

Eduardo Vitral & Pierre Boldrini - submitted to MNRAS (in review)

Image credits: Nature

How do globular clusters form?

Different formation scenarios:

• Bound gas clouds (Peebles & Dicke 1968);

- Bound gas clouds (Peebles & Dicke 1968);
- Galaxy fragments (e.g., Searle & Zinn 1978; Abadi, Navarro & Steinmetz 2006);

- Bound gas clouds (Peebles & Dicke 1968);
- Galaxy fragments (e.g., Searle & Zinn 1978; Abadi, Navarro & Steinmetz 2006);
- Relics of young massive clusters formed in the high-redshift Universe (Kruijssen 2014, 2015);

- Bound gas clouds (Peebles & Dicke 1968);
- Galaxy fragments (e.g., Searle & Zinn 1978; Abadi, Navarro & Steinmetz 2006);
- Relics of young massive clusters formed in the high-redshift Universe (Kruijssen 2014, 2015);
- Debris from the galactic disc after merger events (in-situ scenario);

- Bound gas clouds (Peebles & Dicke 1968);
- Galaxy fragments (e.g., Searle & Zinn 1978; Abadi, Navarro & Steinmetz 2006);
- Relics of young massive clusters formed in the high-redshift Universe (Kruijssen 2014, 2015);
- Debris from the galactic disc after merger events (in-situ scenario);
- Formed inside their own DM mini-halo, such as galaxies (Peebles 1984).

How to model a mini-halo?

Main difficulties and previous attempts:

• Cosmological simulations: poor resolution. e.g.: Keller et al., 2020, E-MOSAIC $\rightarrow 10^4 M_{\odot}$

Main difficulties and previous attempts:

- Cosmological simulations: poor resolution. e.g.: Keller et al., 2020, E-MOSAIC $\rightarrow 10^4 \, M_{\odot}$
- Milky Way: live N-body particles not feasible.
 e.g.: Mashchenko & Sills, 2005 → Static Milky Way potential.

Main difficulties and previous attempts:

- Cosmological simulations: poor resolution. e.g.: Keller et al., 2020, E-MOSAIC $\rightarrow 10^4 \, M_{\odot}$
- Milky Way: live N-body particles not feasible.
 e.g.: Mashchenko & Sills, 2005 → Static Milky Way potential.
- Influence of tides.

```
e.g.: Peñarrubia et al., 2017 \rightarrow Isolated globular clusters.
```

Solution:

 We use a dwarf galaxy to constrain tidal effects (realistic initial conditions from Boldrini et al., 2020).

Solution:

- We use a dwarf galaxy to constrain tidal effects (realistic initial conditions from Boldrini et al., 2020).
- ➢ Five clusters with and without DM.

Solution:

- ➤ We use a dwarf galaxy to constrain tidal effects (realistic initial conditions from Boldrini et al., 2020).
- ➢ Five clusters with and without DM.

$$\sim m_{\star,GC} = m_{\star,Fornax} = m_{DM,GC} = m_{DM,Fornax} = 50 M_{\odot}$$

Solution:

- ➤ We use a dwarf galaxy to constrain tidal effects (realistic initial conditions from Boldrini et al., 2020).
- ➢ Five clusters with and without DM.

$$\sim m_{\star,GC} = m_{\star,Fornax} = m_{DM,GC} = m_{DM,Fornax} = 50 M_{\odot}$$

> $M_{\star,GC} = 10^6 M_{\odot}$ $M_{DM,GC} = 2 \times 10^7 M_{\odot}$

What to expect?

Faster orbital decay: Higher mass \rightarrow More dynamical friction

Faster orbital decay: Higher mass \rightarrow More dynamical friction

Faster orbital decay: Higher mass \rightarrow More dynamical friction

Increase of the tidal radius: $r_{\rm t}$

$$_{
m t} \propto M^{1/3}$$

Increase of the tidal radius: $r_{\rm t} \propto M^{1/3}$

What do our simulations tell?

