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How quantum are the fluctuations ? Can it be seen in the CMB ?
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Tools of quantum information



Information for classical systems

How much information does one lack about a variable X ?

H(X) = −
∑
x
p(X = x) log2 [p(X = x)] (1)

Maximal for uniform distribution, zero for an almost sure variable
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Information for classical systems

How much information does one
lack about a variable X knowing Y
already ?

H(X|Y) =
∑
y
p(Y = y)H(X|Y = y) , (2)

where H(X|Y = y) = −
∑

x p(X = x|Y = y) log2 p(X = x|Y = y).
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Mutual Information for classical systems

Mutual information :

I(X, Y) = H(X) +H(Y)−H(X, Y) . (3)

5



Mutual Information for classical systems

Mutual information :

I(X, Y) = H(X) +H(Y)−H(X, Y) . (3)

For classical system H(X|Y) = H(X, Y)−H(Y), then

I(X, Y) = J (X, Y) = H(X)−H(X|Y) (4)
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Mutual Information for quantum systems

Von-Neumann entropy of S

H(S) = −Tr
[
ρ̂S log2(ρ̂S)

]
. (5)

If S = X ∪ Y, then one has two mutual information

I(X, Y) =H(X) +H(Y)−H(X, Y) , (6)

J
(
X, Y,

{
ΠY
j
})

=H(X)−H
(
X|Y,

{
ΠY
j
})

. (7)
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Quantum Discord

Quantum Discord is defined by

δ(X, Y) = I(X, Y)− max{
ΠY
j

}J (X, Y,{ΠY
j
})

(8)
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A Bell Inequality



A Bell Inequality

One considers two 2-valued spins in the entangled state (Bell state)

|Ψ⟩ = 1√
2
(|+−⟩ − |−+⟩) . (9)

where σ̂A/B.uz |±⟩ = ±1/2.
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A Bell Inequality

One considers two 2-valued spins in the entangled state (Bell state)

|Ψ⟩ = 1√
2
(|+−⟩ − |−+⟩) . (9)

where σ̂A/B.uz |±⟩ = ±1/2.

One measures each spin in a direction given by a vector u

uA

uB

0
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A Bell Inequality

uA

uB

0

One can then compute the mean value of the Bell operator B̂ in the
state |Ψ⟩

B̂ = n.σ̂A⊗m.σ̂B+n.σ̂A⊗m′.σ̂B+n′.σ̂A⊗m.σ̂B−n′.σ̂A⊗m′.σ̂B . (9)
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A Bell Inequality

⟨
B̂
⟩
= − cos(θn − θm)−cos(θn − θm′)−cos(θn′ − θm)+cos(θn′ − θm′) .

(9)
If θn − θm = π/4, θn′ − θm = θn − θm′ = −π/4 and θn′ − θm′ = 3π/4 :⟨

B̂
⟩
= −2

√
2 . (10)

One can show that in a local classical theory one would have

|
⟨
B̂
⟩

class.
| ≤ 2 (11)
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A Bell Inequality - Conclusion

If one can find pseudo-spin operators for our system for which⟨
B̂
⟩
> 2, one can show that the system cannot be described by a

classical state !
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A Bell Inequality - Conclusion

If one can find pseudo-spin operators for our system for which⟨
B̂
⟩
> 2, one can show that the system cannot be described by a

classical state !

Question :
Quantum Discord and Bell inequality both measure the
quantumness of a state by measuring the quantumness of the
correlations. Do they give a compatible account of the quantumness
of a state ?
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Can a system of CMB size still be a quantum one ?

Let us consider
|Ψ⟩ = |+−⟩ − |−+⟩√

2
(12)

Density matrix

ρ̂ = |Ψ⟩ ⟨Ψ| = 1
2 (|+−⟩ ⟨+−| − |+−⟩ ⟨−+| − |−+⟩ ⟨+−|+ |−+⟩ ⟨−+|) .

(13)

Not a statistical superposition of the states |+−⟩ and |−+⟩ but a
quantum one.

Classical superposition :

ρ̂class. =
1
2 |+−⟩ ⟨+−|+ 1

2 |−+⟩ ⟨−+| . (14)
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Can a system of CMB size still be a quantum one ?

Let us consider
|Ψ⟩ = |+−⟩ − |−+⟩√

2
(12)

Density matrix

ρ̂ = |Ψ⟩ ⟨Ψ| = 1
2 (|+−⟩ ⟨+−| −�����XXXXX|+−⟩ ⟨−+| −�����XXXXX|−+⟩ ⟨+−|+ |−+⟩ ⟨−+|) .

