

DYNAMICAL FRICTION IN FUZZY DARK MATTER UNIVERSE

AG LIRA 18/06/2025

Adrian Szpilfidel

M1 internship supervised by P.Boldrini

Dark Matter models

Cold Dark Matter

Fuzzy Dark Matter

Credits: Nori+22

Globular clusters

Credits: Nature

- Very dense objects composed of millions of stars
- Globular clusters are orbiting within galaxies
- 171 globular clusters in the Milky Way (Gaia collaboration +18, +21, Vasiliev & Baumgardt+21)

Energy loss mechanism

→ Acts on all very massive objects in the galaxy (globular clusters, black holes, galaxy satellites, etc.)

Dynamical Friction

Energy loss mechanism

- → Acts on all very massive objects in the galaxy (globular clusters, black holes, galaxy satellites, etc.)
- → The globular cluster is slowed down...

Dynamical Friction

Energy loss mechanism

- → Acts on all very massive objects in the galaxy (globular clusters, black holes, galaxy satellites, etc.)
- → The globular cluster is slowed down...
- → ... and falls to the center

Dynamical Friction in Fuzzy Dark Matter?

Dynamical friction in FDM is like holes in the parachute

Dynamical Friction in Fuzzy Dark Matter?

Dynamical friction in FDM is like holes in the parachute

What will be the fate of the globular cluster?

Fornax Dwarf Galaxy

Fornax is older than 10 billion years!

Crédits:	ESO/Digitized	Sky Survey 2
----------	---------------	--------------

	Fall-in time in CDM (in billion years)	Fall-in time in FDM (in billion years)
GC n°1	25	209
GC n°2	2.6	29
GC n°3	0.24	11
GC n°4	0.15	18
GC n°5	5.12	38

