
VS
Siméon Denis 

Poisson
(1781-1840)

Gaspard
Monge

(1746-1818)

🍏🍎
André-Marie

Ampère
(1775-1836)

Monge-Ampère gravity 
at cosmological scales

Atelier Univers, Théorie et Gravitation, Montpellier 2022 

in collaboration with:

Yann 
Brenier

Roya
Mohayaee

Bruno
Lévy

An interdisciplinary project
(Mathematics, Computer science, Astrophysics)

Gagdet-2

Pierre Boldrini,
INRIA Nancy Grand Est

based on: 

Boldrini et al. 2022, in prep.



Δϕ = 4πG(ρ − ρ̄)
d2x(t)

dt2
= − ∇ϕ(t) Poisson equation

From Poisson to Monge-Ampère



Δϕ = 4πG(ρ − ρ̄)
d2x(t)

dt2
= − ∇ϕ(t)

det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

Monge-Ampère equation

From Poisson to Monge-Ampère

Poisson equation



Δϕ = 4πG(ρ − ρ̄)
d2x(t)

dt2
= − ∇ϕ(t)

det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

D2

( d2

dxidxj )
i,j

From Poisson to Monge-Ampère

Poisson equation

Monge-Ampère equation



Δϕ = 4πG(ρ − ρ̄)
d2x(t)

dt2
= − ∇ϕ(t)

det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

( d2

dxidxj )
i,j

In one dimension,  Monge-Ampère is equivalent to Poisson 

From Poisson to Monge-Ampère

Poisson equation

Monge-Ampère equation



Poisson Monge-Ampère

Δϕ = 4πG(ρ − ρ̄) det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

Fg = − m∇xϕ(x)

i = 0,1,...,N

A discret set of 
N particles

From Poisson to Monge-Ampère



Poisson Monge-Ampère

Δϕ = 4πG(ρ − ρ̄) det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

Fg = − m∇xϕ(x)

Fg =
N−1

∑
j=0,i≠j

−Gmimj

(xj − xi)2

i = 0,1,...,N

A discret set of 
N particles

From Poisson to Monge-Ampère



Poisson Monge-Ampère

Δϕ = 4πG(ρ − ρ̄) det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

Fg = − m∇xϕ(x)

Fg =
N−1

∑
j=0,i≠j

−Gmimj

(xj − xi)2

i = 0,1,...,N

A discret set of 
N particles

Fg = ?

From Poisson to Monge-Ampère



From Poisson to Monge-Ampère

det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

Fg = − m∇xϕ(x)&



From Poisson to Monge-Ampère

det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

With the following change of variable,

ψ(x) =
|x |2

2
+

1
4πGρ̄

ϕ(x)

Fg = − m∇xϕ(x)&



From Poisson to Monge-Ampère

det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

With the following change of variable,

ψ(x) =
|x |2

2
+

1
4πGρ̄

ϕ(x)

Fg = − m∇xϕ(x)&

Then, we obtain

det(D2ψ) =
ρ
ρ̄



From Poisson to Monge-Ampère

det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

With the following change of variable,

ψ(x) =
|x |2

2
+

1
4πGρ̄

ϕ(x)

Fg = − m∇xϕ(x)&

Then, we obtain

det(D2ψ) =
ρ
ρ̄ Fg = 4πGρ̄ (x − ∇xψ(x))&



From Poisson to Monge-Ampère

det(D2ψ) =
ρ
ρ̄ ⇔

Monge-Ampère equation



From Poisson to Monge-Ampère

det(D2ψ) =
ρ
ρ̄ ⇔

Monge-Ampère equation
Monge problem

or
What is the most efficient way of transporting one distribution of mass into another?



From Poisson to Monge-Ampère

det(D2ψ) =
ρ
ρ̄ ⇔

Monge-Ampère equation
Monge problem

or
What is the most efficient way of transporting one distribution of mass into another?



xi

From Poisson to Monge-Ampère

det(D2ψ) =
ρ
ρ̄ ⇔

Monge-Ampère equation
Monge problem

or
What is the most efficient way of transporting one distribution of mass into another?

qj

inf ∑
i

|xi − qj |
2



xi

From Poisson to Monge-Ampère

det(D2ψ) =
ρ
ρ̄ ⇔

Monge-Ampère equation
Monge problem

or
What is the most efficient way of transporting one distribution of mass into another?