(13)

Not a statistical superposition of the states |+−⟩ and |−+⟩ but a
quantum one.

Classical superposition :

ρ̂class. =
1
2 |+−⟩ ⟨+−|+ 1

2 |−+⟩ ⟨−+| . (14)

Decoherence dynamically removes the non-diagonal terms.
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Decoherence - Questions

Typically occurs when a system is coupled with an environment.

Will decoherence destroy the quantum correlations ?

Compatible with Bell Inequality and Quantum Discord ?
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Decoherence - Questions

Typically occurs when a system is coupled with an environment.

Will decoherence destroy the quantum correlations ?

Compatible with Bell Inequality and Quantum Discord ?
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Inflationary Cosmological
Perturbations



Mukhanov-Sasaki variable

The perturbations can be described by a single variable, the
Mukhanov-Sasaki variable

v̂(η, x) = 1
(2π) 32

∫
R3

d3kv̂k(η)eik.x . (15)

Makes sense to consider v̂ since for CMB temperature anisotropies,
on large scales

δT
T ∝ v̂ . (16)
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Hamiltonian : Sum of parametric oscillators

Ĥ =

∫
R2×R+

d3 k
[
p̂kp̂†k + ω2(η, k)v̂kv̂†k

]
, (17)

Commutation relations :

[v̂p, p̂q] = iδ(p+ q) (18)

One has independent systems indexed by R2 × R+.
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Hamiltonian : Sum of parametric oscillators

Ĥ =

∫
R2×R+

d3 k
[
p̂kp̂†k + ω2(η, k)v̂kv̂†k

]
, (17)

Introducing real and imaginary parts

v̂k =
v̂Rk + iv̂Ik√

2
, p̂k =

p̂Rk + ip̂Ik√
2

. (18)

One has

Ĥv =
∫
R2×R+

d3k
∑
s=R,I

[
(p̂sk)2

2 + ω2(η, k)
(v̂sk)2

2

]
, (19)

=

∫
R3+

d3k
∑
s=R,I

Ĥs
k (20)
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Evolution of the system

Liouville-von Neumann equation for each of the k ∈ R3+ system
density matrix

dρ̂sk
dη = −i

[
Ĥs
k, ρ̂

s
k

]
. (21)
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Evolution of the system with decoherence

Lindblad equation for each of the k ∈ R3+ system density matrix

dρ̂sk
dη = −i

[
Ĥs
k, ρ̂

s
k

]
− γ

2 (2π)
3
2 C̃R(k)[v̂sk, [v̂sk, ρ̂sk]] . (21)

Systems are still decoupled !
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Previous calculations and Objectives

Previous calculations :

• Martin and Vennin have studied the quantumness of these
systems without decoherence in Refs [2, 3].

• They found an explicit solution for Eq. 21 in [4].

Goals :

• Take into account decoherence to assess the quantumness of
CMB with respect to Quantum Discord and Bell inequality.

• Calibrate the different quantum criteria : Quantum Discord, Bell
inequalities and decoherence compatible ?
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Preliminaries



Splitting

Two ways of representing the systems the R/I splitting and the ±k
splitting define two different sets of subsystems

Ĥ =

∫
R3+

d3 k
[
p̂kp̂†k + ω2(η, k)v̂kv̂†k

]
, (22)

=

∫
R3+

d3k
∑
s=R,I

[
(p̂sk)2

2 + ω2(η, k)
(v̂sk)2

2

]
. (23)

We want to generalize to compute the quantum discord for an
arbitrary splitting of the system in subsystems.
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General splitting

One can go from the R/I splitting to a general splitting by
q̂1
π̂1
q̂2
π̂2

 = S(α, β, δ, θ)


v̂R
p̂R
v̂I
p̂I

 (24)

where

S(α, β, δ, θ) = (25)
cosα cos θ − sinα cos θ − cos δ sin θ sin θ sin δ
sinα cos θ cosα cos θ − sin θ sin δ sin θ cos δ
cosβ sin θ − sin θ sinβ cos(α− β − δ) cos θ − cos θ sin(α− β − δ)

sin θ sinβ cosβ sin θ − cos θ sin(α− β − δ) cos(α− β − δ) cos θ


(26)
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General splitting

One can go from the R/I splitting to a general splitting by
q̂1
π̂1
q̂2
π̂2

 = S(α, β, δ, θ)


v̂R
p̂R
v̂I
p̂I

 (24)

Hypothesis : The change of splitting is symplectic, i.e. preserves the
commutation relations, and preserves the vacuum.

