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How quantum are the fluctuations ? Can it be seen in the CMB ?



Tools of quantum information



Information for classical systems

How much information does one lack about a variable X ?

H(X) ==Y p(X=x)log, [p(X = X)] (1)

Maximal for uniform distribution, zero for an almost sure variable



Information for classical systems

H(X)

How much information does one
lack about a variable X knowing Y
already ?

HX,Y)

HXY) =D p(Y = y)HEKIY =), (2)
y

where H(X|Y = y) = — Y3, p(X = xIY = ) log, p(X = x| = y).



Mutual Information for classical systems

H(X)

Mutual information :

I(X,Y) = H(X) + H(Y) — H(X, Y). (3)



Mutual Information for classical systems

H(X)

Mutual information :

I(X,Y) = H(X) + H(Y) — H(X, Y). (3)

For classical system H(X|Y) = H(X,Y) — H(Y), then

(X, Y) = T (X, V) = H(X) = HKIY) (4)



Mutual Information for quantum systems

Von-Neumann entropy of S
#(S) = ~Tr[ps log,(ps)] (5)
IfS=XUY,then one has two mutual information

I(X,Y) =H(X) + H(Y) - H(X.Y) (6)
T (xv.Am}) =me0 - # (v, {n1}) - (7)



Quantum Discord

Quantum Discord is defined by

5(X,Y) = Z(X,Y) — max J (X, Y, {njy}) 8)
'}




A Bell Inequality




A Bell Inequality

One considers two 2-valued spins in the entangled state (Bell state)

¥) = (14 = |-+)). o)

where 6%/8.u, |+) = +1/2.



A Bell Inequality

One considers two 2-valued spins in the entangled state (Bell state)

_

W) 7

(J+=) = |=+))- (9)
where 6*/8.u, |+) = £1/2.

One measures each spin in a direction given by a vector u

z




A Bell Inequality

z

X

One can then compute the mean value of the Bell operator B in the
state |V)

B:n.&A®m.6'B+n.6'A®m'.6'B+n'.6'A®m.6'B—n'.&A®m’.6'B. (9)



A Bell Inequality

<B> = —cos(0 — On) —cos(0y — O ) — oSOy — Om)+C0S(0p — O ) -

(9)
If O — O = 7/, B — Oy = 0y — Oy = —7/4 and Oy — Oy = 3/ -

<é> - _2/2. (10)

One can show that in a local classical theory one would have

(B) I<2 (1)




A Bell Inequality - Conclusion

If one can find pseudo-spin operators for our system for which
<B> > 2, one can show that the system cannot be described by a
classical state !



A Bell Inequality - Conclusion

If one can find pseudo-spin operators for our system for which
<B> > 2, one can show that the system cannot be described by a

classical state !

Question :

Quantum Discord and Bell inequality both measure the
quantumness of a state by measuring the quantumness of the
correlations. Do they give a compatible account of the quantumness
of a state ?



Can a system of CMB size still be a quantum one ?

Let us consider
) — -+

_
V) = 7 (12)
Density matrix
p=|v) (V| = %(I+*> (== =) (= = [=H) (= + =) (=)
(13)

Not a statistical superposition of the states |[+—) and |—+) but a
quantum one.

Classical superposition :

X 1 1
Pclass. = E |+_> <+_| + 5 |_+> <_+| : (14)



Can a system of CMB size still be a quantum one ?

Let us consider
_ |+7> B |*+> (12)

Density matrix

S+ (=] = B - e+ |-+ ().

p=1w) (v| =
(13)

Not a statistical superposition of the states |[+—) and |—+) but a

quantum one.

Classical superposition :

R 1 1
Pclass. = 5 |+_> <+_| + 5 |_+> <_+| : (14)

Decoherence dynamically removes the non-diagonal terms.



Decoherence - Questions

Typically occurs when a system is coupled with an environment.

1



Decoherence - Questions

Typically occurs when a system is coupled with an environment.

Will decoherence destroy the quantum correlations ?

Compatible with Bell Inequality and Quantum Discord ?

1



Inflationary Cosmological
Perturbations



Mukhanov-Sasaki variable

The perturbations can be described by a single variable, the
(15)

/ d3k’\7k(77)€ik'x )
R3

Mukhanov-Sasaki variable
U(n,x) = .
(7, %) 2n)?

