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🍏1 Challenges to the ΛCDM Paradigm

🍏 Non linear modification of the Poisson equation2

🍏 Predicted by statistical physics 3

🍏4

Why Monge-Ampère gravity?

Absence of free parameter (physical)
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Cosmological simulation of Monge-Ampère gravity

🍋 Initial conditions

🍋 How it works numerically?

🍋 Equations of motion in comoving coordinates

🍋 Comparing with Poisson N-body cosmological simulations

🍋 Results

pyMAG 1.0

pip install pyMAG
Soon ….



🍋 Initial conditions

205 Mpc/h ∼ 300 Mpc

5123 
particles

z = 49 ⟶ z = 0

ΩΛ = 0.6911

H0 = 67.74 km s−1 Mpc−1

Ωm = 0.3089

mDM ∼ 1010M⊙

Gagdet-2 Monge-Ampère

5 Mpc/h25 Mpc/h

Monge-Ampère zoom

Gagdet-2 zoom

25003 
particles

Springel et al. 2018

Cosmological simulation of Monge-Ampère gravity
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Comparing with standard N-body cosmological simulation

Springel et al. 2018 

Cosmological simulation of Monge-Ampère gravity

🍋

Poisson Monge-Ampère

𝒪(N log N) 𝒪(N log N)

pyMAG 1.0

Boldrini et al. 2022, 
in prep 

Tree-Code Optimal transport algorithm
Lévy 2022Barnes and Hut, 1986
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Large scale-structures

Cosmological simulation of Monge-Ampère gravity

🍋 z = 0

A weaker gravitational clustering 

25 Mpc/h

Monge-AmpèrePoisson



Zoom

Cosmological simulation of Monge-Ampère gravity

🍋 z = 0

5 Mpc/h



Power spectra

Cosmological simulation of Monge-Ampère gravity
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Power spectra

Cosmological simulation of Monge-Ampère gravity

🍋

Gravity is getting weaker at low z?
Douspis et al. 2018
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Halo mass function

Cosmological simulation of Monge-Ampère gravity

🍋

Nh = 66091 |16057

Poisson | Monge-Ampère

4 times less halos at
z = 0 Poisson

Monge-Ampère



Ellipticity

Cosmological simulation of Monge-Ampère gravity

🍋
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Connectivity of filaments

How to distinguish gravity models with Euclid? 

🍋
Group connectivity in COSMOS 5701

Figure 3. Example of the connectivity of groups of different masses at different redshifts in Ccosmos. Each panel is 4 comoving Mpc wide, and the x- and
y-axis indicate, respectively, right ascension and declination. The black, blue, and yellow circles are drawn, respectively, at 1, 1.5, and 2 times the virial radius
of the group. The connectivity at a given radius is defined as the number of filaments crossing the corresponding circle. Galaxies are represented by white discs.
The large and small discs correspond to galaxies more massive and less massive than 1010 M!, respectively. Only galaxies identified as members of the group
and with log M∗/M! > 9.5 are shown. The BGG is in red. Distinct filaments have different colours. The background density is estimated from the Delaunay
tessellation.

It is debatable if groups embedded in filaments but not associated
with a peak of the density distribution (1a−C) should be counted
as 1−C or 2−C, as there are formally two filaments branching out
of these groups. The comparative analysis from the detailed mocks
suggests these groups should sit at a density peak in the absence of
photo-z errors. Therefore in the following we make the choice to
consider them as 2−C (grey histograms on Fig. 4) instead of 1−C
(pink histograms). Appendix A2 discusses this issue in more details.
For each measurement based on Ccosmos presented in the following,
we also checked that the result is not strongly dependent on this
choice.

3 G RO U P C O N N E C T I V I T Y I N C O S M O S

The grey histograms on the middle and bottom panels of Fig. 4 show
the distribution of the connectivity in the full redshift range 0.5 < z

< 1.2 in the HORIZON-AGN and COSMOS data sets. We measure
〈C〉 = 2.02; RMS (C) = 0.92 in Ccosmos, 〈C〉 = 2.56; RMS (C) =
1.10 in C true

Hzagn 2D and 〈C〉 = 1.89; RMS (C) = 1.18 in C phot
Hzagn 2D.