Dark matter shield

 \rightarrow The mini-halo undertakes most of the tidal effects in the place of the stellar components

Dark matter shield

 \rightarrow The mini-halo undertakes most of the tidal effects in the place of the stellar components

- \rightarrow The tides heat the system much more than an eventual mini-halo
- \rightarrow Without a protective shield, the stars feel the tides more intensively

Dynamical heating

- \rightarrow The tides heat the system much more than an eventual mini-halo
- \rightarrow Without a protective shield, the stars feel the tides more intensively

Ellipticity and size

 \rightarrow The dark matter shield renders its cluster rounder and smaller

Ellipticity and size

 \rightarrow The dark matter shield renders its cluster rounder and smaller

Without DM

➤ Tail formation

With DM

➤ Tail formation

 $\begin{array}{c} {\rm Globular\ cluster\ without} \\ {\rm dark\ matter\ mini-halo} \end{array}$

Without DM

- ➤ Tail formation
- Thicker tails / Less coherent
 (more dispersion in the perpendicular direction of tail formation)

With DM

- ➤ Tail formation
- Thinner tails / More coherent

Without DM

➤ Tail formation

Thicker tails / Less coherent
 (more dispersion in the perpendicular direction of tail formation)

Longer tails
 (distances as great as ~20 kpc)

With DM

- ➤ Tail formation
- Thinner tails / More coherent

➤ Milder tails (length between ~5 – 10 kpc)

Without DM

➤ Tail formation

Thicker tails / Less coherent
 (more dispersion in the perpendicular direction of tail formation)

Longer tails
 (distances as great as ~20 kpc)

With DM

- ➤ Tail formation
- Thinner tails / More coherent
- Milder tails
 (length between ~5 10 kpc)
- ➤ ~1 kpc stellar envelope

P. Boldrini (IAP, Sorbonne Université & CNRS) © E. Vitral &

What about the long run?

Mini-halo dissolution

Mini-halo dissolution

 \rightarrow Orbital past plays a major role in the shield retention

Mini-halo dissolution

\rightarrow Orbital past plays a major role in the shield retention

Table 1. Mean of structural parameters from the last ten snapshots, considering only bound particles and stars.

ID (1)	M_{\bullet} [10 ⁵ M _{\odot}] (2)	$\begin{array}{c} M_{\star \bullet} \\ [10^5 \text{ M}_{\odot}] \\ (3) \end{array}$	M_{\star} [10 ⁵ M _☉] (4)	r _{1/2,•} [pc] (5)	r _{1/2, **} [pc] (6)	$r_{1/2, \star}$ [pc] (7)	r _{bound,} . [pc] (8)	r _{bound, ★●} [pc] (9)	r _{bound, ★} [pc] (10)
GC2	8.2	9.1	8.0	269.7	13.2	22.4	770.1	282.6	281.5
GC3	14.6	9.6	8.8	158.2	11.9	31.6	745.2	273.7	274.4
GC4	11.4	9.7	9.0	317.2	11.9	13.8	795.4	289.6	292.1
GC5	9.9	9.8	8.6	164.2	14.9	45.0	766.7	280.1	282.2

How easy is it to spot a mini-halo?

 \rightarrow The answer is in the outskirts!

\rightarrow The answer is in the outskirts!

 \rightarrow The answer is in the outskirts!

 \rightarrow Relatively low mass-to-light ratios do not imply lack of dark matter.

 \rightarrow The answer is in the outskirts!

 \rightarrow Relatively low mass-to-light ratios do not imply lack of dark matter.

→ Only after a few hundreds of pc, the dark matter mass budget becomes important.

What is next?

➢ Is NGC 2419 a good candidate?

e.g.: Conroy et al., 2011; Ibata et al., 2013; Baumgardt et al., 2009.

 \rightarrow Galactocentric distance of 95 kpc (very distant).

➢ Is NGC 2419 an ideal candidate?

If NGC 2419 was formed inside a dark matter mini-halo, dynamical friction should have driven it more inwards.

➢ Is NGC 2419 an ideal candidate?

If NGC 2419 was formed inside a dark matter mini-halo, dynamical friction should have driven it more inwards.

- Ejection during a merger event?
- Ex-situ origin?

➢ Is NGC 2419 an ideal candidate?

