108

M¯ is initially at the centre of M31. The first passage of the satellite heat the central region and more
particularly affect the MBH via dynamical friction. Indeed, the dark matter rich (DM-rich) satellite adds
energy to the MBH, causing it to leave the galaxy centre. In the absence of satellite, the MBH remains
at the centre of the dwarf galaxy. This scenario ensures the stability of the BH against numerical effects
(black curve). However, the first pericentric passage of the satellite in M31 results in a kick of the MBH
to hundreds of parsecs from the galaxy centre (red curve)

.

centre of the dwarf galaxy. With a particle resolution of 4.4×104 M¯ and a softening length of 2 pc,
we cannot resolve properly the BH dynamics below 2 pc. Numerical artifacts amplify the expected
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Figure 7.10 – Zoom on the BH offset: M31 BH projected radius from simulation and orbit integration
between 1.35 and 2.15 Gyr. We take initial conditions for the MBH at resolved scales (above 10 pc)
from the simulation in order to reduce our numerical noise. For our calculation, we considered all M31
components detailed in Table. 7.2. The MBH is still offset and is orbiting with a mean projected pericentre
of 0.45 pc, which is similar to the value of 0.26 pc derived from observations [Kormendy & Bender, 1999].
As shown before, the best match between the observed and simulated stream is obtained at 2.1 Gyr, which
corresponds to a BH projected pericentre of 0.39 pc for orbital integrations from t0 = 1.38 Gyr.

Brownian motion of the MBH at the M31 centre (black curve) [Merritt et al., 2007]. However, the
first pericentric passage of the satellite in M31 results in a kick of the MBH to hundreds of parsecs
from the galaxy centre (red curve), where the BH dynamic is resolved in our simulation.

After having reached its maximum offset, the MBH sinks towards the M31 centre due to dy-
namical friction. Near the M31 centre, Fig. 7.9 depicts a stalling behaviour of the MBH due to
numerical effects. As M31 BH is currently offset by 0.26 pc, we want to determine the BH fate
in the centre of galaxy (below 2 pc). That is the reason why we integrate the orbits of the MBH
forward in time using the galpy package [Bovy, 2015] by taking into account dynamical friction. Via
this semi-analytical approach, we avoid numerical effects due to a lack of particle resolution and
a softening length. We employ initial conditions at t0 = 1.38 Gyr for the MBH at resolved scales
(above 10 pc) from the simulation with a satellite in order to reduce our numerical noise. For our
calculation, we considered all M31 components detailed in Table. 7.2. Fig. 7.10 compares the M31
BH projected radius from simulation and orbit integrations between 1.35 and 2.15 Gyr. We have
tested different initial times t0 for the orbital integrations of the MBH. According to Figure 7.10, the
MBH is still offset and is orbiting with a mean projected pericentre of 0.45 pc, which is similar to
the value of 0.26 pc derived from observations [Kormendy & Bender, 1999]. As shown before, the
best match between the observed and simulated stream is obtained at 2.1 Gyr, which corresponds
to a BH projected pericentre of 0.39 pc for orbital integrations from t0 = 1.38 Gyr. The discrepancy
between our estimation and observation could be explained by the unavoidable numerical artifacts
highlighted previously. Moreover, our result suggests that the MBH is still orbiting at M31 centre
and is currently observed at its pericentre if the accreting satellite is responsible for the BH offset.
Despite a recent merger with a dark matter rich satellite, we demonstrate that the MBH had suffi-
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cient time to come back to M31 centre. Thus, we establish that the infall of the accreting satellite
in M31 naturally explains a BH offset by sub-parsecs. At the same time, we also ruled out the
Brownian motion of the MBH as the origin of this offset.
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On scales of galaxies and above, the cold dark matter paradigm successfully explains various
observations over a large range of epochs. The frontier in this field has shifted to relatively unexplored
sub-galactic scales, the domain of the central regions of halos, and especially for dwarf galaxies where
unresolved issues remain independently of baryons. Dwarf galaxies, which are among the most dark
matter-dominated galaxies in the Universe, provide an excellent laboratory for studying dark matter
in the context of galaxy formation and evolution. My doctoral research focuses on the inconsistency
of inner DM density profiles in dwarf galaxies, known as the cusp-core problem, detailed in Chapter 2.

Pathways to contribute towards solving these problems include the use of high resolution colli-
sionless N-body simulations, a particularly useful technique to investigate the internal dynamics of
dwarf galaxies. My GPU-based approach allows simulations of live galaxies containing live globular
clusters and substructures, providing new insights into cores and cusps. This thesis uses the non-
public code, GOTHIC as its base N-body code, presented in Chapter 3. This gravitational oct-tree
code runs entirely on GPU with adaptive time steps.

