Cosmic web in an,

alternot ve theory of gravity

Pierre Boldrini, INRIA
\&
Institut d'Astrophysique de Paris (IAP)

An interdisciplinary project
(Mathematics, Computer science, Astrophysics)
in collaboration with: Yann Brenier (ENS Paris-Saclay), Clotilde Laigle (IAP),
Bruno Lévy (INRIA) \& Roya Mohayaee (IAP)

The nature of dark matter

- Cold dark matter

D Warm dark matter

- Fuzzy dark matter
- Self-interacting dark matter
- Primordial black holes
- Monge-Ampère gravity
| Current cosmological model


```
Alternative
    gravity
    theory
```


The nature of dark matter

The nature of dark matter

From Poisson to Monge-Ampère

$$
\frac{d^{2} x(t)}{d t^{2}}=-\nabla \phi(t) \quad \Delta \phi=4 \pi G(\rho-\bar{\rho})
$$

From Poisson to Monge-Ampère

$$
\begin{array}{l|l}
\frac{d^{2} x(t)}{d t^{2}}=-\nabla \phi(t) & \Delta \phi=4 \pi G(\rho-\bar{\rho}) \\
& \operatorname{Tr}\left(1+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}}
\end{array}
$$

From Poisson to Monge-Ampère

$$
\operatorname{Tr}\left(\mathrm{l}+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}}
$$

From Poisson to Monge-Ampère

Monge-Ampère equation

$$
\begin{array}{r}
\operatorname{Tr}\left(1+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}} \\
\left(\frac{d^{2}}{d x_{i} d x_{j}}\right)_{i, j}
\end{array}
$$

From Poisson to Monge-Ampère

Poisson equation
$\operatorname{Tr}\left(\mathrm{l}+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}}$
$\longrightarrow \quad \operatorname{det}\left(\mathbb{1}+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}}$

From Poisson to Monge-Ampère

$$
\begin{aligned}
& \operatorname{Tr}\left(1+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}} \quad \operatorname{det}\left(1+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}} \\
& 20\left(\begin{array}{ll}
1+\gamma \partial_{x}^{2} \phi & \gamma \partial_{x} \partial_{y} \phi \\
\gamma \partial_{x} \partial_{y} \phi & 1+\gamma \partial_{y}^{2} \phi
\end{array}\right)
\end{aligned}
$$

From Poisson to Monge-Ampère

$$
\begin{aligned}
& \operatorname{Tr}\left(1+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}} \quad \operatorname{det}\left(1+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}} \\
& 20\left(\begin{array}{l}
\left.1+\gamma \partial_{x}^{2} \phi\right) \gamma \partial_{x} \partial_{y} \phi \\
\gamma \partial_{x} \partial_{y} \phi \\
1+\gamma \partial_{y}^{2} \phi
\end{array}\right)
\end{aligned}
$$

From Poisson to Monge-Ampère

$$
\begin{aligned}
& \operatorname{Tr}\left(1+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}} \quad \operatorname{der}\left(1+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}} \\
& 20\left(\begin{array}{ll}
1+\gamma \partial_{x}^{2} \phi & \gamma \partial_{x} \partial_{y} \phi \\
\gamma \partial_{x} \partial_{y} \phi & 1+\gamma \partial_{y}^{2} \phi
\end{array}\right.
\end{aligned}
$$

From Poisson to Monge-Ampère

Poisson equation
$\operatorname{Tr}\left(\mathrm{D}+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}}$
$\longrightarrow \quad \operatorname{det}\left(\mathbb{1}+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}}$

SO(3)
Rotations

Monge-Ampère equation

$$
\operatorname{det}\left(1+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}}
$$

SL(3)

Rotations + shear

From Poisson to Monge-Ampère

Poisson equation

$$
\operatorname{Tr}\left(\mathrm{l}+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}} \quad \longrightarrow \quad \operatorname{det}\left(\square+\frac{1}{4 \pi G \bar{\rho}} D^{2} \phi\right)=\frac{\rho}{\bar{\rho}}
$$

Monge-Ampère equation

$$
S O(3)
$$

Rotations

SL(3)

Rotations + shear

Enhancing the the formation of anisotropic structures such as filaments and ellipsoidal halos

Why Monge-Ampère gravity?