If NGC 2419 was formed inside a dark matter mini-halo, dynamical friction should have driven it more inwards.

- Ejection during a merger event?
- Ex-situ origin?

➤ How about C-19?

➤ How about C-19?

see Martin et al., 2022

LETTER

A stellar stream remnant of a globular cluster below the metallicity floor

Nicolas F. Martin^{*1,2}, Kim A. Venn³, David S. Aguado^{4,5,6}, Else Starkenburg⁷, Jonay I. González Hernández^{5,8}, Rodrigo A. Ibata¹, Piercarlo Bonifacio⁹, Elisabetta Caffau⁹, Federico Sestito³, Anke Arentsen¹, Carlos Allende Prieto^{5,8}, Raymond G. Carlberg¹⁰, Sébastien Fabbro^{3,11}, Morgan Fouesneau², Vanessa Hill¹², Pascale Jablonka^{13,9}, Georges Kordopatis¹², Carmela Lardo¹⁴, Khyati Malhan¹⁵, Lyudmila I. Mashonkina¹⁶, Alan W. McConnachie¹¹, Julio F. Navarro³, Rubén Sánchez Janssen¹⁷, Guillaume F. Thomas^{5,8}, Zhen Yuan¹, Alessio Mucciarelli^{14,18}

➤ How about C-19?

see Martin et al., 2022

• Age ~ 13 Gyr

LETTER

A stellar stream remnant of a globular cluster below the metallicity floor

Nicolas F. Martin^{*1,2}, Kim A. Venn³, David S. Aguado^{4,5,6}, Else Starkenburg⁷, Jonay I. González Hernández^{5,8}, Rodrigo A. Ibata¹, Piercarlo Bonifacio⁹, Elisabetta Caffau⁹, Federico Sestitu³, Anke Arentsen¹, Carlos Allende Prieto^{5,8}, Raymond G. Carlberg¹⁰, Sébastien Fabbro^{3,11}, Morgan Fouesneau², Vanessa Hill¹², Pascale Jablonka^{13,9}, Georges Kordopatis¹², Carmela Lardo¹⁴, Khyati Malhan¹⁵, Lyudmila I. Mashonkina¹⁶, Alan W. McConnachie¹¹, Julio F. Navarro³, Rubén Sánchez Janssen¹⁷, Guillaume F. Thomas^{5,8}, Zhen Yuan¹, Alessio Mucciarelli^{14,18}

➤ How about C-19?

see Martin et al., 2022

- Age ~ 13 Gyr
- Short orbital time (≤ 0.5 Gyr)

LETTER

A stellar stream remnant of a globular cluster below the metallicity floor

Nicolas F. Martin^{*1,2}, Kim A. Venn³, David S. Aguado^{4,5,6}, Else Starkenburg⁷, Jonay I. González Hernández^{5,8}, Rodrigo A. Ibata¹, Piercarlo Bonifacio⁹, Elisabetta Caffau⁹, Federico Sestito³, Anke Arentsen¹, Carlos Allende Prieto^{5,8}, Raymond G. Carlberg¹⁰, Sébastien Fabbro^{3,11}, Morgan Fouesneau², Vanessa Hill¹², Pascale Jablonka^{13,9}, Georges Kordopatis¹², Carmela Lardo¹⁴, Khyati Malhan¹⁵, Lyudmila I. Mashonkina¹⁶, Alan W. McConnachie¹¹, Julio F. Navarro³, Rubén Sánchez Janssen¹⁷, Guillaume F. Thomas^{5,8}, Zhen Yuan¹, Alessio Mucciarelli^{14,18}

➤ How about C-19?

see Martin et al., 2022

- Age ~ 13 Gyr
- Short orbital time (≤ 0.5 Gyr)
- Typically low orbital radii (~ 7 27 kpc)