3.1 Mean connectivity and group mass dependency

The mean group connectivity as a function of group mass can now
be measured. In both COSMOS and the HORIZON-AGN data sets,

sample (1 < C). We do not observe any significant bimodality between the
distributions of both samples, the low-C sample behaving like the low-mass
tail of the high-C one.

the group mass Mgroup is defined as the total mass, i.e. the sum of
DM and baryonic mass. The left-hand panel of Fig. 5 displays this
measurement in the mock (C phot

Hzagn 2D and C true
Hzagn 2D, green solid and

dashed lines resp.) and in COSMOS (Ccosmos, black line). Group
mass bins are split to contain an approximately equivalent number
of groups in each bin. Unsurprisingly and as discussed above, the
measurement performed with true-z lies above the one with photo-
z. The COSMOS and photo-z HORIZON-AGN data sets are however
in very good agreement. As expected from theoretical predictions
(Codis et al. 2018), more massive groups have, on average, a higher
connectivity.

3.2 Impact of connectivity on BGG mass assembly

The impact of the connectivity on the mass assembly of the BGG
is now investigated. Our purpose is to quantify if there is any
correlation between connectivity and the BGG properties (mass
and type) beyond the trend driven by the group mass (which scales
with connectivity). The adopted strategy is therefore to look at each
of these quantities in bins of group mass.

3.2.1 Mass of the BGG

The overall evolution of mean connectivity as a function of BGG
mass is first measured. This result is displayed in the right-hand
panel of Fig. 5. As a consequence of the assumptions made at
the SED-fitting stage when computing masses from photometry
(Laigle et al. 2019), the BGG photometric masses are systematically
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Fig. 8. Connectivity of the real and simulated Coma clusters as a func-
tion of mass. The cyan square refers to the real Coma cluster as analyzed
in Malavasi et al. (2020b), while the red square corresponds to the sim-
ulated Coma cluster as detected in this work. Black crosses are the ob-
served connectivity values from the AMASCFI Clusters (Sarron et al.
2018, 2019), green triangles are the observed connectivity values for the
groups in COSMOS (Darragh Ford et al. 2019). Grey lines and points
are connectivity measurements derived in the IllustrisTNG simulation
(Gouin et al. 2021) for clusters and groups which are unrelaxed and
old (UO, solid line), relaxed and old (RO, dotted line), and unrelaxed
and young (UY, dashed line). The purple line and shaded region are
the relation from the numerical N-body simulations of Aragón-Calvo
et al. (2010), and its corresponding 1� uncertainty, while the solid or-
ange line is the theoretical relation of Codis et al. (2018) renormalized
to pass through our measurement for the real Coma cluster, so as to pro-
vide a better comparison of trends. We note that the mass on the x-axis
of the plot is M200 for the real and simulated Coma, the measurements
by Darragh Ford et al. (2019), and those of Sarron et al. (2019), while
it is a value close to Mvir for the Aragón-Calvo et al. (2010) relation.

ference in position between each halo and the position of the
simulated Coma (rh = r � rComa). The dot product

vrad,C =
uh · rh

rh

(2)

where rh is the norm of the vector rh, provides the module
of the velocity of each halo, projected along the line connecting
the simulated Coma cluster with that halo, in a reference frame
where Coma is at the origin and at rest. We then construct the
3D components of such an array in the form:

8>>>><
>>>>:

vrad,C,x = vrad,C ⇥ rh,x/rh

vrad,C,y = vrad,C ⇥ rh,y/rh

vrad,C,z = vrad,C ⇥ rh,z/rh

(3)

We show maps of these quantities in relation to the filament
positions in the surroundings of Coma in Figure 9. This fig-
ure shows three projections of the 3D system formed by Coma
and its surrounding filaments. In each projection, the color map
shows a 2D histogram in which in each bin the average vrad,C
is computed. Black arrows, instead, show the average direction
computed only from the components relevant to the considered
slice (e.g. in the x-y projection each black arrow is constructed
from the average in the 2D histogram bin of vrad,C,x and vrad,C,y).
This gives an idea of the module and direction of the velocity of
the halos in the simulation box in proximity of the simulated
Coma and its filaments. Only the case of magnitude selected

galaxies and SD0�2� is shown for reference in this figure, while
all four parameter combinations described above as the closest
to observations are considered when the infall on Coma from the
filaments is quantified in the following.

This figure shows how there is a significant number of ha-
los moving towards Coma from the large scale structure. The
velocity of the halos seems to correlate fairly well with the fila-
ment position. This is particularly evident e.g. in the x-y and z-y
projections, especially for the filaments to the north east and the
west of the cluster in the latter.

