Pierre BOLDRINI Institut d'Astrophysique de Paris (IAP), Sorbonne University

Roya MOHAYAEE Joe SILK

JHU, October 9th

- Fornax globular cluster distributions: implications for the cusp-core problem, Boldrini et al. 2019 https://arxiv.org/abs/1903.00354
- Embedding globular clusters in dark matter minihalos solves the cusp-core and timing problems in the Fornax dwarf galaxy
 Boldrini et al. 2019 https://arxiv.org/abs/1909.07404

 Primordial black holes as dark matter: cusp-to-core transition in low-mass dwarf galaxies
 Deldrini et al. 2010, https://enviro.org/ebe/1000.07205

Boldrini et al. 2019 https://arxiv.org/abs/1909.07395

• Diversity of transient cores of dwarf galaxies in ΛCDM Boldrini et al. in prep.

" Partially supported by the H2020-MSCA-RISE-2015 Grant No. StronGrHEP-690904"

Pierre BOLDRINI

Institut d'Astrophysique de Paris (IAP), Sorbonne University

Roya MOHAYAEE Joe SILK

- Fornax globular cluster distributions: implications for the cusp-core problem, Boldrini et al. 2019 https://arxiv.org/abs/1903.00354
- Embedding globular clusters in dark matter minihalos solves the cusp-core and timing problems in the Fornax dwarf galaxy

Boldrini et al. 2019 https://arxiv.org/abs/1909.07404

 Primordial black holes as dark matter: cusp-to-core transition in low-mass dwarf galaxies

Boldrini et al. 2019 https://arxiv.org/abs/1909.07395

 Diversity of transient cores of dwarf galaxies in ΛCDM Boldrini et al. in prep.

GCs (Fornax)

Pierre BOLDRINI

Institut d'Astrophysique de Paris (IAP), Sorbonne University

Roya MOHAYAEE Joe SILK

- Fornax globular cluster distributions: implications for the cusp-core problem, Boldrini et al. 2019 https://arxiv.org/abs/1903.00354
- Embedding globular clusters in dark matter minihalos solves the cusp-core and timing problems in the Fornax dwarf galaxy

Boldrini et al. 2019 https://arxiv.org/abs/1909.07404

 Primordial black holes as dark matter: cusp-to-core transition in low-mass dwarf galaxies

Boldrini et al. 2019 https://arxiv.org/abs/1909.07395

 Diversity of transient cores of dwarf galaxies in ΛCDM Boldrini et al. in prep.

GCs (Fornax)

PBHs

Pierre BOLDRINI

Institut d'Astrophysique de Paris (IAP), Sorbonne University

Roya MOHAYAEE Joe SILK

• Fornax globular cluster distributions: implications for the cusp-core problem, Boldrini et al. 2019 https://arxiv.org/abs/1903.00354

Embedding globular clusters in dark matter minihalos solves the cusp-core and timing problems in the Fornax dwarf galaxy Boldrini et al. 2019 https://arxiv.org/abs/1909.07404

 Primordial black holes as dark matter: cusp-to-core transition in low-mass dwarf galaxies

Boldrini et al. 2019 https://arxiv.org/abs/1909.07395

 Diversity of transient cores of dwarf galaxies in ΛCDM Boldrini et al. in prep.

Today!!

GCs (Fornax)

PBHs

Astrophysical constraints:

- Large-scale constraints
 e.g. CMB
- Small-scale constraints
 e.g. Number of satellite galaxies,
 Dark matter density
 profile

Astrophysical constraints:

- Large-scale constraints
 e.g. CMB
- Small-scale constraints
 e.g. Number of satellite galaxies,
 Dark matter density profile

Astrophysical constraints:

- Large-scale constraints
 e.g. CMB
- Small-scale constraints
 e.g. Number of satellite galaxies,
 Dark matter density profile

(Adams et al. 2014 and references therein)

Astrophysical constraints:

- Large-scale constraints
 e.g. CMB
- Small-scale constraints
 e.g. Number of satellite galaxies,
 Dark matter density profile

