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How do globular clusters form?

Different formation scenarios:

● Bound gas clouds (Peebles & Dicke 1968);

● Galaxy fragments(e.g., Searle & Zinn 1978; 
Abadi, Navarro & Steinmetz 2006);

● Relics of young massive clusters formed in the 
high-redshift Universe (Kruijssen 2014, 2015);

● Debris from the galactic disc after merger 
events (in-situ scenario);

● Formed inside their own DM mini-halo, such 
as galaxies (Peebles 1984).
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Different formation scenarios:

● Bound gas clouds (Peebles & Dicke 1968);

● Galaxy fragments (e.g., Searle & Zinn 1978; 
Abadi, Navarro & Steinmetz 2006);

● Relics of young massive clusters formed in the 
high-redshift Universe (Kruijssen 2014, 2015);

● Debris from the galactic disc after merger 
events (in-situ scenario);

● Formed inside their own DM mini-halo, 
such as galaxies (Peebles 1984).



How to model a mini-halo?



Dark matter mini-halos

Main difficulties and previous attempts:

● Cosmological simulations: poor resolution.

e.g.: Keller et al., 2020, E-MOSAIC → 104 M⨀  

● Milky Way: live N-body particles not feasible.

e.g.: Mashchenko & Sills, 2005 → Static Milky Way potential.

● Milky Way: live N-body particles not feasible.

e.g.: Peñarrubia et al., 2017 → Isolated globular clusters.
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Dark matter mini-halos

Main difficulties and previous attempts:

● Cosmological simulations: poor resolution.

e.g.: Keller et al., 2020, E-MOSAIC → 104 M⨀  

● Milky Way: live N-body particles not feasible.

e.g.: Mashchenko & Sills, 2005 → Static Milky Way potential.

● Influence of tides.

e.g.: Peñarrubia et al., 2017 → Isolated globular clusters.
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Solution:

➢ We use a dwarf galaxy to constrain tidal effects 
(realistic initial conditions from Boldrini et al., 2020).

➢ Five clusters with and without DM.

➢ m
★,GC = m

★,Fornax = mDM,GC  = mDM,Fornax =  50 M⨀  

➢ M
★,GC =  106 M⨀  

➢ MDM,GC =  2 x 107 M⨀  
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What to expect?
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stars manage to escape the globular cluster potential
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Dynamical implications

Dynamical heating from dark matter: Higher mass → More velocity dispersion → More 
stars manage to escape the globular cluster potential

Different velocity distributions
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Dynamical heating
(disruptive)
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(disruptive)

Tidal radius growth
(protective)



Dynamical implications

Dynamical heating
(disruptive)

Orbital decay
(disruptive)

Tidal radius growth
(protective)

Which one 
prevails?



What do our simulations tell?



Dark matter shield

→ The mini-halo undertakes most of the tidal effects in the place of the stellar components
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Dynamical heating

→ The tides heat the system much more than an eventual mini-halo

→ Without a protective shield, the stars feel the tides more intensively
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Dynamical heating

→ The tides heat the system much more than an eventual mini-halo

→ Without a protective shield, the stars feel the tides more intensively

Comparison with
Peñarrubia et al., 2017

(isolated clusters)
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Ellipticity and size

→ The dark matter shield renders its cluster rounder and smaller



Ellipticity and size

→ The dark matter shield renders its cluster rounder and smaller

Without DM

With DM



Tidal tails and stellar streams

https://docs.google.com/file/d/1su4lnGC1nnXQE1MLvQnMmSEooZanvUjg/preview


Tidal tails and stellar streams

Without DM With DM

➢ Tail formation

➢ Thicker tails 
(more dispersion in the perpendicular direction of tail formation)

➢ Longer tails 
(distances as great as ~20 kpc)

➢ Less coherent structure

➢ Tail formation

➢ Thinner tails 

➢ milder tails 
(length between ~5 – 10 kpc)

