Primordial black holes as dark matter in galaxies

Pierre BOLDRINI

Roya MOHAYAEE Joe SILK

Institut d'Astrophysique de Paris

École Doctorale d'Astronomie & Astrophysique d'île-de-France

cnes

Black holes: Types

- Stellar black hole (**SBH**)
- Intermediate-mass black hole (IMBH)
- Supermassive black hole (SMBH)
- Primordial black hole (**PBH**)

Black holes: Origins

- Stellar black hole (SBH)
 Galaxy fortmation era
- Intermediate-mass black hole (IMBH)
 Galaxy fortmation era
- Supermassive black hole (SMBH)
 Galaxy fortmation era
- Primordial black hole (PBH)
 Early Universe

Black holes:

Observed or theoretically predicted?

- Stellar black hole (**SBH**)
- Intermediate-mass black hole (IMBH)
- Supermassive black hole (SMBH)
- Primordial black hole (**PBH**)

Black holes:

Observed or theoretically predicted?

- Stellar black hole (SBH)
 Observed
- Intermediate-mass black hole (IMBH)
- Supermassive black hole (SMBH)
 Observed
- Primordial black hole (**PBH**)

Black holes:

Observed or theoretically predicted?

- Stellar black hole (SBH)
 Observed
- Intermediate-mass black hole (IMBH)
 Theoretically predicted
- Supermassive black hole (SMBH)
 Observed
- Primordial black hole (PBH)
 Theoretically predicted

Black holes: Mass range

- Stellar black hole (**SBH**)
- Intermediate-mass black hole (IMBH)
- Supermassive black hole (SMBH)
- Primordial black hole (**PBH**)

Black holes: Mass range

- Stellar black hole (SBH) 10 30 M_{\odot}
- Intermediate-mass black hole (IMBH) $10^3 10^5 M_{\odot}$
- Supermassive black hole (SMBH) 10^6 $10^9\ M_{\odot}$
- Primordial black hole (PBH)
 ?-? M₀

Primordial black holes: Formation

Early Universe epochs:

Primordial black hole (PBH):
?-? M₀

$$M_{PBH} \sim 5 \times 10^{-19} \left(\frac{t}{10^{-23} s} \right) M_{\odot}$$

 Primordial black hole (PBH): 10-33 - 10⁵ M_☉

9

Primordial black holes: Evaporation

 Primordial black hole (PBH): 10-33 - 105 M_☉

$$T_{evap}^{1/3} = 1.5 \times 10^{18} \frac{M_{PBH}}{M_{\odot}} Gyr$$

$$T_{evap} \ge 14 Gyr$$

$$M_{PBH} \geq 10^{-18} M_{\odot}$$

 $\overline{}$

Hawking 1974

 Primordial black hole (PBH): 10⁻¹⁸ - 10⁵ M_☉

PBH

Black holes: Mass range

- Stellar black hole (SBH):
 10 30 M_☉
- Intermediate-mass black hole (IMBH): 10³ - 10⁵ M_☉
- Supermassive black hole (SMBH): 10^6 $10^9\ M_{\odot}$
- Primordial black hole (PBH): 10⁻¹⁸ - 10⁵ M_☉

Nature of cold dark matter

Cold dark matter candidates:

- Microscopic → WIMPs such as Neutralinos
- Macroscopic → MACHOs such as PBHs

Nature of cold dark matter

Cold dark matter candidates:

- Microscopic → WIMPs such as Axions
- Macroscopic → MACHOs such as PBHs

Nature of cold dark matter

Cold dark matter candidates:

- Microscopic → WIMPs such as Axions
- Macroscopic → MACHOs such as PBHs

DM being composed of PBHs

f= **Ω_{PBH}/Ω_{DM}**

Primordial black holes: Mass windows

Two classes of constraints:

- relatively robust -
- less firm - -

Primordial black holes: Mass windows

Two classes of constraints:

- relatively robust —
- less firm - -

3 mass windows!

