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Scientific context1 Introduction
• Standard cosmological model : ΛCDM , 27% of the universe made of Cold Dark
Matter (CDM). Outstandingly successful on cosmological scales (> Mpc).

• Incompletemodel and many discrepancies at galactic scales (1 − 100 kpc)

• Recent alternative model : Fuzzy Dark Matter (FDM),modifies the dynamics at
galactic scales and converges to CDM at cosmological scales.

Objective : compare the dynamics of globular clusters in Cold
and Fuzzy dark matter.
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Globular clusters1 Introduction
• Very dense and compact object, composed ofmillions of stars (Mobj ∼ 106 M⊙).
• Orbit in the dark matter halo and undergo dynamical friction.

Figure: Credits : Nature.
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Dynamical friction1 Introduction

• Energy lossmechanism.
• Object Mobj orbiting in a field ofparticles m⋆, such that Mobj ≫ m⋆.
• Deflection of particles→ overdensity
→ drag force (Chandrasekhar, 1943).

F⃗DF ∝ −
M2objρ(r)

v3 v⃗ , Figure: Orbit of a 106 M⊙ globular cluster in a
109 M⊙ dark matter halo.
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Fuzzy Dark Matter1 Introduction
• Lies on an ultralight boson of mass

mFDM ∼ 10−22 eV.
• Very large De Broglie wavelength(∼ kpc)=⇒ Quantum effects affect
the halo density.

• Reduction of the wake overdensity,
decreases dynamical friction.

• The effect depends on the FDM particle
mass mFDM.
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Figure: Orbit in a dark matter halo as a function of thevalue of the FDM particle m22 = mFDM
10−22eV .
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Orbits integration with galpy2 Methodology : orbits integration
I. Set the components

• Dark Matter halo (massMhalo, scale radius rs)• Globular clusters (mass Mobj = 106 M⊙, half-mass radius rhm = 10 pc)

II. Set inital conditions
4500 globular clusters gravitationally bound, for radial positions within 0.1 - 10 scaleradius rs of the halo.

III. Orbit integration
In the dark matter halo potential + using Chandrasekhar or (new) FDM dynamical
friction class.

IV. Calculate the fall-in times
Find the time for which the orbit definitively falls below 10% of the scale radius rs of thehalo.
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Comparison of the fall-in times3 Results : comparison Cold/Fuzzy Dark Matter
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Figure: Orbits in a CDM halos, with a halo-GC mass ratio of 103 and concentration c = 18. Left panel : CDMDF. Right panel : FDM DF, with m22 = 5.
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Impact of the mass ratio halo-GC and FDM particle mass3 Results : comparison Cold/Fuzzy Dark Matter
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Conclusion and summary4 Conclusion

• The reduction of dynamical friction depends on themass of the FDM particle : nomore dynamical friction for m22 ∼ 0.5. It converges to the classical version for
m22 > 30, .

• Configurations identified to look for FDM signatures (dwarf galaxy and FDM massrange: 0.1 < m22 < 30)
• New contributions: new galpy class for FDM dynamical friction - Betterunderstanding of dynamical friction - New tests on FDM physics.
Perspectives : modify the dark matter profile according to FDM and add baryoniccomponents : publication in preparation.
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Thank you for listening!
Any questions?
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