LETTER

A stellar stream remnant of a globular cluster below the metallicity floor

Nicolas F. Martin^{*1,2}, Kim A. Venn³, David S. Aguado^{4,5,6}, Else Starkenburg⁷, Jonay I. González Hernández^{5,8}, Rodrigo A. Ibata¹, Piercarlo Bonifacio⁹, Elisabetta Caffau⁹, Federico Sestito³, Anke Arentsen¹, Carlos Allende Prieto^{5,8}, Raymond G. Carlberg¹⁰, Sébastien Fabbro^{3,11}, Morgan Fouesneau², Vanessa Hill¹², Pascale Jablonka^{13,9}, Georges Kordopatis¹², Carmela Lardo¹⁴, Khyati Malhan¹⁵, Lyudmila I. Mashonkina¹⁶, Alan W. McConnachie¹¹, Julio F. Navarro³, Rubén Sánchez Janssen¹⁷, Guillaume F. Thomas^{5,8}, Zhen Yuan¹, Alessio Mucciarelli^{14,18}

➤ How about C-19?

see Martin et al., 2022

- Age ~ 13 Gyr
- Short orbital time (≤ 0.5 Gyr)
- Typically low orbital radii (~ 7 27 kpc)
- Presents a coherent structure up to this day!

LETTER

A stellar stream remnant of a globular cluster below the metallicity floor

Nicolas F. Martin^{*1,2}, Kim A. Venn³, David S. Aguado^{4,5,6}, Else Starkenburg⁷, Jonay I. González Hernández^{5,8}, Rodrigo A. Ibata¹, Piercarlo Bonifacio⁹, Elisabetta Caffau⁹, Federico Sestito³, Anke Arentsen¹, Carlos Allende Prieto^{5,8}, Raymond G. Carlberg¹⁰, Sébastien Fabbro^{3,11}, Morgan Fouesneau², Vanessa Hill¹², Pascale Jablonka^{13,9}, Georges Kordopatis¹², Carmela Lardo¹⁴, Khyati Malhan¹⁵, Lyudmila I. Mashonkina¹⁶, Alan W. McConnachie¹¹, Julio F. Navarro³, Rubén Sánchez Janssen¹⁷, Guillaume F. Thomas^{5,8}, Zhen Yuan¹, Alessio Mucciarelli^{14,18}

➤ How about C-19?

see Martin et al., 2022

- Age ~ 13 Gyr
- Short orbital time (≤ 0.5 Gyr)
- Typically low orbital radii (~ 7 27 kpc)
- Presents a coherent structure up to this day!

LETTER

A stellar stream remnant of a globular cluster below the metallicity floor

Nicolas F. Martin^{*1,2}, Kim A. Venn³, David S. Aguado^{4,5,6}, Else Starkenburg⁷, Jonay I. González Hernández^{5,8}, Rodrigo A. Ibata¹, Piercarlo Bonifacio⁹, Elisabetta Caffau⁹, Federico Sestito³, Anke Arentsen¹, Carlos Allende Prieto^{5,8}, Raymond G. Carlberg¹⁰, Sébastien Fabbro^{3,11}, Morgan Fouesneau², Vanessa Hill¹², Pascale Jablonka^{13,9}, Georges Kordopatis¹², Carmela Lardo¹⁴, Khyati Malhan¹⁵, Lyudmila I. Mashonkina¹⁶, Alan W. McConnachie¹¹, Julio F. Navarro³, Rubén Sánchez Janssen¹⁷, Guillaume F. Thomas^{5,8}, Zhen Yuan¹, Alessio Mucciarelli^{14,18}

➤ How about C-19?

see Martin et al., 2022

- Age ~ 13 Gyr
- Short orbital time (≤ 0.5 Gyr)
- Typically low orbital radii (~ 7 27 kpc)

Targets for dark matter search

➤ How about C-19?

see Martin et al., 2022

• Presents a coherent structure up to this day

Targets for dark matter search

- ➤ How about C-19?
- see Martin et al., 2022

"It will be fascinating to explore the processes that could have shielded the C-19 progenitor for long enough so that its stream is still visible today."

Targets for dark matter search

- ➤ How about C-19?
- see Martin et al., 2022

"It will be fascinating to explore the processes that could have shielded the C-19 progenitor for long enough so that its stream is still visible today."

Dark matter mass profiles

➢ Jeans mass-modelling

> Orbital integrations

Dark matter mass profiles

➢ Jeans mass-modelling

> Orbital integrations

Thank you!