Makes sense to consider ¥ since for CMB temperature anisotropies,
(16)

on large scales
or
— o V.
T



Hamiltonian : Sum of parametric oscillators

A

f— / & e [Bap] + w2 (n, W)Y (17)
R2xR+

Commutation relations :

[Vp, Pgl = i0(p + q) (18)

One has independent systems indexed by R? x R*.



Hamiltonian : Sum of parametric oscillators

~

H:/ & ke BBl + w2, R0}
RZxR+

Introducing real and imaginary parts

One has




Evolution of the system

Liouville-von Neumann equation for each of the k € R3* system
density matrix

T~ —i[Az04). @)

14



Evolution of the system with decoherence

Lindblad equation for each of the k € R** system density matrix

dp;

T =i - 30n) Gl 9, Al 1)

Systems are still decoupled !

14



Previous calculations and Objectives

Previous calculations :

- Martin and Vennin have studied the quantumness of these
systems without decoherence in Refs [2, 3].

- They found an explicit solution for Eq. 21 in [4].

Goals :

- Take into account decoherence to assess the quantumness of
CMB with respect to Quantum Discord and Bell inequality.

- Calibrate the different quantum criteria : Quantum Discord, Bell
inequalities and decoherence compatible ?



Preliminaries




Splitting

Two ways of representing the systems the R// splitting and the +R
splitting define two different sets of subsystems

A= [ [Pl + w2 k] (22)
R3+
AS )2 (S \2
— [ e {(pk) T w2, ). k)} 23)
R aryl 2

We want to generalize to compute the quantum discord for an
arbitrary splitting of the system in subsystems.

16



General splitting

One can go from the R/I splitting to a general splitting by

ah Ur
s Pr
R =S(, 8,0,0) | . (24)
(F] Vi
P! b
where
S(a, B,6,0) = (25)
CoOSacosf —sinacosd —cosdsing sin@sind
sinacosf®  cosacosd —sinf#sind sin@cosé

cosfBsinf® —sinfsing  cos(a— B —9d)cosf®  —cosfsin(a— B —9)
singsing  cosfsin® —cosfsin(ae—pB —46) cos(a— B —d)cosH
(26)



General splitting

One can go from the R/l splitting to a general splitting by

a1 QF\’
™| = S(a, 8,8,0) | P
a %
v b

(24)

Hypothesis : The change of splitting is symplectic, i.e. preserves the

commutation relations, and preserves the vacuum.

S(a, B,0,0)QS(cv, 5,6,0)" =Q where Q=

(g, #) are hermitian operators.

0

0
0

=T

o O O -

(25)

o - O O



State of the perturbations

Defined by its Wigner function

_ 1 —imX—imy { ’ y
W(R) - (277_)2 //dXdye <Q1 + 27C12 + 3 ‘Q1 7q2 >
(26)
with R = (§1, 71, G2, 72)".
Gaussian state :
W(R) = ——— e~k (27)

(2m)2V/detT
where the covariance matrix is I'; = Re KIA?,'/%H - <IA?,-> </A?,~> :

All the information about the state is contained in I



State of the perturbations

In the R/l splitting one has

My =

P
2
0
0

P, 0 O
P; 0 0
0 P P
0 P, Ps

(28)

d2

1d 1
Pr=\VEP+Tk, Pa=s—P1, P:(+w ,k2>P.
1= |Vel*+ Tk 2= 23ag 3 2dn? (n. k)" ) P (29)

when

=0

y=0

19



Quantum Discord




Computing the quantum discord

Transformation of the covariance matrix under
'Q = (ORaﬁRaolvﬁ/)T — :Q(Oé,ﬂ,(i 0) = 5(04,6,57 9)Q

Mo, B,6,0) = S(a, B, 6,0)TS(ev, 8,6,0) = (rA rC). (30)
c Tp

Sub-matrices very complex — intermediate quantities to perform
the calculations

20



Computing the quantum discord

Sub-matrices very complex — intermediate quantities to perform
the calculations

My = (L ;/iAA A’\/Ili> : (30)
where
L=Py+P;, (31)
My =cos? 0 O() + sin” 6 0(6), (32)
Na =cos? 6 P(a, @) + sin” 6 P(6,6) (33)
O(x) = Py sin’ x + P, sin(2x) + P; cos? X, (34)
P(x,y) =2P; cos(x + y)(P1 — P3)sin(x +y) . (35)

Similar definition for I'g with different angles.