Primordial black holes: Mass windows

Two classes of constraints:

- relatively robust —
- less firm - -

3 mass windows!

 Primordial black hole (**PBH**): **25 - 100 M**_☉

LIGO black holes: Detections

- Stellar black hole (SBH): 10 30 M_{\odot}
- Primordial black hole (PBH): 25 100 M_{\odot}

credits: LIGO caltech

BH Name

BH Name

Observed SBHs < 20 M_{\odot}

BH Name

GW170814 GW170608

Theoretical models $< 30 M_{\odot}$

С 5 10 15 20 25 30 35 40 m_{вн} [M_☉]

Mapelli 2018

GR0 J 0422+32

LIGO black holes could be primordial!

Primordial black holes as dark matter: Hypothesis

DM being composed of PBHs

Mass window ~ 25-100 M_{\odot}

LIGO detection ~ 10-50 M_{\odot}

Primordial black holes as dark matter: Hypothesis

DM being composed of PBHs

Mass window ~ 25-100 M_{\odot}

LIGO detection ~ 10-50 M_{\odot}

What happened in galaxies?

Dark matter theories

- Cold Dark Matter
- Warm Dark Matter
- Fuzzy (Ultralight) Dark Matter (Hu et al. 2000, Hui et al. 2016)
- Self-Interacting Dark Matter (Spergel & Steinhardt 2000)

- Large-scale constraints
 e.g. CMB
- Small-scale constraints
 e.g. Number of satellite galaxies,
 Dark matter density
 profile

- Large-scale constraints
 e.g. CMB
- Small-scale constraints
 e.g. Number of satellite galaxies,
 Dark matter density profile

- Large-scale constraints
 e.g. CMB
- Small-scale constraints
 e.g. Number of satellite galaxies,
 Dark matter density profile

- Large-scale constraints
 e.g. CMB
- Small-scale constraints
 e.g. Number of satellite galaxies,
 Dark matter density profile

1011

1010

10⁹

108

107

Cuspy halo

Cored halo

10²

- Large-scale constraints e.g. CMB
- $ho(r) ~[{
 m M}_{\odot} \, kpc^{-3}]$ 10⁶ Small-scale rc 10⁵ constraints 10^{4} e.g. Number of 10³ satellite galaxies, 10^{2} 10-2 10-1 10¹ 100 10-3 **Dark matter density** $r \,[\mathrm{kpc}]$ **Observations** profile **ACDM Cosmological** simulations

matter (Boldrini et al. in prep.)

PBHs as DM galaxies

Galaxy halo composed of PBH and DM particles

fm=MPBH/MDM

• 25-100 M_{\odot} PBHs

Cusp-to-core transition

Cusp-to-core transition

Simulations

Nbody:

- Gravitational Vlasov Poisson
- Spherical
- Collisionless

$f_m = M_{PBH} / M_{DM}$

• 25-100 M_{\odot} PBHs

Simulations

Nbody:

- Gravitational Vlasov Poisson
- Spherical
- Collisionless

Gothic:

- Tree code
- Softened
- GPU

$f_m = M_{PBH} / M_{DM}$

● 25-100 M_☉ PBHs

 $1 M_{\odot} DM$

PBH & DM halo density profiles

$f_m = M_{PBH} / M_{DM}$

Navarro et al. 1996

PBH & DM halo density profiles

- $r_s^{PBH} = r_s^{DM}$
- $r_s^{PBH} = r_s^{DM} / 2$

f_m=**М**рвн/М_{DM}

Navarro et al. 1996

PBH-DM halo relaxation time

Relaxation time approximation:

$f_m = M_{PBH} / M_{DM}$

PBH-DM halo relaxation time

Relaxation time approximation:

Dwarf galaxies 107 - 109 M_{\odot} :

 $10^8 \text{ M}_{\odot} \text{ halo} \sim 9 \text{ T}_{relax}(10^7 \text{ M}_{\odot})$