Nature of dark matter: Observations of dark matter rich dwarf galaxies

Credit: ESA/GAIA DR2

Nature of dark matter: Observations of dark matter rich dwarf galaxies

Credit: ESA/GAIA DR2

• DM core

Credit: ESO/Digitized Sky Survey 2

• DM core

Cusp-core problem

Credit: ESO/Digitized Sky Survey 2

Fornax dwarf galaxy

• DM core

Cusp-core problem

 5-6 observed globular clusters (>10 Gyr)

Credit: ESO/Digitized Sky Survey 2

Fornax dwarf galaxy

• DM core

Cusp-core problem

 5-6 observed globular clusters (>10 Gyr)

Fornax timing problem

Credit: ESO/Digitized Sky Survey 2

 Gravitationally bound gas clouds in the early Universe and formed inside their present-day host galaxies (Peebles et al. 2018, Kravtsov et al. 2005, Kruijssen 2015)

- Gravitationally bound gas clouds in the early Universe and formed inside their present-day host galaxies (Peebles et al. 2018, Kravtsov et al. 2005, Kruijssen 2015)
- Formed around the time of reionization in dark matter minihalos that later merge to become a part of the present-day host galaxy (Peebles 1984, Bromm et al. 2002, Mashchenko et al. 2005, Ricotti et al. 2016)

- Gravitationally bound gas clouds in the early Universe and formed inside their present-day host galaxies (Peebles et al. 2018, Kravtsov et al. 2005, Kruijssen 2015)
- Formed around the tie of reionization in dark matter minihalos that later merge to become a part of the present-day host galaxy (Peebles 1984, Bromm et al. 2002, Mashchenko et al. 2005, Ricotti et al. 2016)

- Gravitationally bound gas clouds in the early Universe and formed inside their present-day host galaxies (Peebles et al. 1968, Kravtsov et al. 2005, Kruijssen 2015)
- Formed around the time of reionization in dark matter minihalos that later merge to become a part of the present-day host galaxy (Peebles 1984, Bromm et al. 2002, Mashchenko et al. 2005, Ricotti et al. 2016)

Not been **detected**, but:

- Maybe observational signatures (Sollima et al. 2016, Olszewski et al. 2009; Kuzma et al. 2016; Peñarrubia et al. 2017)
- Lost a large fraction of their DM halo (Bromm et al. 2002)

Fully GPU N-body simulations

Dynamical friction & Tidal stripping

Fully GPU N-body simulations

Dynamical friction & Tidal stripping

Self-gravitating system composed of DM particles

Fully GPU N-body simulations

Initial conditions

Fornax

- $10^9 M_{\odot}$ halo + NFW profile
- $\sim 10^7 M_{\odot}$ stars + Plummer profile

Initial conditions

Fornax

- $10^9 M_{\odot}$ halo + NFW profile
- ~ $10^7 M_{\odot}$ stars + Plummer profile

GCs + DM minihalo

- $10^6 M_{\odot}$ stars + King profile
- $10^7 M_{\odot} DM$ component + NFW profile

Initial conditions

Fornax

- $10^9 M_{\odot}$ halo + NFW profile
- ~ $10^7 M_{\odot}$ stars + Plummer profile

GCs + DM minihalo

• 10⁶ M_☉ stars + King profile

• $10^7 M_{\odot} DM$ component + NFW profile

Two scenarios

-	Redshift	Object	r	v_x	vy	v_z	V
			[kpc]	[km/s]	[km/s]	[km/s]	[km/s]
	<i>z</i> = 3	E_1	2.11	20.22	1.6	8.1	21.8
GCs accreted		E_2	2.74	16.42	3.28	15.75	22.99
10-12 Gvr ago		E_3	1.1	38.62	15.44	18.94	39.97
hy Eornay		E_4	1.76	13.46	21.46	26.87	36.94
Бутоппах		E_5	1.14	32.81	6.93	7.89	34.37
	z = 0.36	<i>O</i> ₁	5.32	13.9	1.31	14.38	20.04
GCs accreted		O_2	2.07	9.43	19.05	21.42	30.18
4 Gyr ago		<i>O</i> ₃	1.95	37.49	4.55	6.21	38.28
hy Fornay		O_4	2.19	3.51	3.87	34.0	34.39
Бутоппал		O_5	2.05	19.62	29.8	15.1	38.75