In Chapter 4, we have revisited the cusp-core problem applied to Fornax. For the first time,
the Fornax globular system has been modeled with live objects, i.e. self-gravitating systems only
composed of star and DM particles, in order to properly implement dynamical friction and tidal
effects between Fornax and GCs. We have performed N-body simulations for cored and cuspy
halos in MW tidal field modeled by a static potential. Using constraints from GC spatial and mass
distributions, we showed that Fornax can have either a cored or a cuspy halo. More precisely, our
results have revealed a lower limit of a core size of rc& 500 pc for Fornax cored halo. Even if many
studies attest against the presence of a divergent cusp in Fornax, we show also that, from our GC
constraints, Fornax can have a cuspy halo. Recently, Meadows et al. [2020] stated also that a DM
cusp in Fornax cannot be ruled out by the spatial distribution of GCs. Apart from CDM, all variant
DM theories, including warm DM , fuzzy DM, and self-interacting DM are apparently in favour of
cored halos. Future work could investigate the dynamical behaviour of GCs in these theories, in
particular the impact on dynamical friction. Recently, Lancaster et al. [2020] established that the
Fornax timing problem is no longer resolved in fuzzy DM.

In Chapter 4, we have also studied the motion of GCs embedded in DM minihalos inside the
CDM halo of Fornax in order to deal with the timing problem. We have considered an early and
a recent accretion scenario of GCs by Fornax with the most prevalent initial conditions taken from
Illustris TNG-100 cosmological simulations. We proposed a new mechanism to resolve the cusp-core
problem. First, the infall of GCs and the formation of a nuclear star cluster rules out the early
accretion scenario for GCs with and without a DM minihalo. However, we showed that GC crossings
near the Fornax centre induce a cusp-to-core transition of the DM halo. Secondly, we demonstrated
that DM minihalos, as a new component of GCs, resolve both the timing and cusp-core problems
in Fornax if the five GCs were accreted recently, less than 3 Gyr ago, by Fornax. Under these
assumptions, the infall of these GCs does not occur and no star cluster forms in the centre of
Fornax in accordance with observations. Crossings of GCs with a DM minihalo near the Fornax
centre induce a cusp-to-core transition of the DM halo and hence resolve the cusp-core problem
in this dwarf galaxy. The DM core size depends strongly on the frequency of GC crossings. We
subsequently highlighted that an infalling GC with a DM minihalo enhances core formation without
forming a nuclear star cluster at the Fornax centre. Moreover, we are in good agreement with the
constraints on the DM mass of GCs as our clusters lost a large fraction of their DM minihalos. All
of these aspects provide strong evidence for the existence of DM halos in GCs. Our simulations
clearly show that between central passages, the DM halo can regenerate its cusp. Read et al.
[2019] found that dwarf galaxies can be separated into two distinct classes, those with cold DM
cusps and DM cores. Fornax favours a DM core, whereas Carina, Sextant, and Draco favour a
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DM cusp. The transient phenomenon that we have found could explain this diversity of DM halo
profiles. GCs embedded in DM minihalos, which are eventually completely stripped, could have
induced such cup-core transitions by past infall. However, we regard this as unlikely since GCs do
not appear to be ubiquitous in dwarf galaxies. Moreover, past mergers seem necessary to explain
the spatial distribution of stellar populations in Fornax [del Pino et al., 2015]. In addition to GCs in
DM minihalos, these events could help to trigger the formation of the DM in Fornax. Leung et al.
[2020] showed that Fornax needs to have undergone a major merger with a mass ratio between 0.2
and 0.5 in order to reproduce the GC and stellar properties.

In Chapter 5, we addressed the cusp-core problem in 107 M¯ halos such as low-mass dwarf
galaxies by considering the possibility that a fraction of the DM is made of PBHs. We show that
the dynamical heating of the CDM component through PBH infall and two-body relaxation between
PBHs induce the formation of cores in PBH+CDM halos. Using N-body simulations, we confirmed
that PBHs as DM candidates can initiate a cusp-to-core transition in these low-mass galaxies. Our
results suggest also that it is natural to have multiple cores for a two-component halo. Then, we
test the PBH+CDM mass fraction fm and PBH mass mPBH. We work with PBHs in the 25-100 M¯
mass window, which is consistent with the LIGO detections. Our simulations allow a mass resolution
of 1 M¯ for CDM particles. Finally, we derive a criterion based on the relaxation time in order to
determine if a cusp-to-core transition occurred. Based on our criterion, we set the lower limit on
the PBH+CDM mass fraction to be 1% of the total DM content to induce cores in PBH+CDM
halo depending on the PBH mass and r PBH

s . Here, we have shown that this scenario works even for
a small fraction of PBHs. We determined that the cusp-to-core transition takes between 1 and 8
Gyr to appear, depending on the fraction fm, the PBH mass mPBH and the PBH scale radius r PBH