S(α, β, δ, θ)ΩS(α, β, δ, θ)T = Ω where Ω =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 (25)

(q̂, π̂) are hermitian operators.
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State of the perturbations

Defined by its Wigner function

W(R) = 1
(2π)2

∫ ∫
dxdy e−iπ1x−iπ2y

⟨
q1 +

x
2 ,q2 +

y
2

∣∣∣ρ̂∣∣∣q1 − x
2 ,q2 −

y
2

⟩
,

(26)
with R̂ = (q̂1, π̂1, q̂2, π̂2)T.

Gaussian state :

W(R) = 1
(2π)2

√
det Γ

e−2R
TΓ−1R , (27)

where the covariance matrix is Γij = Re
[⟨
R̂iR̂j

⟩]
−
⟨
R̂i
⟩⟨

R̂j
⟩
.

All the information about the state is contained in Γ.
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State of the perturbations

In the R/I splitting one has

Γv =


P1 P2 0 0
P2 P3 0 0
0 0 P1 P2
0 0 P2 P3

 . (28)

P1 = |vRk|2+Jk , P2 =
1
2

d
dηP1 , P3 =

(
1
2

d2
dη2 + ω(η, k)2

)
P1 .

= 0 when γ = 0
(29)
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Quantum Discord



Computing the quantum discord

Transformation of the covariance matrix under
R̂ = (v̂R, p̂R, v̂I, p̂I)T → R̂(α, β, δ, θ) = S(α, β, δ, θ)R̂ :

Γ(α, β, δ, θ) = S(α, β, δ, θ)ΓS(α, β, δ, θ)T =
(
ΓA ΓC
ΓC ΓB

)
. (30)

Sub-matrices very complex→ intermediate quantities to perform
the calculations
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Computing the quantum discord

Sub-matrices very complex→ intermediate quantities to perform
the calculations

ΓA =

(
L−MA NA
NA MA

)
. (30)

where

L =P1 + P3 , (31)

MA = cos2 θO(α) + sin2 θO(δ) , (32)

NA = cos2 θ P(α, α) + sin2 θ P(δ, δ) , (33)

O(x) ≡P1 sin2 x+ P2 sin(2x) + P3 cos2 x , (34)
P(x, y) ≡ 2P2 cos(x+ y)(P1 − P3) sin(x+ y) . (35)

Similar definition for ΓB with different angles.
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Computing I

I(A,B) = H(ρ̂A) +H(ρ̂B)−H(ρ̂) . (36)

For a Gaussian state

H(ρ̂) =

nsub∑
i=1

f(2σi) , (37)

where

f(x) =
(
x+ 1
2

)
log2

(
x+ 1
2

)
−
(
x− 1
2

)
log2

(
x− 1
2

)
, (38)

Sp(ΩΓ) = {±iσi} , (39)

Ω =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 and ω =

(
0 1
−1 0

)
. (40)
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Computing I

One finds

Sp(ωΓA) =Sp(ωΓB) = {±iσ(α, β, δ, θ)}

={±i

√
P1P3 − P22 +

[
sin(2θ) sin(α− δ)

2

]2 [
(P1 − P3)2 + 4P22

]
}
,

(41)

Sp(ΩΓ) ={±iσ} = {±i
√
P1P3 − P22} . (42)

So that
I = 2 [f(2σ)− f(2σ(α, β, δ, θ))] . (43)
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Computing J

In Ref. [1] it is shown that for gaussian state J is given by

max{
ΠY
j
}J

(
X, Y,

{
ΠYj
})

= f
(√

det
(
ΓA
))

− f
(
2 ×

[
4 det

(
ΓC
)]2 + (4 det

(
ΓB
)
− 1)(16 det(Γ) − 4 det

(
ΓA
)
)

(4 det
(
ΓB
)
− 1)2

−
2 × 4

[
det
(
ΓC
)]√[

4 det
(
ΓC
)]2 + (4 det

(
ΓB
)
− 1)(16 det(Γ) − 4 det

(
ΓA
)
)

(4 det
(
ΓB
)
− 1)2

)
.

(44)

One has

det(ΓA) = det(ΓB) = σ2 + c2 , (45)
det(Γ) = σ4 , (46)
det(ΓC) = −c2 , (47)

c = −

√[
sin(2θ) sin(α− δ)

2

]2 [
(P1 − P3)2 + 4P22

]
. (48)
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Computing J

One can simplify the result to

max{
ΠY
j

}J
(
X, Y,

{
ΠY
j
})

= f(2σ(α, β, δ, θ)))− f
(
2σ(α, β, δ, θ)− 2c2

σ(α, β, δ, θ) + 1/2

)
.