20



Computing 7

T(A, B) = H(p) + H(ps) — H(p).- (36)

For a Gaussian state

Nsub

H(p) = Y_fCa), (37)
where :
X4+1 X4+1 X—1 X —
=(5) o () - () s (5)
Sp(Qr) = {+io;} , (39)
0O 1 0 O
Q= e and w = (O 1) (40)
0O 0 0 1 -1 0
0 0 -1 0

21



Computing 7

One finds

Sp(wla) =Sp(wlg) = {*io(e, 8,6,0)}

—{:I:i\/P1P3 = P% + |:SII’](29) S;I’](Oc B 6):|2 [(’D1 _ P3)2 + AP%} } '

Sp(Qr) ={+io} = {&iy/P1Ps — P}. (42)

So that

| =2[f(20) — f(20(a, ,5,0))] | (43)

22



Computing J

In Ref. [1] it is shown that for gaussian state 7 is given by

max (v 1) :f( det(rA)>

{n>'}
B f(z x [4det(Tc)]? + (4 det(Tg) — 1)(16 det(T) — 4 det(Ty)) -
(4 det(rg) — 1)2
2 x a[det(rc)] y/[4 det(rc)]? + (4 det(Tp) — )16 det(r) — Adet(I’A)))
(4det(rg) — 1)2 ’
One has
det(l,) = det(I'g) = 0% + 2, (45)
det(l) = o*, (46)
det(F¢) = —c?, (47)
sin(26) sin(a — 6)1°
c:\/{ (26) > ( ) [(P1 — P3)? + 4P2] . (48)

23



Computing J

One can simplify the result to

¥ = o\« — o\« 72—C2
121 7 (6% {V}) =tz 9,50 F2ot0u.00) — -2 ) |

(49)
So that

5 = f(20(a, 8,5,0)) — F(20) +f<20(a,5,6, 6) — m) —f@0)|.

(50)

24



Quantum Discord - A particular case

In the R/l splitting i.e («, 8,0,0) = (0,0,0,0) one has

T =2[f(20) — f(25(0,0,0,0))] = 0, (51)
{maé I (%Y. {n}) =f(20(0,0,0,0)))  £(25(0,0,0,0) — 0) = 0
J (52)

Two independent susbystems — No mutual information — 6 =0

25



Plotting the Quantum Discord

o R R
/

Numerical errors

Error that might come from the
formula used for P,

26



Effective-spin operators

The GKM operators

§=- / lai) (—qil dq;, (53)
3= / sign(91)[a:) (a1l dg (54)
S, :// sign(q;) 1q;) (—qil da;, (55)

satisfy the commutation relation for spin operators

N

18, 51] = iewmS (56)

27



Computation of <§>

One need to compute the mean-values <§}§§>, <§1§§>, <§1§§> and

<§;§g>_

For instance

<§;§§>:/ / (=01, —92| p1G1,G2) dg1dqs . (57)

28



Computation of <§>

By similar proceedings one also computes the other mean-values
SWS2 / / —G1,—G2| 101, G2) dgadga, (57)

(58) = / | sien(ansien(az) (ar,aal pla, @) dadas  (58)

<§xA§> :/ / sign(q1) (91, —G2| P 191, G2) dg1d g, (59)
<‘§ZA)2<> :/ / sign(92) (—31, 92| p1G1, G2) dg1dQ, . (60)

28



Computation of <§>

By similar proceedings one also computes the other mean-values
@)= [ [ an-alrlana g, 57
<§ §§> / / sign(q1)sign(q2) (1, G2| p1G1, G2) dgrdg,  (58)
< §§> = / / sign(q1) (31, 9ol £|G1, 42) dG1dQ2 (59)

(51%) = / / sign(q2) (~G1, 2| |G, 42) dGrdg; - (60)

Then one uses the Wigner function

X
<Q1 + 7102 + %‘ p ’Clw 592~ / / W(R)e™ ™Y dridr,
(61)

28



Computation of <§> - +k splitting

One has
P1+Ps 0 P1=Ps - P3 P,
0 P1+P5 P, _Pi—Ps
r— 2 2 (62)
Pi—Ps P1+P5 ’
5 P, : 0
P, __[Pa=lP 0 Pi+Ps3

One can compute for instance

(P + P3)(GF + 4iP2q1G2 — 4(P3 — P1P3)q3)
xp( — .
4Py Py

1
= = — ¢
(@1, —q2| p a1, q2) TP,
(63)

29



One finally obtains

<§1§§> —0

(518) =0

<§;§§> _4(P1P31 —P2)
<§l§§> = arctan <

(64)

30



One finally obtains

Finally optimizing in a simple situation

max 1 2 In
B =/ — — arctan?
< > (4(P1P3 — P%)) + ’/T2 (

Py — P
2y/PiP3

)|

(64)

(65)

30



Is the bell inequality violated ?

