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Cosmological
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(Navarro et al. 1996, 1997)

(Adams et al. 2014 and 
references therein)
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Cusp-core problem

• DM core

Fornax timing problem

Fornax dwarf galaxy
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Formation of globular clusters:
2 scenarios

• Gravitationally bound gas clouds in the early Universe 
and formed inside their present-day host galaxies 
(Peebles et al. 1968, Kravtsov et al. 2005, Kruijssen 2015) 

• Formed around the time of reionization in dark matter 
minihalos that later merge to become a part of the 
present-day host galaxy (Peebles 1984, Bromm et al. 2002, 
Mashchenko et al. 2005, Ricotti et al. 2016) 

Not been detected, but: 
• Maybe observational signatures (Sollima et al. 2016, 

Olszewski et al. 2009; Kuzma et al. 2016; Peñarrubia et al. 2017) 
• Lost a large fraction of their DM halo (Bromm et al. 2002)
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Fully GPU N-body simulations

Fully GPU 
collisionless
N-body
code,

GOTHIC

Dynamical friction
& 

Tidal stripping

(Miki & Umemura 2017)

Self-gravitating system
composed of 
DM particles

Modelling
Fornax ~ 107 particles 

Minihalo+GCs ~ 105 particles
Resolution

~ 20 pc

Simulation time
12 & 4 Gyr
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GCs + DM minihalo

• 109 M⊙ halo + NFW profile 

• ~ 107 M⊙ stars + Plummer profile

• 106 M⊙ stars + King profile 

• 107 M⊙ DM component + NFW profile

Mmh/M*=20
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Two scenarios

GCs accreted 
10-12 Gyr ago 

by Fornax

GCs accreted 
4 Gyr ago 
by Fornax

Most prevalent positions and velocities 
from Illustris TNG-100 cosmological simulations

(Boldrini et al. 2019)
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CDM + baryons?

(Oman et al. 2015)

EAGLE
and

LOCAL
GROUPS 

hydrodynamical
simulations 

(Schaye et al. 2015,
Sawala et al. 2014)

CDM
+

Baryons
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transition
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Fully GPU 
collisionless
N-body
code,

GOTHIC

Modelling
Host halo ~ 107 particles 

Subhalos ~ 105 particles

Dynamical friction
& 

Tidal stripping

(Miki & Umemura 2017)

Self-gravitating system
composed of 
DM particles

Fully GPU N-body simulations

Resolution
~ 20 - 30 pc

Simulation time
12 Gyr



Subhalo initial conditions 

• Average number of subhalo accretion per Gyr                                                        
for 10 < Mhost / Msub < 100                                                          
(Neinstein et Dekel 2008)

• Average velocity of subhalos during the infall                                                                        
(Wetzel 2011, Jiang et al. 2015)

radial orbit approach
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• 109 M⊙ host halo (z=3)

• one 107 M⊙ subhalo (z=3)

2

• Fit model for subhalo+host

No 
cusp-core 

problem in ΛCDM  

Host halo + subhalo scenario

Not permanent,
but transient



Subhalo heats the halo centre

(Boldrini et al. in prep)



Inner density of dSph galaxies

(Boldrini et al. in prep)

(Read et al. 2019)

CoreNFW 
model

(Read et al. 2016)

Fully cuspy Fully core
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(Oman et al. 2015)



Cosmological simulations

• Not sufficient resolution 
for host halo M < 1012 M⊙ 

Why cosmological simulations  
do not see this transition?



Cosmological simulations

• Not sufficient resolution 
for M < 1012 M⊙ 

(Navarro et al. 2010)

Why cosmological simulations  
do not see this transition?



Cosmological simulations

• Not sufficient resolution 
for M < 1012 M⊙ 

(Navarro et al. 2010)

Why cosmological simulations  
do not see this transition?

(Boldrini et al. in prep)



Cores prevail

(Boldrini et al. in prep)

Different initial velocity

Different initial radii

Different initial masses

Different initial number 
of subhalos



Cores prevail

(Boldrini et al. in prep)

Different initial velocity

Different initial radii

Different initial masses

Different initial number 
of subhalos

Cores prevail!
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Transient core diversity

(Boldrini et al. in prep)

Fully cuspy Fully core

Diversity of transient cores
in ΛCDM  

CoreNFW 
model

(Read et al. 2016)
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Softening convergence

subhalo
ΛCDM



Fitted DM profiles

subhalo
ΛCDM



Involving baryons

Stellar feedback 
(Teyssier et al. 2013)

GCs with DM minihalos 
(Boldrini et al. 2019)



Halo centre heated

(Boldrini et al. in prep)



Nature of dark matter: 
cusp or core

Nature of dark matter

PBH-DM cores
(Boldrini et al. 2019)

SIDM cores
(Zavala et al. 2013)



Scenarios

(Boldrini et al. in prep)

• Subhalo mass

• Number of subhalos

• Host halo mass



Transient core diversity

(Boldrini et al. in prep)

• CoreNFW model (Read et al. 2016)

Fully cuspy Fully core



• 109 M⊙ host halo (NFW at z=3)

• one 2 × 107 M⊙ subhalo (NFW at 
z=3)

t [Gyr]
2 4 6 8 100 12

• Fit model for subhalo+host

• rc > 20-30 pc 

• rc < 20-30 pc

• CCT with rc

• No CCT (rc = 0)

Host halo + subhalo scenario
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• Cold Dark Matter                                                 

• Warm Dark Matter                                                                         
(Boyarsky et al. 2018 for a recent review)

• Fuzzy Dark Matter                                                                     
(Hu et al. 2000, Hui et al. 2016)
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(Spergel & Steinhardt 2000) 

• Primordial Black Holes as Dark 
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Nature of dark matter: 
cusp or core

Nature of dark matter

• Cold Dark Matter                                                 

• Warm Dark Matter                                                                         
(Colin et al. 2000; Bode et al. 2001)

• Fuzzy Dark Matter                                                                     
(Hu et al. 2000; Hui et al. 2017)

• Self-Interacting Dark Matter                                       
(Vogelsberger et al. 2012)

• Primordial Black Holes as Dark 
Matter (Boldrini et al. 2019)

Cusp

Core

Core

Core

Core



Alternative theories?

WDM
FDM
SIDM

PBHs?

Cusp-core
problem Diversity

problem



Involving baryons

• Supernova feedback              
(Ogiya et al. 2011, Pontzen et al. 2012)

• Sinking gas clumps                 
(El-Zant et al. 2001, Inoue et al. 2011)                                                                         

• Sinking massive objects 
(GCs)                                    
(Goerdt et al. 2010, Boldrini et al. 2019)
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Credit: ESO/Digitized Sky Survey 2
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modeling, simulations, …) 

• Globular cluster data 
(positions, masses)
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• Kinematic data (Jeans 
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• Globular cluster data 
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