Two scenarios

-	Redshift	Object	r	v_x	vy	v_z	v
			[kpc]	[km/s]	[km/s]	[km/s]	[km/s]
	z = 3	E_1	2.11	20.22	1.6	8.1	21.8
GCs accreted		E_2	2.74	16.42	3.28	15.75	22.99
10-12 Gvr ago		E_3	1.1	38.62	15.44	18.94	39.97
hy Eornay		E_4	1.76	13.46	21.46	26.87	36.94
by i Ulliax		E_5	1.14	32.81	6.93	7.89	34.37
	z = 0.36	<i>O</i> ₁	5.32	13.9	1.31	14.38	20.04
GCs accreted		O_2	2.07	9.43	19.05	21.42	30.18
4 Gyr ago		<i>O</i> ₃	1.95	37.49	4.55	6.21	38.28
hy Fornay		O_4	2.19	3.51	3.87	34.0	34.39
бутоппах		O_5	2.05	19.62	29.8	15.1	38.75

Most prevalent positions and velocities from Illustris TNG-100 cosmological simulations

GCs accreted 10-12 Gyr ago by Fornax

GCs accreted 10-12 Gyr ago by Fornax

GCs accreted 10-12 Gyr ago by Fornax

GCs accreted 10-12 Gyr ago by Fornax

GCs accreted 10-12 Gyr ago by Fornax

- Fit model for subhalo+host
- $\rho(r) = \rho_{\rm c} W(r) + [1-W(r)]\rho_{\rm NFW}(r)$

$$2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$$

GCs accreted 10-12 Gyr ago by Fornax

Fit model for subhalo+host

$$\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$$

$$2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$$

Fit model for subhalo+host

$$\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$$

$$2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$$

Fit model for subhalo+host

$$\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$$

$$2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$$

No cusp-core problem in ΛCDM

GCs accreted 10-12 Gyr ago by Fornax

GCs accreted 4 Gyr ago by Fornax

GCs accreted 4 Gyr ago by Fornax

GCs accreted 4 Gyr ago by Fornax

			1			
Object	$M_{\rm obs}^{(a)}$	$D_{ m obs}^{(b)}$		r _{per}	r _{apo}	М
	$[10^5 M_{\odot}]$	[kpc]		[kpc]	[kpc]	$[10^5 M_{\odot}]$
GC1	0.42 ± 0.10	1.6	<i>O</i> ₃	1.01	6.17	9.98 ± 0.1
GC2	1.54 ± 0.28	1.05	<i>O</i> ₅	0.66	3.97	9.83 ± 0.15
GC3	4.98 ± 0.84	0.43	O ₁	0.36	3.12	8.36 ± 1.34
GC4	0.76 ± 0.15	0.24	<i>O</i> ₂	0.016	1.03	7.1 ± 1.74
GC5	1.86 ± 0.24	1.43	<i>O</i> ₄	0.82	2.79	9.57 ± 0.37

Observations

Simulations

GCs accreted 4 Gyr ago by Fornax

Object	$M_{\rm obs}^{(a)}$	$D_{ m obs}^{(b)}$		r _{per}	<i>r</i> _{apo}	М
	$[10^5 M_{\odot}]$	[kpc]		[kpc]	[kpc]	$[10^5 M_{\odot}]$
GC1	0.42 ± 0.10	1.6	<i>O</i> ₃	1.01	6.17	9.98 ± 0.1
GC2	1.54 ± 0.28	1.05	<i>O</i> ₅	0.66	3.97	9.83 ± 0.15
GC3	4.98 ± 0.84	0.43	O ₁	0.36	3.12	8.36 ± 1.34
GC4	0.76 ± 0.15	0.24	<i>O</i> ₂	0.016	1.03	7.1 ± 1.74
GC5	1.86 ± 0.24	1.43	<i>O</i> ₄	0.82	2.79	9.57 ± 0.37