➢ Less coherent structure

➢ ~1 kpc stellar envelope
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Tidal tails and stellar streams

Without DM With DM

➢ Tail formation

➢ Thicker tails / Less coherent
(more dispersion in the perpendicular direction of tail formation)

➢ Longer tails 
(distances as great as ~20 kpc)

➢ Less coherent structure

➢ Tail formation

➢ Thinner tails / More coherent

➢ Milder tails 
(length between ~5 – 10 kpc)

➢ More coherent structure

➢ ~1 kpc stellar envelope
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Tidal tails and stellar streams
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Stellar envelope



What about the long run?



Mini-halo dissolution
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Mini-halo dissolution
No dark matter shield Why?



Mini-halo dissolution

→ Orbital past plays a major role in the 
shield retention
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How easy is it to spot a mini-halo?
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Dark matter detectability

→ The answer is in the outskirts!

→ Relatively low mass-to-light ratios do 
not imply lack of dark matter.

→ Only after a few hundreds of pc, the 
dark matter mass budget becomes 
important.



What is next?



Targets for dark matter search

➢ Is NGC 2419 a good candidate?

e.g.: Conroy et al., 2011; Ibata et al., 2013; 
Baumgardt et al., 2009.

→ Galactocentric distance of 95 kpc (very distant).
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mini-halo, dynamical friction should have driven it 
more inwards.
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Targets for dark matter search

➢ Is NGC 2419 an ideal candidate?

If NGC 2419 was formed inside a dark matter 
mini-halo, dynamical friction should have driven it 
more inwards.

● Ejection during a merger event?
● Ex-situ origin?

Not ideal…



Targets for dark matter search

➢ How about C-19?



Targets for dark matter search

➢ How about C-19?

see Martin et al., 2022



Targets for dark matter search

➢ How about C-19?

see Martin et al., 2022

● Age ~ 13 Gyr



Targets for dark matter search

➢ How about C-19?

see Martin et al., 2022

● Age ~ 13 Gyr
● Short orbital time (≲ 0.5 Gyr)



Targets for dark matter search

➢ How about C-19?

see Martin et al., 2022

● Age ~ 13 Gyr
● Short orbital time (≲ 0.5 Gyr)
● Typically low orbital radii (~ 7 – 27 kpc)



Targets for dark matter search

➢ How about C-19?

see Martin et al., 2022

● Age ~ 13 Gyr
● Short orbital time (≲ 0.5 Gyr)
● Typically low orbital radii (~ 7 – 27 kpc)
● Presents a coherent structure up to this day!



Targets for dark matter search

➢ How about C-19?

see Martin et al., 2022

● Age ~ 13 Gyr
● Short orbital time (≲ 0.5 Gyr)
● Typically low orbital radii (~ 7 – 27 kpc)
● Presents a coherent structure up to this day!

“It will be fascinating to explore
the processes that could have shielded the C-19 

progenitor for
long enough so that its stream is still visible today.”



Targets for dark matter search

➢ How about C-19?

see Martin et al., 2022

● Age ~ 13 Gyr
● Short orbital time (≲ 0.5 Gyr)
● Typically low orbital radii (~ 7 – 27 kpc)



Targets for dark matter search

➢ How about C-19?

see Martin et al., 2022

● Presents a coherent structure up 
to this day



Targets for dark matter search

➢ How about C-19?

see Martin et al., 2022

“It will be fascinating to explore
the processes that could have shielded 

the C-19 progenitor for
long enough so that its stream is still 

visible today.”



Targets for dark matter search

➢ How about C-19?

see Martin et al., 2022

“It will be fascinating to explore
the processes that could have shielded 

the C-19 progenitor for
long enough so that its stream is still 

visible today.”



Dark matter mass profiles

➢ Jeans mass-modelling

➢ Orbital integrations



Dark matter mass profiles

➢ Jeans mass-modelling

➢ Orbital integrations



Thank you!