We try to quantify the relation between halo velocity
(whether infalling or outflowing) and filament direction. In Fig-
ure 10 we report the value of vrad,C as a function of halo distance
from Coma. We consider all the halos which are outside of the
simulated Coma virial radius (so as to reduce the influence of the
cluster on the galaxy motions) and within 10 Mpc (6.774 Mpc/h)
from the cluster center. We chose this limit as we see from Fig-
ure 9 that even third generation filaments do not generally extend
beyond such radius. The general distribution of halos in this re-
gion shows that infall velocity tends to increase with decreasing
distance from the simulated Coma center, except in the close
vicinity of the cluster, where galaxies tend to have a larger scat-
ter around zero, with some having large outflow velocities. This
could be due to galaxies that have already gone through the clus-
ter once and are coming out the other side of the cluster with a
positive velocity or to galaxies that are close to being virialized
and that are within the zero-velocity surface of the cluster. At
distances from Coma larger than 2.5 Mpc/h, velocities are gen-
erally negative, implying infall on the cluster. In the same figure,
we also show the velocity that a body would reach as a function
of distance from Coma by starting at 10 Mpc (6.774 Mpc/h),
with a velocity equal to the value of the last bin of the running
mean as derived for the total halo population, and being subject
only to the gravitational attraction of the Coma cluster. The ve-
locity distribution for the total halo population closely follows
this relation (except close to the virial radius of the cluster), im-
plying that no additional e↵ect besides the overall gravitational
attraction from the cluster is at play here. We derive the relation
between infall velocity and distance from the simulated cluster
also only for those halos that are closer to the axes of the fila-
ments than a certain threshold. For each halo, we measure the
distance between it and the axis of the closest filament (dfil) by
using the common formula for the distance between a point and
a line (where the line in this situation is the closest segment of
the closest filament to the halo, using the DisPerSE formalism)6.
As a threshold to consider a halo close enough from the axis of
a filament to be reported on Figure 10, we chose the 25th per-
centile of the dfil distribution.

There is no obvious di↵erence in the velocity distribution as
a function of halo distance from Coma for halos in filaments
compared to the general halo population. In both the case of
filaments extracted with magnitude-selected and mass-selected
galaxies, even the averages of the populations are largely over-
lapping, showing no di↵erence. Only in the case of mass selected
galaxies, a few of the bins located at distances from Coma of

6 We note that this distance definition is di↵erent than the one used
e.g. in Malavasi et al. (2022, see the definition of dfil). In the case of
Malavasi et al. (2022), dfil was measured as the distance between a halo
and the midpoint of the closest segment of the closest filament. The two
distances are comparable in the case where filament segments are very
short or if the halo is far away from a filament segment. In any case the
updated version of dfil we use here a↵ects only a minority of halos and
in a small way. We refer the reader to Figure 1 of Malavasi et al. (2022)
for a schematic representation of dfil.
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Group connectivity in COSMOS 5701

Figure 3. Example of the connectivity of groups of different masses at different redshifts in Ccosmos. Each panel is 4 comoving Mpc wide, and the x- and
y-axis indicate, respectively, right ascension and declination. The black, blue, and yellow circles are drawn, respectively, at 1, 1.5, and 2 times the virial radius
of the group. The connectivity at a given radius is defined as the number of filaments crossing the corresponding circle. Galaxies are represented by white discs.
The large and small discs correspond to galaxies more massive and less massive than 1010 M!, respectively. Only galaxies identified as members of the group
and with log M∗/M! > 9.5 are shown. The BGG is in red. Distinct filaments have different colours. The background density is estimated from the Delaunay
tessellation.

It is debatable if groups embedded in filaments but not associated
with a peak of the density distribution (1a−C) should be counted
as 1−C or 2−C, as there are formally two filaments branching out
of these groups. The comparative analysis from the detailed mocks
suggests these groups should sit at a density peak in the absence of
photo-z errors. Therefore in the following we make the choice to
consider them as 2−C (grey histograms on Fig. 4) instead of 1−C
(pink histograms). Appendix A2 discusses this issue in more details.
For each measurement based on Ccosmos presented in the following,
we also checked that the result is not strongly dependent on this
choice.

3 G RO U P C O N N E C T I V I T Y I N C O S M O S

The grey histograms on the middle and bottom panels of Fig. 4 show
the distribution of the connectivity in the full redshift range 0.5 < z

< 1.2 in the HORIZON-AGN and COSMOS data sets. We measure
〈C〉 = 2.02; RMS (C) = 0.92 in Ccosmos, 〈C〉 = 2.56; RMS (C) =
1.10 in C true

Hzagn 2D and 〈C〉 = 1.89; RMS (C) = 1.18 in C phot
Hzagn 2D.