(1) Challenges to the Λ CDM Paradigm

Why Monge-Ampère gravity?

(1) Challenges to the Λ CDM Paradigm
σ_{8} tension, cusp-core problem

Why Monge-Ampère gravity?

(1) Challenges to the \triangle CDM Paradigm
(2) Non linear modification of the Poisson equation

Why Monge-Ampère gravity?

(1) Challenges to the $\Lambda C D M$ Paradigm
(2) Non linear modification of the Poisson equation

$$
\operatorname{det}\left(1+\gamma D^{2} \phi\right)=\frac{\rho}{\bar{\rho}}
$$

Why Monge-Ampère gravity?

(1) Challenges to the $\Lambda C D M$ Paradigm
(2) Non linear modification of the Poisson equation

$$
\operatorname{det}\left(1+\gamma D^{2} \phi\right)=\frac{\rho}{\bar{\rho}} \quad \longrightarrow \quad 1+\gamma \Delta \phi+\mathcal{O}\left(\phi^{2}\right)=\frac{\rho}{\bar{\rho}}
$$

Why Monge-Ampère gravity?

(1) Challenges to the $\Lambda C D M$ Paradigm
(2) Non linear modification of the Poisson equation
(3) Predicted by statistical physics

Why Monge-Ampère gravity?

(1) Challenges to the \triangle CDM Paradigm
(2) Non linear modification of the Poisson equation
(3) Predicted by statistical physics

Large deviation principle $+\quad$ Brownian motion
Brenier et al. 2012

Why Monge-Ampère gravity?

(1) Challenges to the \triangle CDM Paradigm
(2) Non linear modification of the Poisson equation
(3) Predicted by statistical physics
(4) Absence of free parameter (physical)

Cosmological simulation of Monge-Ampère gravity

Cosmological simulation of Monge-Ampère gravity

Initial conditions

- Equations of motion in comoving coordinates

D How it works numerically?

- Comparing with Poisson N-body cosmological simulations
D. Results
pyMAG 1.0
pip install pyMAG

Soon

Cosmological simulation of Monge-Ampère gravity

Initial conditions

Cosmological simulation of Monge-Ampère gravity

- Comparing with standard N -body cosmological simulation

Cosmological simulation of Monge-Ampère gravity

- Comparing with standard N -body cosmological simulation

Poisson

Gadget - 2
A code for cosmological simulations of structure formation
Monge-Ampère
pyMAG I. 0
Boldrini et al. 2022,
: in prep.

Cosmological simulation of Monge-Ampère gravity

- Comparing with standard N -body cosmological simulation

Cosmological simulation of Monge-Ampère gravity

- Comparing with standard N-body cosmological simulation

Cosmological simulation of Monge-Ampère gravity

Large scale-structures $z=0$

Cosmological simulation of Monge-Ampère gravity

- Large scale-structures $z=0$

Cosmological simulation of Monge-Ampère gravity

D Zoom $z=0$

Cosmological simulation of Monge-Ampère gravity

- Power spectra

Cosmological simulation of Monge-Ampère gravity

- Power spectra

Gravity is getting weaker at low z?

Cosmological simulation of Monge-Ampère gravity

- Halo mass function

Cosmological simulation of Monge-Ampère gravity

- Halo mass function

Poisson | Monge-Ampère
$N_{\mathrm{h}}=66091 \mid 16057$
4 times less halos at

$$
z=0
$$

Cosmological simulation of Monge-Ampère gravity

- Ellipticity

How to distinguish gravity models with Euclid?

How to distinguish gravity models with Euclid?

- Connectivity of filaments

Darragh Ford et al. 2019
Already used as alternatives probes of cosmologies

How to distinguish gravity models with Euclid?

Darragh Ford et al. 2019

Malavasi et al. 2023

Already used as alternatives probes of cosmologies

How to distinguish gravity models with Euclid?
Filaments
0

How to distinguish gravity models with Euclid?

- Connectivity of filaments

This is a preliminary result!

Darragh Ford et al. 2019

How to distinguish gravity models with Euclid?

- Connectivity of filaments

This is a preliminary result!

Darragh Ford et al. 2019

The filament connectivity could be used as a probe of our gravity model at cosmological scales with the Euclid mission

