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→ Tightly confined gas of Helium atoms ≈
effectively 1D Bose gas.

→ Modulation of trapping size : parametric
creation of pairs of quasiparticles of opposite
momenta kres and −kres out of the vacuum.

→ Experimental Goal : Demonstrate creation
out of the vacuum.

→ Limitation : Interactions between
quasiparticles foster decoherence and might
prevent observation.
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MODEL FOR THE EXPERIMENT

→ Effectively 1D Bose gas modeled by :
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→ Diagonalizing Ĥ (2) defines quasiparticles (phonons) c. and a.
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(

b̂k + b̂†−k

)
,

δθ̂k =
uk − vk

2i

(
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)
.

→ Phonons evolve on a background controlled by g1(t). Trap
modulation ≈ oscillating g1(t)−→ parametric amplification.
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PREVIOUS ANALYSIS AND EXPERIMENT



QUANTITIES OF INTEREST

→ n±k ≡
〈

b̂†±k b̂±k

〉
and ck ≡

〈
b̂k b̂−k

〉
number and correlation

of phonons in the modes ±k.
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〈
b̂†k b̂†−k b̂k b̂−k

〉
nkn−k

,

= 1 +
|ck |2

n2
k

,

for isotropic Gaussian states.
→ How to demonstrate quantum origin of the phonons

created during modulation using these quantities?
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QUANTUMNESS CRITERION : NON-SEPARABILITY

→ A bipartite state ρ̂±k of the phononic modes ±k is said to be
separable if :

ρ̂±k = Σi pi︸︷︷︸
pi≥0 ,Σipi=1

State of mode k︷︸︸︷
ρ̂i

k
⊗ State of mode−k︷︸︸︷

ρ̂i
−k .

Intuitively classical superposition of product states, average
values can be effectively described by probability
distribution pi .
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pi≥0 ,Σipi=1

State of mode k︷︸︸︷
ρ̂i

k
⊗ State of mode−k︷︸︸︷

ρ̂i
−k .

Intuitively classical superposition of product states, average
values can be effectively described by probability
distribution pi .

→ Otherwise the state is said to be non-separable and
considered non-classical.

→ Goal : Demonstrate non-separability of the bipartite state of
the resonant phonon pairs ρ̂±kres .
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NON-SEPARABILITY : SUFFICIENT CRITERION

→ A sufficient criterion for the state to be non-separable is
simply nk < |ck |...
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NON-SEPARABILITY : SUFFICIENT CRITERION

→ A sufficient criterion for the state to be non-separable is
simply nk < |ck |...

→ which is experimentally testable via :

g(2)(k,−k) = 1 +
|ck |2

n2
k

> 2 .

→ NB : Only creation out of the vacuum can explain such
correlations 1.

1. [Busch et al., 2014]
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2012'S RESULTS ANALYSIS

→ Experiment was performed by Chris Westbrook’s team in
Orsay 2.

2. [Jaskula et al., 2012]
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2012'S RESULTS ANALYSIS

→ Experiment was performed by Chris Westbrook’s team in
Orsay 2.

→ Posterior works 3 identified interactions, decay of nk and ck , as
possible cause.

→ Current work : Analyze intrinsic non-linearities of the
system to estimate decay of phonon number nk and of
coherence ck .

2. [Jaskula et al., 2012]
3. [Robertson et al., 2017b, Robertson et al., 2017a, Robertson et al., 2018,
Pylak and Zin, 2018]
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NON-LINEARITIES OF THE SYSTEM :
NEW RESULTS



NUMERICAL OBSERVATION OF THE DECAY

→ Simulations of the non-linear system using the Truncated
Wigner Approximations (TWA) allow to monitor directly nk
and ck :
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→ Observation of loss of non-separability in agreement with 4.

4. [Pylak and Zin, 2018]
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STUDY OF Γnk

→ Until now we have been focusing on nk . Extracted decay rate
Γnk of for various values of : L size of the system, T the
temperature and g1 effective interaction constant.
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STUDY OF Γnk
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STUDY OF Γnk
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SUMMARY AND PERSPECTIVES

→ Numerically demonstrated loss of non-separability and decay
of phonon number nk in a thermal 1D quasicondensate.
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→ Numerically demonstrated loss of non-separability and decay
of phonon number nk in a thermal 1D quasicondensate.

→ Identified the dependence of this decay rate on physical
parameters.

→ (Work in progress) Compare numerically observed features
with a theoretical computation.

→ (To be done) Similar numerical analysis and theoretical
prediction for the coherence ck . Why systematically
Γck > Γnk ?

→ (To be done) Finally, tune the experimental parameters in
order to optimize the visibility of non-separability in a future
experiment.
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Thank you for your attention !
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QUANTITIES OF INTEREST

→ Normalized density-density correlation :

G(2)
k,−k ≡ 〈δρ̂kδρ̂−k〉

ρ̄
= (uk + vk)

2 [1 + 2nk + 2Re (ck)] .

→ A sufficient criterion for the state to be non-separable is
simply nk < |ck |...

→ which is experimentally testable via :

G(2)
k,−k − G(2) vac

k,−k = 2 (uk + vk)
2 [nk − Re (ck)] < 0 .

→ In-situ criterion vs. after expansion for g(2)
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