Observations

Simulations

No timing problem

Recent accretion scenario: cusp-core problem

Fit model for subhalo+host

$$\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$$

$$2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$$

Recent accretion scenario: cusp-core problem

Fit model for subhalo+host

$$\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$$

$$2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$$

Implications

DM minihalo as a new component of GCs

Implications

DM minihalo as a new component of GCs

- create DM cores in ΛCDM
- DM cores of different sizes

Implications

DM minihalo as a new component of GCs

- · create DM cores in ΛCDM
- DM cores of different sizes

Diversity problem

Diversity problem

Diversity problem

CDM + baryons?

(Oman et al. 2015)

CDM + baryons?

EAGLE and LOCAL GROUPS hydrodynamical simulations

(Schaye et al. 2015, Sawala et al. 2014)

(Oman et al. 2015)

New solution?

Sinking of subhalos

Sinking of subhalos

Heating the halo central region

Sinking of subhalos

Heating the halo central region dynamical friction

Via

Sinking of subhalos

Heating the halo central region dynamical

Via

friction

Fully GPU N-body simulations

Subhalo initial conditions

Average number of subhalo accretion per Gyr for 10 < M_{host} / M_{sub} < 100 (Neinstein et Dekel 2008)

Halo mass $[M_{\odot}]$	$N_{\rm m}(z=3)$
109	~3-4
10^{10}	~4-5
10^{12}	~6-7
10 ¹³	~8-9
	Halo mass $[M_{\odot}]$ 10^9 10^{10} 10^{12} 10^{13}

Average velocity of subhalos during the infall (Wetzel 2011, Jiang et al. 2015)

radial orbit approach

- $10^9 M_{\odot}$ host halo (NFW at z=3)
- one 2 × 10⁷ M_☉ subhalo (NFW at z=3)

- $10^9 M_{\odot}$ host halo (NFW at z=3)
- one 2 × 10⁷ M_☉ subhalo (NFW at z=3)
- Fit model for subhalo+host

 $\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$

$$2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$$

- $10^9 M_{\odot}$ host halo (NFW at z=3)
- one 2 × 10⁷ M_☉ subhalo (NFW at z=3)
- Fit model for subhalo+host

 $\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$

 $2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$

- $10^9 M_{\odot}$ host halo (z=3)
- one 107 M_{\odot} subhalo (z=3)
- Fit model for subhalo+host

 $\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$

$$2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$$

- 10⁹ M $_{\odot}$ host halo (z=3)
- one 10⁷ M_{\odot} subhalo (z=3)
- Fit model for subhalo+host

 $\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$

$$2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$$

- 10⁹ M $_{\odot}$ host halo (z=3)
- one 107 M_{\odot} subhalo (z=3)
- Fit model for subhalo+host

$$\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$$

 $2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{c}}{2\delta}\right)$ No
cusp-core
problem in ACDM

Subhalo heats the halo centre

(Boldrini et al. in prep)

Inner density of dSph galaxies

Fully cuspy $(0) < n \leq (1)$ **Fully core**

CoreNFW model

(Read et al. 2016)

(Boldrini et al. in prep)

Diversity problem?

(Oman et al. 2015)

Diversity problem?

(Boldrini et al. in prep)

(Oman et al. 2015)

Cosmological simulations

- Why cosmological simulations do not see this transition?
- Not sufficient resolution for host halo M < 10^{12} M $_{\odot}$

•

Cosmological simulations

- Why cosmological simulations do not see this transition?
- Not sufficient resolution for $M < 10^{12} M_{\odot}$

Cosmological simulations

Why cosmological simulations do not see this transition?