qj

inf ∑
i

|xi − qj |
2

Purely 
combinatorial



xi

From Poisson to Monge-Ampère

qj



xi

From Poisson to Monge-Ampère

qj

F(xi)



xi

From Poisson to Monge-Ampère

qj

F(xi)
ρ̄d3q = ρ(x)d3x

The mass conservation gives, 



xi

From Poisson to Monge-Ampère

qj

F(xi)
ρ̄d3q = ρ(x)d3x

The mass conservation gives, 

With the change of variable, 

d3q = det ( dFk

dxl )
k,l

d3x

q ⟶ x



xi

From Poisson to Monge-Ampère

qj

F(xi)
ρ̄d3q = ρ(x)d3x

The mass conservation gives, 

With the change of variable, 

d3q = det ( dFk

dxl )
k,l

d3x

q ⟶ x

According to Optimal Transport theory, 

F = ∇xψ(x)

Brenier 1991



xi

From Poisson to Monge-Ampère

qj

F(xi)
ρ̄d3q = ρ(x)d3x

The mass conservation gives, 

With the change of variable, 

d3q = det ( dFk

dxl )
k,l

d3x

q ⟶ x

According to Optimal Transport theory, 

F = ∇xψ(x)

Brenier 1991

det(D2ψ) =
ρ
ρ̄



xi

From Poisson to Monge-Ampère

qj

F(xi)
ρ̄d3q = ρ(x)d3x

The mass conservation gives, 

With the change of variable, 

d3q = det ( dFk

dxl )
k,l

d3x

q ⟶ x

According to Optimal Transport theory, 

F = ∇xψ(x)

Brenier 1991

det(D2ψ) =
ρ
ρ̄

= qσopt(i)

σopt = Arg inf
σ ∑

i

|xi − qσ(i) |
2

Purely 
combinatorial



xi

From Poisson to Monge-Ampère

qj

F(xi)
ρ̄d3q = ρ(x)d3x

The mass conservation gives, 

With the change of variable, 

d3q = det ( dFk

dxl )
k,l

d3x

q ⟶ x

According to Optimal Transport theory, 

F = ∇xψ(x)

Brenier 1991

det(D2ψ) =
ρ
ρ̄

= qσopt(i)

σopt = Arg inf
σ ∑

i

|xi − qσ(i) |
2

∇xψ(x) = qσopt(i)



Poisson Monge-Ampère

Δϕ = 4πG(ρ − ρ̄) det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

Fg = − m∇xϕ(x)

Fg =
N−1

∑
j=0,i≠j

−Gmimj

(xj − xi)2

i = 0,1,...,N

A discret set of 
N particles

From Poisson to Monge-Ampère

Fg = 4πGρ̄ (x − ∇xψ(x))



Poisson Monge-Ampère

Δϕ = 4πG(ρ − ρ̄) det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

Fg = − m∇xϕ(x)

Fg =
N−1

∑
j=0,i≠j

−Gmimj

(xj − xi)2

i = 0,1,...,N

A discret set of 
N particles

From Poisson to Monge-Ampère

Fg = 4πGρ̄ (xi − qσopt(i))

Fg = 4πGρ̄ (x − ∇xψ(x))



Poisson Monge-Ampère

Δϕ = 4πG(ρ − ρ̄) det(𝕀 +
1

4πGρ̄
D2ϕ) =

ρ
ρ̄

Fg = − m∇xϕ(x)

Fg =
N−1

∑
j=0,i≠j

−Gmimj

(xj − xi)2

i = 0,1,...,N

A discret set of 
N particles

From Poisson to Monge-Ampère

Fg = 4πGρ̄ (xi − qσopt(i))
gi

Fg = 4πGρ̄ (x − ∇xψ(x))



Why Monge-Ampère gravity?



Why Monge-Ampère gravity?

🍏1 Challenges to the ΛCDM Paradigm



At small scales,

Figure 7

The Missing Satellites Problem: Predicted ⇤CDM substructure (left) vs. known Milky Way
satellites (right). The image on the left shows the ⇤CDM dark matter distribution within a sphere
of radius 250 kpc around the center of a Milky-Way size dark matter halo (simulation by V.
Robles and T. Kelley in collaboration with the authors). The image on the right (by M. Pawlowski
in collaboration with the authors) shows the current census of Milky Way satellite galaxies, with
galaxies discovered since 2015 in red. The Galactic disk is represented by a circle of radius 15 kpc
at the center and the outer sphere has a radius of 250 kpc. The 11 brightest (classical) Milky Way
satellites are labeled by name. Sizes of the symbols are not to scale but are rather proportional to
the log of each satellite galaxy’s stellar mass. Currently, there are ⇠ 50 satellite galaxies of the
Milky Way compared to thousands of predicted subhalos with Mpeak & 107 M�.

see, e.g., Rees & Ostriker 1977). According to Figure 6, these physical e↵ects are likely to

become dominant in the regime of ultra-faint galaxies M? . 105M�.

