Cosmic web in an alternative theory of gravity with Euclid

Pierre Boldrini, INRIA & Institut d'Astrophysique de Paris (IAP)

An interdisciplinary project (Mathematics, Computer science, Astrophysics) in collaboration with: **Yann Brenier** (ENS Paris-Saclay), **Clotilde Laigle** (IAP), **Bruno Lévy** (INRIA) & **Roya Mohayaee** (IAP)

Boldrini et al. 2023, in prep.

Innia_

Credits: Illustris TNG

The nature of dark matter

Self-interacting dark matter

Primordial black holes

Monge-Ampère gravity

Current cosmological model

Alternative dark matter theories

Alternative gravity theory

 $\frac{d^2 x(t)}{dt^2} = -\nabla\phi(t)$

 $\Delta \phi = 4\pi G(\rho - \bar{\rho})$

Poisson equation

 $\frac{d^2 x(t)}{dt^2} = -\nabla\phi(t)$

 $\Delta \phi = 4\pi G(\rho - \bar{\rho})$

Poisson equation

$$Tr(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2\phi) = \frac{\rho}{\bar{\rho}}$$

Poisson equation

Monge-Ampère equation

 $Tr(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

Monge-Ampère equation

Poisson equation

$$Tr(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$$

 $\left(\frac{d^2}{dx_i dx_j}\right)_{i,j}$

Poisson equation

Monge-Ampère equation

 $Tr(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

 $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

Monge-Ampère equation

Poisson equation

 $Tr(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

 $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

 $ZD \begin{pmatrix} 1 + \gamma \partial_x^2 \phi & \gamma \partial_x \partial_y \phi \\ \gamma \partial_x \partial_y \phi & 1 + \gamma \partial_y^2 \phi \end{pmatrix}$

Monge-Ampère equation

Poisson equation

$$Tr(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$$

2D

 $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

 $\begin{array}{c} 1 + \gamma \partial_x^2 \phi & \gamma \partial_x \partial_y \phi \\ \gamma \partial_x \partial_y \phi & 1 + \gamma \partial_y^2 \phi \end{array}$

Monge-Ampère equation

Poisson equation

$$Tr(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$$

 $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

In one dimension, Monge-Ampère is equivalent to Poisson

Poisson equation

Monge-Ampère equation

 $Tr(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

 $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

SO(3)

Rotations

SL(3)

Rotations + shear

Poisson equation

Monge-Ampère equation

 $Tr(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

 $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

SO(3)

Rotations

SL(3)

Rotations + shear

Enhancing the the formation of anisotropic structures such as **filaments** and **ellipsoidal halos**

Challenges to the ACDM Paradigm

Challenges to the ACDM Paradigm

 σ_8 tension, cusp-core problem

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

Challenges to the ACDM Paradigm

2

Non linear modification of the Poisson equation

 $det(\mathbb{I} + \gamma D^2 \phi) = \frac{\rho}{\bar{\rho}}$

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

 $det(\mathbb{I} + \gamma D^2 \phi) = \frac{\rho}{\bar{\rho}}$

$$1 + \gamma \Delta \phi + \mathcal{O}(\phi^2) = \frac{\rho}{\bar{\rho}}$$

Challenges to the ACDM Paradigm

3

Non linear modification of the Poisson equation

Predicted by statistical physics

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

Predicted by statistical physics

Large deviation principle + Brownian

Brownian motion -

Monge-Ampère equation

Brenier et al. 2012

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

Predicted by statistical physics

Absence of free parameter (physical)

Credits: Illustris TNG

Initial conditions

How it works numerically?

Comparing with Poisson N-body cosmological simulations

pyMAG 1.0

pip install pyMAG

Soon

cal simulation of Monge-Ampère gravity

Springel et al. 2018

205 Mpc/h ~ 300 Mpc

 $z = 49 \longrightarrow z = 0$ $\Omega_{\rm m} = 0.3089$ $\Omega_{\Lambda} = 0.6911$ $H_0 = 67.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $m_{DM} \sim 10^{10} M_{\odot}$

Comparing with standard N-body cosmological simulation

Poisson

Monge-Ampère

Comparing with standard N-body cosmological simulation

Poisson

GADGET - 2 A code for cosmological simulations of structure formation

Springel et al. 2018

Monge-Ampère

pyMAG 1.0

Boldrini et al. 2022, in prep

Comparing with standard N-body cosmological simulation

Poisson

GADGET - 2 A code for cosmological simulations of structure formation

> Tree-Code Barnes and Hut, 1986

 $\mathcal{O}(N \log N)$

Monge-Ampère

pyMAG 1.0

Boldrini et al. 2022, in prep

Comparing with standard N-body cosmological simulation

Poisson

GADGET - 2 A code for cosmological simulations of structure formation

> Tree-Code Barnes and Hut, 1986

 $\mathcal{O}(N \log N)$

Monge-Ampère

pyMAG 1.0

Boldrini et al. 2022, in prep

Optimal transport algorithm Lévy 2022

 $\mathcal{O}(N \log N)$

Large scale-structures z = 0

Large scale-structures z = 0

A weaker gravitational clustering

Zoom z = 0

Power spectra

DM Column Density Jog M_b

Power spectra

Gravity is getting **weaker** at low z?

Halo mass function

Halo mass function

Poisson | Monge-Ampère $N_{\rm h} = 66091 | 16057$ 4 times less halos at z = 0

Ellipticity

Connectivity of filaments

Darragh Ford et al. 2019

Already used as **alternatives probes** of cosmologies

Codis et al. 2018, L'Hullier et al. 2017

Connectivity of filaments

Darragh Ford et al. 2019

Malavasi et al. 2023

Already used as alternatives probes of cosmologies

Codis et al. 2018, L'Hullier et al. 2017

Filaments

Connectivity of filaments

This is a preliminary result!

Darragh Ford et al. 2019

Connectivity of filaments

This is a preliminary result!

Darragh Ford et al. 2019

The filament connectivity could be used as a probe of our gravity model at cosmological scales with the Euclid mission

Thanks for your attention!

DM Column Density