3.1 Mean connectivity and group mass dependency

The mean group connectivity as a function of group mass can now
be measured. In both COSMOS and the HORIZON-AGN data sets,

sample (1 < C). We do not observe any significant bimodality between the
distributions of both samples, the low-C sample behaving like the low-mass
tail of the high-C one.

the group mass Mgroup is defined as the total mass, i.e. the sum of
DM and baryonic mass. The left-hand panel of Fig. 5 displays this
measurement in the mock (C phot

Hzagn 2D and C true
Hzagn 2D, green solid and

dashed lines resp.) and in COSMOS (Ccosmos, black line). Group
mass bins are split to contain an approximately equivalent number
of groups in each bin. Unsurprisingly and as discussed above, the
measurement performed with true-z lies above the one with photo-
z. The COSMOS and photo-z HORIZON-AGN data sets are however
in very good agreement. As expected from theoretical predictions
(Codis et al. 2018), more massive groups have, on average, a higher
connectivity.

3.2 Impact of connectivity on BGG mass assembly

The impact of the connectivity on the mass assembly of the BGG
is now investigated. Our purpose is to quantify if there is any
correlation between connectivity and the BGG properties (mass
and type) beyond the trend driven by the group mass (which scales
with connectivity). The adopted strategy is therefore to look at each
of these quantities in bins of group mass.

3.2.1 Mass of the BGG

The overall evolution of mean connectivity as a function of BGG
mass is first measured. This result is displayed in the right-hand
panel of Fig. 5. As a consequence of the assumptions made at
the SED-fitting stage when computing masses from photometry
(Laigle et al. 2019), the BGG photometric masses are systematically
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Connectivity of filaments🍋

Group connectivity in COSMOS 5701

Figure 3. Example of the connectivity of groups of different masses at different redshifts in Ccosmos. Each panel is 4 comoving Mpc wide, and the x- and
y-axis indicate, respectively, right ascension and declination. The black, blue, and yellow circles are drawn, respectively, at 1, 1.5, and 2 times the virial radius
of the group. The connectivity at a given radius is defined as the number of filaments crossing the corresponding circle. Galaxies are represented by white discs.
The large and small discs correspond to galaxies more massive and less massive than 1010 M!, respectively. Only galaxies identified as members of the group
and with log M∗/M! > 9.5 are shown. The BGG is in red. Distinct filaments have different colours. The background density is estimated from the Delaunay
tessellation.

It is debatable if groups embedded in filaments but not associated
with a peak of the density distribution (1a−C) should be counted
as 1−C or 2−C, as there are formally two filaments branching out
of these groups. The comparative analysis from the detailed mocks
suggests these groups should sit at a density peak in the absence of
photo-z errors. Therefore in the following we make the choice to
consider them as 2−C (grey histograms on Fig. 4) instead of 1−C
(pink histograms). Appendix A2 discusses this issue in more details.
For each measurement based on Ccosmos presented in the following,
we also checked that the result is not strongly dependent on this
choice.

3 G RO U P C O N N E C T I V I T Y I N C O S M O S

The grey histograms on the middle and bottom panels of Fig. 4 show
the distribution of the connectivity in the full redshift range 0.5 < z

< 1.2 in the HORIZON-AGN and COSMOS data sets. We measure
〈C〉 = 2.02; RMS (C) = 0.92 in Ccosmos, 〈C〉 = 2.56; RMS (C) =
1.10 in C true

Hzagn 2D and 〈C〉 = 1.89; RMS (C) = 1.18 in C phot
Hzagn 2D.

3.1 Mean connectivity and group mass dependency

The mean group connectivity as a function of group mass can now
be measured. In both COSMOS and the HORIZON-AGN data sets,

sample (1 < C). We do not observe any significant bimodality between the
distributions of both samples, the low-C sample behaving like the low-mass
tail of the high-C one.

the group mass Mgroup is defined as the total mass, i.e. the sum of
DM and baryonic mass. The left-hand panel of Fig. 5 displays this
measurement in the mock (C phot

Hzagn 2D and C true
Hzagn 2D, green solid and

dashed lines resp.) and in COSMOS (Ccosmos, black line). Group
mass bins are split to contain an approximately equivalent number
of groups in each bin. Unsurprisingly and as discussed above, the
measurement performed with true-z lies above the one with photo-
z. The COSMOS and photo-z HORIZON-AGN data sets are however
in very good agreement. As expected from theoretical predictions
(Codis et al. 2018), more massive groups have, on average, a higher
connectivity.

