

 $\frac{d^2 x(t)}{dt^2} = -\nabla \phi(t) \qquad \Delta \phi = 4\pi G(\rho - \bar{\rho})$

Poisson equation

 $\frac{d^2 x(t)}{dt^2} = -\nabla \phi(t) \qquad \Delta \phi = 4\pi G(\rho - \bar{\rho})$

Poisson equation

$det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}} \qquad \text{Monge-Ampère equation}$

 $\frac{d^2 x(t)}{dt^2} = -\nabla\phi(t) \qquad \Delta\phi = 4\pi G(\rho - \bar{\rho})$ Poisson equation $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} \mathbf{D}^2 \phi) = \frac{\rho}{\bar{\rho}}$ Monge-Ampère equation $\left(\frac{d^2}{dx_i dx_j}\right)_{i,j}$

In one dimension, Monge-Ampère is equivalent to Poisson

A discret set of N particles

i = 0, 1, ..., N

 $\Delta \phi = 4\pi G(\rho - \bar{\rho})$

Monge-Ampère $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

 $F_{\rm g} = -m \nabla_x \phi(x)$

A discret set of N particles

i = 0, 1, ..., N

 $\Delta \phi = 4\pi G(\rho - \bar{\rho})$

$\frac{\text{Monge-Ampère}}{\det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}}$

 $F_{\rm g} = -m \nabla_x \phi(x)$

A discret set of N particles

i = 0, 1, ..., N

 $\Delta \phi = 4\pi G(\rho - \bar{\rho})$

$\frac{\text{Monge-Ampère}}{\det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}}$

 $F_{\rm g} = -m \nabla_x \phi(x)$

 $F_{\rm g} = ?$

 $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}} \qquad \& \qquad F_{\rm g} = -m \nabla_x \phi(x)$

$$det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}} \qquad \& \qquad F_{\rm g}$$

With the following change of variable,

$$\psi(x) = \frac{|x|^2}{2} + \frac{1}{4\pi G\bar{\rho}}\phi(x)$$

 $= -m \nabla_x \phi(x)$

$$det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}} \qquad \& \qquad F_{\rm g}$$

With the following change of variable,

$$\psi(x) = \frac{|x|^2}{2} + \frac{1}{4\pi G\bar{\rho}}\phi(x)$$

Then, we obtain

$$det(D^2\psi) = \frac{\rho}{\bar{\rho}}$$

 $= -m \nabla_x \phi(x)$

$$det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}} \qquad \& \qquad F_{\rm g}$$

With the following change of variable,

$$\psi(x) = \frac{|x|^2}{2} + \frac{1}{4\pi G\bar{\rho}}\phi(x)$$

Then, we obtain

$$det(D^2\psi) = \frac{\rho}{\bar{\rho}} \qquad \& \qquad F_g = 4\pi G\bar{\rho} \left(x\right)$$