Without decoherence: Always !

A\ max 4 ,D,] _ P3
B =24/1+ — arctan? > 2. 66
< > \/ e (ZVP1P3) (66)

31



Is the bell inequality violated ?

Without decoherence: Always !

A\ max 4 ,D,] _ P3
B =24/1+ — arctan? > 2. 66
< > \/ e (ZVP1P3) (66)

With decoherence : Still need to plot the curves to assess the
evolution of the two terms...

31



Conclusion




Conclusion and prospects

We derived two formulas for continuous system in a Gaussian state :
Quantum Discord and Bell inequality for the most general splitting.
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Conclusion and prospects

We derived two formulas for continuous system in a Gaussian state :
Quantum Discord and Bell inequality for the most general splitting.

Soon by plotting the curves we will be able

- To assess the quantumness of the CMB in a realistic context
- To calibrate the different criterion in this situation

32



Thank you for your attention !
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State of the perturbations

Without decoherence : squeezed
state

With decoherence : still Gaussian

Destroys the squeezing ?

Highly quantum !
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Quantum origin of primordial inhomogeneities vs. Large-scale
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- "How much” quantum are the fluctuations ? Are they still today
? What tools to estimate the quantumness ?
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Quantum origin of primordial inhomogeneities vs. Large-scale

structures

- "How much” quantum are the fluctuations ? Are they still today
? What tools to estimate the quantumness ?

- How "wrong” are the classical predictions ? Can you measure
the discrepancies ?

- Can a system of CMB size still be a quantum one ?



How "wrong” are the classical predictions ?

See “Quantum Discord of Cosmic Inflation: Can we Show that CMB
Anisotropies are of Quantum-Mechanical Origin?”

Classical framework can not fully mimic quantum correlations.

The involved correlations are not (yet) measurable.



Quantum origin of primordial inhomogeneities vs. Large-scale

structures

- "How much” quantum are the fluctuations ? Are they still today
? What tools to estimate the quantumness ?

- How wrong are the classical predictions ? Can you measure the
discrepancies ?

- Can a system of CMB size still be a quantum one ?



Mutual Information for quantum systems

Von-Neumann entropy of S
H(S) = —Tr[ps log,(ps)] - (67)

If S =XUY, then one has two mutual information
Z(X, Y) =H(X) + H(Y) — H(X,Y), (68)
T (X, {7} =100 - # (v, {n})

= =T [Aloga()] + 32 pi Tr [ vy 0z (Pany) |
j
(69)

YAy
where Py = %, pj=Tr (ﬂfﬁ) and {N'} is a POVM.

J (X, Y, {I‘I)Y}) is non-symmetric under X <> Y



In Fourier space its dynamics is controlled by
A= / & ke (pup, + w21, R}
R2xR+

where w?(n, k) = k2 — “aff and py, =

5L
i =

Commutation relation :

[Uk, D]l = i6(R 4+ q) + knot independent.

One has independent systems indexed by R? x R*.

(70)



Evolution of the system

Liouville-von Neumann equation for each of the k € R3* system
density matrix

dp; s
dT;? = [H;,pz] . (72)



Evolution of the system

Liouville-von Neumann equation for each of the k € R3* system
density matrix

dps Tors
=i (72)

One adds a decoherence term

A

Hint(n) = /d3X,2\(7],X) ® R(n,x). (73)

System Environment (74)



Evolution of the system

Liouville-von Neumann equation for each of the k € R** system
density matrix

d .
AR (72)

One adds a decoherence term

A~

Aine(n) = / d*xA(n,x) @ R(n, x) . (73)

Total Hamiltonian

I:Itot - I:/V ® ﬁenv + ﬁ\/ ® I:Ienv + '7’Clint . (74)



Evolution of the system

Total Hamiltonian

I:Itot = “:/\/ & ﬁenv + I\[\/ & ":Ienv + ’Y‘L\Iint . (72)

Lindblad equation show that systems are still decoupled ! For each
kR € R

(ilizk ’[ ”’k] *%QWCH(’?)W};-W;;-ﬁ;;]], (73)

where Cr(p) = ﬁng d3k<f?(n, X)R(n, y)> elk-(=y) |
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