3.2 Impact of connectivity on BGG mass assembly

The impact of the connectivity on the mass assembly of the BGG
is now investigated. Our purpose is to quantify if there is any
correlation between connectivity and the BGG properties (mass
and type) beyond the trend driven by the group mass (which scales
with connectivity). The adopted strategy is therefore to look at each
of these quantities in bins of group mass.

3.2.1 Mass of the BGG

The overall evolution of mean connectivity as a function of BGG
mass is first measured. This result is displayed in the right-hand
panel of Fig. 5. As a consequence of the assumptions made at
the SED-fitting stage when computing masses from photometry
(Laigle et al. 2019), the BGG photometric masses are systematically
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Connectivity of filaments🍋

Group connectivity in COSMOS 5701

Figure 3. Example of the connectivity of groups of different masses at different redshifts in Ccosmos. Each panel is 4 comoving Mpc wide, and the x- and
y-axis indicate, respectively, right ascension and declination. The black, blue, and yellow circles are drawn, respectively, at 1, 1.5, and 2 times the virial radius
of the group. The connectivity at a given radius is defined as the number of filaments crossing the corresponding circle. Galaxies are represented by white discs.
The large and small discs correspond to galaxies more massive and less massive than 1010 M!, respectively. Only galaxies identified as members of the group
and with log M∗/M! > 9.5 are shown. The BGG is in red. Distinct filaments have different colours. The background density is estimated from the Delaunay
tessellation.

It is debatable if groups embedded in filaments but not associated
with a peak of the density distribution (1a−C) should be counted
as 1−C or 2−C, as there are formally two filaments branching out
of these groups. The comparative analysis from the detailed mocks
suggests these groups should sit at a density peak in the absence of
photo-z errors. Therefore in the following we make the choice to
consider them as 2−C (grey histograms on Fig. 4) instead of 1−C
(pink histograms). Appendix A2 discusses this issue in more details.
For each measurement based on Ccosmos presented in the following,
we also checked that the result is not strongly dependent on this
choice.

3 G RO U P C O N N E C T I V I T Y I N C O S M O S

The grey histograms on the middle and bottom panels of Fig. 4 show
the distribution of the connectivity in the full redshift range 0.5 < z

< 1.2 in the HORIZON-AGN and COSMOS data sets. We measure
〈C〉 = 2.02; RMS (C) = 0.92 in Ccosmos, 〈C〉 = 2.56; RMS (C) =
1.10 in C true

Hzagn 2D and 〈C〉 = 1.89; RMS (C) = 1.18 in C phot
Hzagn 2D.

3.1 Mean connectivity and group mass dependency

The mean group connectivity as a function of group mass can now
be measured. In both COSMOS and the HORIZON-AGN data sets,

sample (1 < C). We do not observe any significant bimodality between the
distributions of both samples, the low-C sample behaving like the low-mass
tail of the high-C one.

the group mass Mgroup is defined as the total mass, i.e. the sum of
DM and baryonic mass. The left-hand panel of Fig. 5 displays this
measurement in the mock (C phot

Hzagn 2D and C true
Hzagn 2D, green solid and

dashed lines resp.) and in COSMOS (Ccosmos, black line). Group
mass bins are split to contain an approximately equivalent number
of groups in each bin. Unsurprisingly and as discussed above, the
measurement performed with true-z lies above the one with photo-
z. The COSMOS and photo-z HORIZON-AGN data sets are however
in very good agreement. As expected from theoretical predictions
(Codis et al. 2018), more massive groups have, on average, a higher
connectivity.

3.2 Impact of connectivity on BGG mass assembly

The impact of the connectivity on the mass assembly of the BGG
is now investigated. Our purpose is to quantify if there is any
correlation between connectivity and the BGG properties (mass
and type) beyond the trend driven by the group mass (which scales
with connectivity). The adopted strategy is therefore to look at each
of these quantities in bins of group mass.

3.2.1 Mass of the BGG

The overall evolution of mean connectivity as a function of BGG
mass is first measured. This result is displayed in the right-hand
panel of Fig. 5. As a consequence of the assumptions made at
the SED-fitting stage when computing masses from photometry
(Laigle et al. 2019), the BGG photometric masses are systematically
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The filament connectivity could be used as a probe of our gravity 
model at cosmological scales with the Euclid mission



Thanks for your attention! 

Credits: Illustris TNG