 $= -m \nabla_x \phi(x)$

 $-\nabla_x \psi(x)$

Monge-Ampère equation

Monge-Ampère equation

 $det(D^2\psi) = \frac{\rho}{\bar{\rho}}$

Monge problem

or

Monge-Ampère equation

 $det(D^2\psi) = \frac{\rho}{\bar{\rho}}$

Monge problem

or

Monge-Ampère equation

 $det(D^2\psi) = \frac{\rho}{\bar{\rho}}$

Monge problem

or

Monge-Ampère equation

 $det(D^2\psi) = \frac{\rho}{\bar{\rho}}$

Monge problem

or

The mass conservation gives,

 $\bar{\rho}d^3q = \rho(\mathbf{x})d^3x$

The mass conservation gives,

 $\bar{\rho}d^3q = \rho(\mathbf{x})d^3x$

With the change of variable, $q \longrightarrow x$

$$d^{3}q = \left| det \left(\frac{dF_{k}}{dx_{l}} \right)_{k,l} \right| d^{3}x$$

The mass conservation gives,

 $\bar{\rho}d^3q = \rho(\mathbf{x})d^3x$

With the change of variable, $q \longrightarrow x$

$$d^{3}q = \left| det \left(\frac{dF_{k}}{dx_{l}} \right)_{k,l} \right| d^{3}x$$

$$F = \nabla_x \psi(x)$$

The mass conservation gives,

 $\bar{\rho}d^3q = \rho(\mathbf{x})d^3x$

With the change of variable, $q \longrightarrow x$

$$d^{3}q = \left| det \left(\frac{dF_{k}}{dx_{l}} \right)_{k,l} \right| d^{3}x$$

 $F = \nabla_x \psi(x) \quad -----$

$$det(D^2\psi) = \frac{\rho}{\bar{\rho}}$$

The mass conservation gives,

 $\bar{\rho}d^3q = \rho(\mathbf{x})d^3x$

 $F = \nabla_x \psi(x)$

With the change of variable, $q \longrightarrow x$

$$d^{3}q = \left| det \left(\frac{dF_{k}}{dx_{l}} \right)_{k,l} \right| d^{3}x$$

$$det(D^2\psi) = \frac{\rho}{\bar{\rho}}$$

The mass conservation gives,

 $\bar{\rho}d^3q = \rho(\mathbf{x})d^3x$

With the change of variable, $q \longrightarrow x$

$$d^{3}q = \left| det \left(\frac{dF_{k}}{dx_{l}} \right)_{k,l} \right| d^{3}x$$

 $F = \nabla_x \psi(x) \quad -----$

$$det(D^2\psi) = \frac{\rho}{\bar{\rho}}$$

i = 0, 1, ..., N

 $F_{\rm g} = -m \nabla_x \phi(x)$

 $\Delta \phi = 4\pi G(\rho - \bar{\rho})$

A discret set of N particles

Monge-Ampère $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

 $F_{\rm g} = 4\pi G \bar{\rho} \left(x - \nabla_x \psi(x) \right)$

i = 0, 1, ..., N

 $F_{\rm g} = -m \nabla_x \phi(x)$

 $\Delta \phi = 4\pi G(\rho - \bar{\rho})$

A discret set of N particles

Monge-Ampère $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

 $F_{\rm g} = 4\pi G\bar{\rho} \left(x - \nabla_x \psi(x) \right)$

 $F_{\rm g} = 4\pi G\bar{\rho} \left(x_i - q_{\sigma_{opt}(i)} \right)$

i = 0, 1, ..., N

 $F_{\rm g} = -m \nabla_x \phi(x)$

 $\Delta \phi = 4\pi G(\rho - \bar{\rho})$

A discret set of N particles

Monge-Ampère $det(\mathbb{I} + \frac{1}{4\pi G\bar{\rho}} D^2 \phi) = \frac{\rho}{\bar{\rho}}$

 $F_{g} = 4\pi G\bar{\rho} \left(x - \nabla_{x} \psi(x) \right)$

 $F_{\rm g} = 4\pi G\bar{\rho} \left(x_i - q_{\sigma_{opt}(i)} \right)$

At small scales,

Missing satellite problem

 $r \leq 250 \text{ kpc}$

~1000-2000 satellites

~ 50 satellites

At small scales,

Missing satellite problem

 $r \leq 250 \text{ kpc}$

~1000-2000 satellites

~ 50 satellites

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

$$det(\mathbb{I} + \gamma D^2 \phi) = \frac{\rho}{\bar{\rho}}$$

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

$$det(\mathbb{I} + \gamma D^2 \phi) = \frac{\rho}{\bar{\rho}}$$

Why Monge-Ampère gravity?

 $1 + \gamma \Delta \phi + \mathcal{O}(\gamma^2) = \frac{\rho}{\bar{\rho}}$

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

Predicted by statistical physics

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

Predicted by statistical physics

Large deviation principle + Brownian motion

Why Monge-Ampère gravity?

 $\frac{d^2 x_i}{dt^2} = 4\pi G \bar{\rho} \left(x_i - g_i \right) \quad \text{Brenier et al. 2012}$

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

Predicted by statistical physics

Large deviation principle **Brownian motion** +

Why Monge-Ampère gravity? $d^2 x_i$ $4\pi G\bar{\rho}(x_i)$ Brenier et al. 2012 Monge-Ampère gravitational force

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

Predicted by statistical physics

Its non-divergent behaviour

Challenges to the ACDM Paradigm

Non linear modification of the Poisson equation

Predicted by statistical physics

Its non-divergent behaviour

 $F_{g} = \sum_{\substack{j=0, i \neq j}}^{N-1} \frac{-Gm_{i}m_{j}}{(x_{j} - x_{i})^{2}}$

115

 $F_{\rm g} = 4\pi G \bar{\rho} \left(x_i - g_i \right)$

- Initial conditions
- Equations of motion in comoving coordinates
- How it works numerically?
- Comparing with Poisson N-body cosmological simulations