s .
After a transition, the major impact of the PBH+CDM mass fraction and PBH mass is on the core
size. Indeed, a larger PBH fraction and PBH mass will induce a larger core radius. As cores occur
naturally in PBH+CDM halos without the presence of baryons, there is no cusp-core problem in this
alternative theory. As low mass galaxies require less than 8 Gyr to form cores, higher mass galaxies
with larger cores as observed can form in the hierarchical scenario. The existence of PBHs in the
mass range studied here, 25 - 100 M¯, can possibly be confirmed by the LISA mission. As this DM
theory is characterized by a single parameter, fm, Future work could apply Jeans analysis assuming
a NFW profile predicted by CDM for the DM component and a core profile for the PBH component
to the kinematic data of eight classical dwarf galaxies so as to constrain this mass fraction.

In Chapter 6, we have shown that the heating of the central region in dwarf galaxies by subhalos
via dynamical friction entails the offset of MBHs, especially at early epochs (z=1.5-3). Indeed, at
redshift z=3, the average number of subhalo accretions is high (∼4 per Gyr) and then the sinking
of subhalos transfers energy to the galaxy centre and especially to the MBH, causing it to leave
the central region. The heating by subhalos and the subsequent kick to the central MBH provides
a new mechanism that contributes to explain observed off-center BHs in dwarf galaxies. We have
also predicted that off-center BHs are more common in higher mass galaxies because, after the
kick, dynamical friction on BHs becomes significantly weaker, and then BHs take more time to sink
towards the centre of these galaxies. As BH feedback consists of energy injection into halos, this
latter is commonly invoked as a mechanism for core formation. Indeed, BH feedback can induce
a cusp-to-core transition for the DM halo. Here, we have argued that the main consequence of
off-center BHs during early epochs of dwarf galaxies is the quenching of BH feedback and then the
absence of DM core formation by this mechanism. Thus, pinning the BH to the halo centre can
result in unrealistic galactic evolution in some cosmological simulations [Schaye et al., 2015; Sijacki
et al., 2015; Taylor & Kobayashi, 2014]. Dynamical perturbations induced by subhalo crossings,
causing MBHs to vacate the galaxy center, can also modify the spatial distribution of the other
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galaxy components such as stars and DM particles. Stars heated by subhalos can contribute to
populating the stellar halo as an alternative to star formation in gas outflows that are associated
with starburst activity [Gallagher et al., 2019; Maiolino et al., 2017; Rodŕıguez del Pino et al., 2019;
Yu et al., 2020]. A notable difference between these scenarios will be the age distribution of the
ejected stars.

In Chapter 7, we reaffirmed that the accretion of a dark-matter-rich satellite reproduces suc-
cessfully the tidal features such as the giant stellar stream and the two shells in M31. We have
mainly studied the model proposed by Sadoun in 2014 in which the Satellite is dark-matter rich
and falls from its turnaround radius onto M31. However, we have increased the resolution of the
previous simulations by using a fully GPU code. The substantial gain of 100 in mass resolution has
enabled us to here study the impact of such an accretion event on the spatial distribution of dark
matter in the central regions of M31. Our simulations show that as the satellite falls onto M31, it
is slowed down by dynamical friction and its energy is transferred to the host halo. The dark matter
particles in the central regions of M31 are heated and migrate outwards. Here we have shown that
in this process the initial cusp shallows down for over almost a decade and is well-fitted by a core
profile. To explore the model-independent aspect of our results we have also studied the Fardal
model, in which the satellite contains no dark matter and starts its orbit close to the centre of M31.
Also in this scenario, we observe a cusp-to-core transition . We infer that merger events in which
satellites fall on highly eccentric orbits onto their host haloes can provide a general mechanism for
core formation in a ΛCDM Universe where haloes have cuspy profiles. It has been reported that
satellites in host haloes with larger mass ratios have slightly more eccentric orbits with lower angular
momentum and moreover, satellites around more massive haloes seem to be on more radial orbits
at fixed mass ratio [Jiang et al., 2015; Tormen, 1997; Wetzel, 2011]. Hence, we expect that a
noticeable fraction of galaxies in ΛCDM Universe to harbour cores that have been formed during
merger and accretion events. Moreover, we have shown that the heating of the central region of
M31 by this dark matter rich satellite via dynamical friction entails a significant MBH offset after
the first pericentric passage by using a fully GPU state-of-the-art N-body simulation. Using orbital
integrations, we highlighted the sinking of the BH towards the parsec scale in M31. The heating by
the satellite and the subsequent kick to the central MBH naturally explains a present BH offset by
sub-parsecs in M31, detected by Kormendy & Bender [1999]. Our result reinforces the prediction
of Boldrini et al. [2020] concerning the furthest distance reached by MBHs in high mass galaxies.
Indeed, they pointed out that MBHs are going to have less inertia due to the lower potential in these
galaxies.
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