# Nature of dark matter Fornax: cusp or core

### **Pierre Boldrini (IAP)**

#### PhD Supervisors: Roya Mohayaee, Joe Silk

### ICAP, IAP, June 2018





# Nature of dark matter

- Cold Dark Matter
- Warm Dark Matter
- Fuzzy Dark Matter (Hu et al. 2000, Hui et al. 2016)
- Self-Interacting Dark Matter (Spergel & Steinhardt 2000)

### Nature of dark matter: Constraints from astrophysics

- Large-scale constraints
- e.g. CMB,Lya

### Small-scale constraints

e.g.

-Number of satellite galaxies

-Dark matter density profiles of galaxies: cusp-core

### Nature of dark matter: Constraints from astrophysics

Large-scale constraints

e.g. CMB

### Small-scale constraints

e.g. Number of satellite galaxies, dark matter density profiles of galaxies: cusp or core

### Cusp or core ?



**ICAP June 2018** 

Fornax: the cusp-core problem

5

Nature of dark matter: cusp or core

Cusp

Core

Core

- Cold Dark Matter
- Warm Dark Matter (Colin et al. 2000; Bode et al. 2001)
- Fuzzy Dark Matter (Hu et al. 2000; Hui et al. 2017)

• Self-Interacting Dark Matter Core (Vogelsberger et al. 2012)

### Cusp or core: Observations of dark matter rich dwarf galaxies



### Cusp or core: Observations of dark matter rich dwarf galaxies



# Fornax dwarf galaxy



**ICAP June 2018** 

#### Cusp or core ?

- Kinematic data (Jeans modeling, simulations, ...)
- Globular cluster data (positions, masses)

Credit: ESO/Digitized Sky Survey 2

# Fornax dwarf galaxy



**ICAP June 2018** 

#### Cusp or core ?

- Kinematic data (Jeans modeling, simulations, ...)
- Globular cluster data (positions, masses)

Credit: ESO/Digitized Sky Survey 2

# Fornax dwarf galaxy



**ICAP June 2018** 

#### Cusp or core ?

- Kinematic data (Jeans modeling, simulations, ...)
- spatial distribution and masses of Fornax globular clusters

11

Credit: ESO/Digitized Sky Survey 2

#### Sinking of globular clusters: Dynamical friction

 $F_{dyn} \propto \frac{\rho(r)M_{GC}^2}{V_c^2}$ 



#### (Chandrasekhar 1943)

# Dynamical friction

 $F_{dyn} \propto \frac{\rho(r)M_{GC}^2}{V_c^2}$ 

#### The timing problem



(Chandrasekhar 1943)

# Dynamical friction





### **Cusp or Core ?**



(Chandrasekhar 1943)

### Timing problem: Cusp-core Previous works

ICAP June 2018

Previous works



### Two solutions to the timing problem

### Two solutions to the timing problem

Large Core

### Two solutions to the timing problem

#### Large Core



A steady-state solution

#### Cole et al. 2012

### Two solutions to the timing problem

Large Core

Weak Cusp



### Two solutions to the timing problem



# How to improve simulations?

• Globular cluster point mass

# How to improve simulations?

Globular cluster point mass



23

# How to improve simulations?

Globular cluster point mass



• No stellar component

# How to improve simulations ?

Globular cluster point mass



**Unrealistic model** 

• No stellar component

# How to improve simulations ?

Globular cluster point mass



No stellar component
Unrealistic model

### Dynamical friction & Tidal effects are not properly taken into account !

# Our work

# DM density profiles of Fornax



Time: 0.000E+00

**NBODYGEN (Sadoun et al. 2014)** 

Fornax: the cusp-core problem

Time: 0.000E+00  $N_{s} = 10^{5}$ 

Fornax: the cusp-core problem

Time: 0.000E+00  $N_{s} = 10^{4}$  $N_{s} = 10^{5}$ 

Fornax: the cusp-core problem

Time: 0.000E+00  $N_{s} = 10^{4}$  $N_{s} = 10^{5}$ 

 $V_c^2(r) = \frac{4\pi G}{r} \int_0^r \rho(u) u^2 du$ 

#### **ICAP June 2018**





# Live N-body simulations

Time: 0.00 Gyr



#### (Gadget Viewer)

ICAP June 2018

#### Live N-body simulations: Tidal forces

Time: 2.2 Gyr



#### (Gadget Viewer)

ICAP June 2018

# Free parameters for globular clusters: initial radius

Initial radial distance of globular clusters

• Initial globular cluster mass

#### Free parameters for globular clusters: initial radius

Initial radial distance of globular clusters



• Initial globular cluster mass

Free parameters for globular clusters: initial mass

| (Larsen et al. 2012) | Stellar mass                                | Metal-poor stars         |
|----------------------|---------------------------------------------|--------------------------|
| Fornax field         | <b>3.82 x107 M</b> ⊙                        | 44.9 x10 <sup>5</sup> M⊙ |
| 5 Globular clusters  | <b>9.57 x10</b> <sup>5</sup> M <sub>☉</sub> | 8.81 x10 <sup>5</sup> M⊙ |