Not sufficient resolution for M < $10^{12} M_{\odot}$

(Navarro et al. 2010)

Cores prevail

	Scenario	$T_{\rm core}/T_{\rm sim}$	$T_{\rm cusp}/T_{\rm sim}$
	HH + SH_{v1}	0.96	0.04
	$HH + SH_{v2}$	0.81	0.19
Different initial velocity	HH + SH_{v3}	0.73	0.27
	$HH + SH_{v4}$	0.35	0.65
	HH + SH_{r2}	0.96	0.04
Different initial radii	HH + SH_{r3}	0.96	0.04
Different initial masses	HH + SH_{m1}	0.01	0.99
Different miliar masses	$HH + SH_{m2}$	0.96	0.04
Different initial number	$HH + SH_{v1} + SH_{r2}$	0.95	0.05
	$HH + SH_{v1} + SH_{r2} + SH_{r3}$	0.96	0.04
ot subhaios			

Cores prevail

	Scenario	$T_{\rm core}/T_{\rm sim}$	$T_{\rm cusp}/T_{\rm sim}$
	HH + SH_{v1}	0.96	0.04
	$HH + SH_{v2}$	0.81	0.19
Different initial velocity	$HH + SH_{v3}$	0.73	0.27
	HH + SH_{v4}	0.35	0.65
	HH + SH _{$r2$}	0.96	0.04
Different initial radii	HH + SH_{r3}	0.96	0.04
Different initial masses	HH + SH_{m1}	0.01	0.99
Different initial masses	$HH + SH_{m2}$	0.96	0.04
Different initial number	$HH + SH_{v1} + SH_{r2}$	0.95	0.05
of oubboloo	$\mathrm{HH} + \mathrm{SH}_{v1} + \mathrm{SH}_{r2} + \mathrm{SH}_{r3}$	0.96	0.04
OI SUDITAIOS			

Cores prevail!
Inner density of dSph galaxies

CoreNFW model

(Read et al. 2016)

(Boldrini et al. in prep)

Diversity problem?

(Boldrini et al. in prep)

(Oman et al. 2015)

Transient core diversity

CoreNFW model

(Read et al. 2016)

(Boldrini et al. in prep)

Transient core diversity

CoreNFW model

(Read et al. 2016)

Diversity of transient cores in ΛCDM

(Boldrini et al. in prep)

Isolated system

Softening convergence

Fitted DM profiles

Involving baryons

(H/cc)

Halo centre heated

Nature of dark matter

Scenarios

Transient core diversity

CoreNFW model (Read et al. 2016)

$$\rho_{\rm cNFW} = f^n \rho_{\rm NFW} + \frac{n f^{n-1} (1 - f^2)}{4\pi r^2 r_{\rm c}} M_{\rm NFW}$$

$$f^{n} = \left[\tanh\left(\frac{r}{r_{\rm c}}\right) \right]^{n}$$

Fully cuspy
$$0 < n \le 1$$
 Fully core

(Boldrini et al. in prep)

Host halo + subhalo scenario

- $10^9 M_{\odot}$ host halo (NFW at z=3)
- one 2 × 10⁷ M_☉ subhalo (NFW at z=3)
- Fit model for subhalo+host

$$\rho(r) = \rho_{\rm c} W(r) + [1 - W(r)]\rho_{\rm NFW}(r)$$

$$2W(r) = 1 - \operatorname{erf}\left(\frac{r - r_{\rm c}}{2\delta}\right)$$

- $r_c > 20-30 \text{ pc} \longrightarrow \cdot \text{ CCT with } r_c$
- $r_c < 20-30 \text{ pc} \longrightarrow \cdot \text{No CCT} (r_c = 0)$

Solutions?

Solutions?

Baryons are halfway

Cusp-core problem

Diversity problem

Baryons

CDN +

Baryons are halfway

lature of

Cusp-core problem

Diversity problem

Baryons

ACDN WWW

Nature of dark matter

r [kpc]

Nature of dark matter

Alternative theories?

Cusp-core problem

WDM FDM SIDM PBHs? Diversity problem

Involving baryons

Fornax

- Kinematic data (Jeans modeling, simulations, ...)
- Globular cluster data (positions, masses)

Credit: ESO/Digitized Sky Survey 2

Fornax: cusp or core?

Cusp or core?

• Kinematic data (Jeans modeling, simulations, ...)

 Globular cluster data (positions, masses)

Credit: ESO/Digitized Sky Survey 2