The question then becomes: can we simply adopt the abundance-matching relation

derived from field galaxies to “solve” the Missing Satellites Problem down to the scale of

the classical MW satellites (i.e., Mvir ' 1010M� $ M? ' 106M�)? Figure 8 (modified from

Garrison-Kimmel et al. 2017a) shows that the answer is likely “yes.” Shown in magenta is

the cumulative count of Milky Way satellite galaxies within 300 kpc of the Galaxy plotted

down to the stellar mass completeness limit within that volume. The shaded band shows the

68% range predicted stellar mass functions from the dark-matter-only ELVIS simulations

(Garrison-Kimmel et al. 2014) combined with the AM relation shown in Figure 6 with zero

scatter. The agreement is not perfect, but there is no over-prediction. The dashed lines show

how the predicted satellite stellar mass functions would change for di↵erent assumed (field

galaxy) faint-end slopes in the calculating the AM relation. An important avenue going

forward will be to push these comparisons down to the ultra-faint regime, where strong

baryonic feedback e↵ects are expected to begin shutting down galaxy formation altogether.

2.2. Cusp, Cores, and Excess Mass

As discussed in Section 1, ⇤CDM simulations that include only dark matter predict that

dark matter halos should have density profiles that rise steeply at small radius ⇢(r) / r
�� ,

with � ' 0.8� 1.4 over the radii of interest for small galaxies (Navarro et al. 2010). This is
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Missing satellite problem

Figure 9

The Cusp-Core problem. The dashed line shows the naive ⇤CDM expectation (NFW, from
dark-matter-only simulations) for a typical rotation curve of a Vmax ⇡ 40 km s�1 galaxy. This
rotation curve rises quickly, reflecting a central density profile that rises as a cusp with ⇢ / 1/r.
The data points show the rotation curves of two example galaxies of this size from the LITTLE
THINGS survey (Oh et al. 2015)), which are more slowly rising and better fit by a density profile
with a constant density core (Burkert 1995, cyan line).

prediction.

2.3. Too-Big-To-Fail

As discussed above, a straightforward and natural solution to the missing satellites problem

within ⇤CDM is to assign the known Milky Way satellites to the largest dark matter

subhalos (where largest is in terms of either present-day mass or peak mass) and attribute

the lack of observed galaxies in in the remaining smaller subhalos to galaxy formation

physics. As pointed out by Boylan-Kolchin, Bullock & Kaplinghat (2011), this solution

makes a testable prediction: the inferred central masses of Milky Way satellites should be

consistent with the central masses of the most massive subhalos in ⇤CDM simulations of

Milky Way-mass halos. Their comparison of observed central masses to ⇤CDM predictions

from the Aquarius (Springel et al. 2008) and Via Lactea II (Diemand et al. 2008) simulations

revealed that the most massive ⇤CDM subhalos were systematically too centrally dense to

host the bright Milky Way satellites (Boylan-Kolchin, Bullock & Kaplinghat 2011, 2012).
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Figure 9

The Cusp-Core problem. The dashed line shows the naive ⇤CDM expectation (NFW, from
dark-matter-only simulations) for a typical rotation curve of a Vmax ⇡ 40 km s�1 galaxy. This
rotation curve rises quickly, reflecting a central density profile that rises as a cusp with ⇢ / 1/r.
The data points show the rotation curves of two example galaxies of this size from the LITTLE
THINGS survey (Oh et al. 2015)), which are more slowly rising and better fit by a density profile
with a constant density core (Burkert 1995, cyan line).
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within ⇤CDM is to assign the known Milky Way satellites to the largest dark matter

subhalos (where largest is in terms of either present-day mass or peak mass) and attribute
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Solving Monge-Ampère equation with Optimal Transport

Fg Fg

Optimal Transport OT
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Cosmological simulation of Monge-Ampère gravity
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Equations of motion in comoving coordinates

dx
da

=
p

ma2S(a)
dp
da

=
1

aS(a) [a2Fg +
mH2

0Ωm

2
x]&

Fg =
N−1

∑
j=0,i≠j

Gmimj(xj − xi)

a2( |xj − xi |
2 )3/2 Fg =

3H2
0Ωmm
2a2 (xi − gi)

S(a) = aH0 Ωma−3 + (1 − Ωm − ΩΛ)a−2 + ΩΛ

Cosmological simulation of Monge-Ampère gravity
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