

STRASBOURG, JUNE 20TH 2022

NO GLOBULAR CLUSTER PROGENITORS IN MILKY WAY SATELLITE GALAXIES

THE NATURE OF DARK MATTER

THE NATURE OF DARK MATTER

Origin of Globular clusters

Relics of the epoch of the formation of galaxies

First dark matter halos

GAIA MISSION: FULL 6D PHASE SPACE

11 MW SATELLITES

ORIGINS OF MW GLOBULAR CLUSTERS

In-situ origin 62 of MW GCs likely formed in the MW

Ex-situ origin 55-65 of MW GCs have an extragalactic origin

Heterogeneous origin

The rest

Kruijssen+19, Massari+19,

ORIGINS OF MW GLOBULAR CLUSTERS

In-situ origin 62 of MW GCs likely formed in the MW

Ex-situ origin 55-65 of MW GCs have an extragalactic origin

35% of MW GCs possibly associated with accreted dwarf galaxies

Heterogeneous origin

The rest

Kruijssen+19, Massari+19,

ORIGINS OF MW GLOBULAR CLUSTERS

11 MW satellite galaxies Progenitors of some of MW GCs

Diemand+07, Lux+10

 $M^{MW}(< r)$ $t_{friction} \sim -$ Msat

THE MW ENVIRONMENT $t_{friction} \sim \frac{M^{MW}(< r)}{M^{GC}} t_{dyn}, M^{sat} \sim 1000 M^{GC}$

11 MW SATELLITES ● 170 GLOBULAR CLUSTERS MW+satellite potential 11

GLOBULAR CLUSTER-SATELLITE ASSOCIATION CRITERIA

Distance criterion D^{GC} < Tidal radius of the satellite

Velocity criterion V^{GC}< Escape velocity of the satellite

P₍₍(MW SATELLITE)=

Probability of having been bound to a MW satellite

None of the 170 GLOBULAR CLUSTERS SHOW ANY CLEAR ASSOCIATION WITH THE 11 MW SATELLITES

Boldrini&Bovy+21

IMPLICATIONS?

OPTION 1 Now disrupted satellites

OPTION 2

Globular clusters may have had a dark matter halos

HOW TO GO FURTHER?

Evolving MW potential

MW has drastically grown before z = 2 due to mergers

Globular clusters with DM halo Investigating their orbital history backwards in time