 $10^9 \text{ M}_{\odot} \text{ halo} \sim 78 \text{ T}_{\text{relax}} (10^7 \text{ M}_{\odot})$

fm=**Mpbh**/Mdm

Navarro et al. 1996

PBH-DM halo relaxation time

Relaxation time approximation:

Dwarf galaxies 107 - 109 M_{\odot} :

 $10^8 \text{ M}_{\odot} \text{ halo} \sim 9 \text{ T}_{\text{relax}} (10^7 \text{ M}_{\odot})$

 $10^9 \,\text{M}_{\odot}\,\text{halo} \sim 78 \,\text{T}_{\text{relax}}(10^7 \,\text{M}_{\odot})$

fm=**Mpbh**/Mdm

PBH-DM halo mass : 10⁷ M_{\odot}

Simulation

Parameters:

- Mass fraction $f_m = [0.5, 0.1, 0.01]$
- PBH mass m_{PBH} = [25, 50, 100] M_{\odot} & m_{DM} = 1 M_{\odot}
- Halo mass $M_h = 10^7 M_{\odot}$
- $r_s^{PBH} = [1, 0.5] r_s^{DM}$
- $T_s = 11 \text{ Gyr}(z=2)$

Results

Density profiles evolution

Density profiles evolution

Multiples cores!

Core fits

<i>f</i> m	$r_{\rm s}^{\rm PBH}/r_{\rm s}^{\rm DM}$	$m_{ m PBH}$	CCT	r _c	χ^2/ν
		[M _☉]		[pc]	
0.5	1	25	0	17.6	1.01
0.5	1	50	0	31.28	1.02
0.5	1	100	0	34.32	1.0
0.1	1	25	0	10.01	1.01
0.1	1	50	0	14.48	1.0
0.1	1	100	0	19.33	1.03
0.01	1	25	×	-	-
0.01	1	50	×	-	-
0.01	1	100	×	-	-
0.5	1/2	25	0	19.7	1.05
0.5	1/2	50	0	22.48	0.99
0.5	1/2	100	0	34.63	1.06
0.1	1/2	25	0	15.1	1.02
0.1	1/2	50	0	21.55	1.02
0.1	1/2	100	0	32.23	1.01
0.01	1/2	25	×	-	-
0.01	1/2	50	×	-	-
0.01	1/2	100	0	11.73	0.99

Time ratio

Relaxation time:

$$T_{relax} = \frac{v^3}{8\pi (n_d m_d^2 + n_p m_p^2) G^2 \ln\left(\frac{r_{200}}{\varepsilon}\right)}$$

Boldrini et al. in prep.

Binney & Tremaine 2008

Time ratio

Relaxation time:

$$T_{relax} = \frac{v3}{8\pi (n_d m_d^2 + n_p m_p^2)G^2 \ln\left(\frac{r_{200}}{\varepsilon}\right)}$$

 $\frac{T_c(r_c)}{T_{relax}(r_c)} \sim O(100)$

$$(J_{1})^{10^{2}} \\ (J_{1})^{10^{2}} \\ (J_{1})^{10^{2}} \\ (J_{1})^{10^{1}} \\ (J_{1})^{10$$

Higher mass and higher density region for PBH generated larger core size

At least 1% of DM can be PBHs depending on initial PBH distribution

Core formation: Transition time

The transition takes between 1 and 8 Gyr to occur

Core formation: Transition time

The transition takes between 1 and 8 Gyr to occur

Prospects

- Hierarchical Galaxy Formation
 - Low mass galaxy mergers
 Merger of cored halos yields a cored halo (Boylan-Kolchin & Ma 2004)
 - Massive cored galaxies

Prospects

- Hierarchical Galaxy Formation
 - Low mass galaxy mergers
 Merger of cored halos yields a cored halo
 - (Boylan-Kolchin & Ma 2004)
 - Massive cored galaxies
 - Observations
 - Multiple cores
 - What will observations be? (Boldrini et al. in prep)

attention !

Questions?