Fraction

Free parameters for globular clusters: initial mass

| (Larsen et al. 2012) | Stellar mass                    | Metal-poor stars                |  |
|----------------------|---------------------------------|---------------------------------|--|
| Fornax field         | <b>3.82 x10<sup>7</sup> M</b> ⊙ | <b>44.9 x10<sup>5</sup> M</b> ⊙ |  |
| 5 Globular clusters  | <b>9.57 x10<sup>5</sup> M</b> ⊙ | 8.81 x10 <sup>5</sup> M⊙        |  |
| Fraction             | 2.5 %                           |                                 |  |

Free parameters for globular clusters: initial mass

| (Larsen et al. 2012) | Stellar mass                    | Metal-poor stars         |  |
|----------------------|---------------------------------|--------------------------|--|
| Fornax field         | <b>3.82 x10<sup>7</sup> M</b> ⊙ | 44.9 x10 <sup>5</sup> M⊙ |  |
| 5 Globular clusters  | <b>9.57 x10<sup>5</sup> M</b> ⊙ | 8.81 x10⁵ M⊙             |  |
| Fraction             | 2.5 %                           | 19.6 %                   |  |

Free parameters for globular clusters: initial mass

| (Larsen et al. 2012) | Stellar mass                 | Metal-poor stars         |  |
|----------------------|------------------------------|--------------------------|--|
| Fornax field         | $3.82 \times 10^7 M_{\odot}$ | 44.9 x10 <sup>5</sup> M⊙ |  |
| Globular cluster     | <b>9.57 x10⁵ M</b> ⊙         | 8.81 x10⁵ M⊙             |  |
| Fraction             | 2.5 %                        | 19.6 %                   |  |

#### **Globular clusters were initially more massive !**

### Summary



(Boldrini, Mohayaee & Silk 2018, in prep)

Fornax: the cusp-core problem

### Summary



**ICAP June 2018** 

(Boldrini, Mohayaee & Silk 2018, in prep)



ICAP June 2018 Fornax: the c

Fornax: the cusp-core problem

45





ICAP June 2018



### Implications of the nature of DM

**Our result** 

WDM (Strigari et al. 2006) r<sub>c</sub> < 0.282 kpc

r<sub>c</sub> < 85 pc for Fornax

FDM (Zhang et al. 2018)

**SIDM** (Zavala et al. 2013) r<sub>c</sub> ~3 kpc

r<sub>c</sub> > 500 pc for Fornax

### Implications of the nature of DM

**Our result** 

WDM (Strigari et al. 2006)

FDM (Zhang et al. 2018)

SIDM (Zavala et al. 2013)

CDM

r<sub>c</sub> < 85 pc for Fornax

r<sub>c</sub> > 500 pc for Fornax

Cusp +Gas heating (?) 100 < r<sub>c</sub> < 300 pc

ICAP June 2018

# Future works

Increasing simulation resolution (GPU)

## Future works

Increasing simulation resolution (GPU)

Testing Steep cusp or Tiny core

### Future works

Increasing simulation resolution (GPU)

• Testing Steep cusp or Tiny core

 Running simulations for all the 5 globular clusters

ICAP June 2018 Fornax: the cusp-core problem

53



# Thank you for your attention !

### Return of the Cusp



**ICAP June 2018** 

### Results



# DM density profiles of Fornax



# Globular cluster observations



| Object | Mass                 | $r_k$ | $R_p$ | Distance        |
|--------|----------------------|-------|-------|-----------------|
|        | $[10^5 \ M_{\odot}]$ | [pc]  | [kpc] | [kpc]           |
| dSph   | 1420                 | 668   | -     | $147 \pm 4$     |
| GC1    | $0.42\pm0.10$        | 10.03 | 1.6   | $147.2 \pm 4.1$ |
| GC2    | $1.54\pm0.28$        | 5.81  | 1.05  | $143.2 \pm 3.3$ |
| GC3    | $4.98 \pm 0.84$      | 3.54  | 0.43  | $141.9 \pm 3.9$ |
| GC4    | $0.76\pm0.15$        | 2.41  | 0.24  | $140.6 \pm 3.2$ |
| GC5    | $1.86 \pm 0.24$      | 4.18  | 1.43  | $144.5 \pm 3.3$ |

# Globular cluster observations



Fornax: the cusp-core problem

# Globular cluster observations



Fornax: the cusp-core problem

Cold Dark Matter



ICAP June 2018

# Live N-body simulations

• Initial globular cluster mass

| Low mass                          | Medium mass                       | High mass                         |
|-----------------------------------|-----------------------------------|-----------------------------------|
| $M_i = 1.71 \ x 10^5 \ M_{\odot}$ | $M_i = 3.47 \ x 10^5 \ M_{\odot}$ | $M_i = 8.67 \ x 10^5 \ M_{\odot}$ |

Initial globular radius

**ICAP June 2018** 

 $r_i = 1.6 \ kpc$   $r_i = 2 \ kpc$ 

- 0.24 < D<sub>p</sub> < 1.6 kpc</li>
- R<sub>t</sub> ~ 2 kpc
- (Walker & Penarrubia
- 2011)

# Profiles



ICAP June 2018

Fornax: the cusp-core problem

68