AGI.0

nstall pyMAG

Soon

[Springel et al. 2018] (arXiv:1707.03397)

of Monge-Ampère gravity

$$z = 49 \longrightarrow z = 0$$

$$\Omega_{\rm m} = 0.3089$$

$$\Omega_{\Lambda} = 0.6911$$

$$H_0 = 67.74 \text{ km s}^{-1} \text{ Mpc}^{-1}$$

$$m_{DM} \sim 10^{10} M_{\odot}$$

Monge-Ampère

Comparing with standard N-body cosmological simulation

Poisson

A code for cosmological simulations of structure formation

Springel et al. 2018

Monge-Ampère

pyMAG 1.0

Boldrini et al. 2022, in prep

Comparing with standard N-body cosmological simulation

Poisson

A code for cosmological simulations of structure formation

Springel et al. 2018

$$\mathbf{F}_{g} = \sum_{\substack{j=0, i\neq j}}^{N-1} \frac{Gm_{i}m_{j}(\mathbf{x}_{j} - \mathbf{x}_{i})}{a^{2}(|\mathbf{x}_{j} - \mathbf{x}_{i}|^{2} + \epsilon^{2})^{3/2}}$$

Monge-Ampère

pyMAG 1.0

Boldrini et al. 2022, in prep

$$\mathbf{F}_{g} = \frac{3H_{0}^{2}\Omega_{m}m}{2a^{2}} \left(\mathbf{x}_{i} - \mathbf{g}_{i}\right)$$

Comparing with standard N-body cosmological simulation

Poisson

A code for cosmological simulations of structure formation

Springel et al. 2018

$$\mathbf{F}_{g} = \sum_{\substack{j=0, i\neq j}}^{N-1} \frac{Gm_{i}m_{j}(\mathbf{x}_{j} - \mathbf{x}_{i})}{a^{2}(|\mathbf{x}_{j} - \mathbf{x}_{i}|^{2} + \epsilon^{2})^{3/2}}$$

Tree-Code Barnes and Hut, 1986

 $\mathcal{O}(N \log N)$

Monge-Ampère

pyMAG 1.0

Boldrini et al. 2022, in prep

$$\mathbf{F}_{g} = \frac{3H_{0}^{2}\Omega_{m}m}{2a^{2}} \left(\mathbf{x}_{i} - \mathbf{g}_{i}\right)$$

Comparing with standard N-body cosmological simulation

Poisson

A code for cosmological simulations of structure formation

Springel et al. 2018

$$\mathbf{F}_{g} = \sum_{\substack{j=0, i\neq j}}^{N-1} \frac{Gm_{i}m_{j}(\mathbf{x}_{j} - \mathbf{x}_{i})}{a^{2}(|\mathbf{x}_{j} - \mathbf{x}_{i}|^{2} + \epsilon^{2})^{3/2}}$$

Tree-Code Barnes and Hut, 1986

 $\mathcal{O}(N \log N)$

Monge-Ampère

pyMAG 1.0

Boldrini et al. 2022, in prep

$$\mathbf{F}_{g} = \frac{3H_{0}^{2}\Omega_{m}m}{2a^{2}}\left(\mathbf{x}_{i} - \mathbf{g}_{i}\right)$$

Optimal transport algorithm Lévy 2022

 $\mathcal{O}(N^2 \log N)$

Large scale-structures z = 0

Large scale-structures z = 0

A weaker gravitational clustering

Poisson | Monge-Ampère $N_{\rm h} = 66091 | 16057$ 4 times less halos at z = 0

Halo mass function

Poisson | Monge-Ampère $N_{\rm h} = 66091 \,|\, 16057$ 4 times less halos at z = 0

A potential solution to the cusp-core problem

DDO 126

DDO 43

NFW (cust

Solving Monge-Ampère equation with Optimal Transport

Equations of motion in comoving coordinates

$$\frac{d\mathbf{x}}{da} = \frac{\mathbf{p}}{ma^2 S(a)} \qquad \& \qquad \frac{d\mathbf{p}}{da} = \frac{1}{aS(a)}$$

 $S(a) = aH_0\sqrt{\Omega_{\rm m}a^{-3} + (1 - \Omega_{\rm m} - \Omega_{\Lambda})a^{-2} + \Omega_{\Lambda}}$

Poisson

$$\mathbf{F}_{g} = \sum_{\substack{j=0, i \neq j}}^{N-1} \frac{Gm_{i}m_{j}(\mathbf{x}_{j} - \mathbf{x}_{i})}{a^{2}(|\mathbf{x}_{j} - \mathbf{x}_{i}|^{2})^{3/2}}$$

 $\frac{1}{S(a)} \quad a^2 \mathbf{F}_g + \frac{m H_0^2 \Omega_m}{2} \mathbf{x}$

Monge-Ampère

$$\mathbf{F}_{g} = \frac{3H_{0}^{2}\Omega_{m}m}{2a^{2}}\left(\mathbf{x}_{i} - \mathbf{g}_{i}\right)$$