(49)

So that

δ = f (2σ(α, β, δ, θ))− f (2σ) + f
(
2σ(α, β, δ, θ)− 2c2

σ(α, β, δ, θ) + 1/2

)
− f (2σ) .

(50)
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Quantum Discord - A particular case

In the R/I splitting i.e (α, β, δ, θ) = (0, 0, 0, 0) one has

I =2 [f(2σ)− f(2σ(0, 0, 0, 0))] = 0 , (51)

max{
ΠY
j

}J (X, Y,{ΠY
j
})

=f(2σ(0, 0, 0, 0)))− f (2σ(0, 0, 0, 0)− 0) = 0

(52)

Two independent susbystems→ No mutual information→ δ = 0
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Plotting the Quantum Discord
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Effective-spin operators

The GKM operators

Ŝiz =−
∫ ∞

−∞
|qi⟩ ⟨−qi|dqi , (53)

Ŝix =
∫ ∞

−∞
sign(qi) |qi⟩ ⟨qi|dqi , (54)

Ŝiy = i
∫ ∞

−∞
sign(qi) |qi⟩ ⟨−qi|dqi , (55)

satisfy the commutation relation for spin operators[
Ŝiµ, Ŝiν

]
= iϵµνηŜiη , (56)
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Computation of
⟨
B̂
⟩

One need to compute the mean-values
⟨
Ŝ1zŜ2z

⟩
,
⟨
Ŝ1xŜ2x

⟩
,
⟨
Ŝ1xŜ2z

⟩
and⟨

Ŝ1zŜ2x
⟩
.

For instance⟨
Ŝ1zŜ2z

⟩
=

∫ ∞

−∞

∫ ∞

−∞
⟨−q1,−q2| ρ |q1,q2⟩dq1dq2 . (57)
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Computation of
⟨
B̂
⟩

By similar proceedings one also computes the other mean-values⟨
Ŝ1zŜ2z

⟩
=

∫ ∞

−∞

∫ ∞

−∞
⟨−q1,−q2| ρ |q1,q2⟩dq1dq2 , (57)⟨

Ŝ1xŜ2x
⟩
=

∫ ∞

−∞

∫ ∞

−∞
sign(q1)sign(q2) ⟨q1,q2| ρ |q1,q2⟩dq1dq2 (58)⟨

Ŝ1xŜ2z
⟩
=

∫ ∞

−∞

∫ ∞

−∞
sign(q1) ⟨q1,−q2| ρ |q1,q2⟩dq1dq2 (59)⟨

Ŝ1zŜ2x
⟩
=

∫ ∞

−∞

∫ ∞

−∞
sign(q2) ⟨−q1,q2| ρ |q1,q2⟩dq1dq2 . (60)
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Computation of
⟨
B̂
⟩

By similar proceedings one also computes the other mean-values⟨
Ŝ1zŜ2z

⟩
=

∫ ∞

−∞

∫ ∞

−∞
⟨−q1,−q2| ρ |q1,q2⟩dq1dq2 , (57)⟨

Ŝ1xŜ2x
⟩
=

∫ ∞

−∞

∫ ∞

−∞
sign(q1)sign(q2) ⟨q1,q2| ρ |q1,q2⟩dq1dq2 (58)⟨

Ŝ1xŜ2z
⟩
=

∫ ∞

−∞

∫ ∞

−∞
sign(q1) ⟨q1,−q2| ρ |q1,q2⟩dq1dq2 (59)⟨

Ŝ1zŜ2x
⟩
=

∫ ∞

−∞

∫ ∞

−∞
sign(q2) ⟨−q1,q2| ρ |q1,q2⟩dq1dq2 . (60)

Then one uses the Wigner function⟨
q1 +

x
2 ,q2 +

y
2

∣∣∣ ρ̂ ∣∣∣q1 − x
2 ,q2 −

y
2

⟩
=

∫ ∞

−∞

∫ ∞

−∞
W(R)eiπ1x+iπ2ydπ1dπ2

(61)
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Computation of
⟨
B̂
⟩
- ±k splitting

One has

Γ =


P1+P3
2 0 P1−P3

2 P2
0 P1+P3

2 P2 − P1−P3
2

P1−P3
2 P2 P1+P3

2 0
P2 − P1−P3

2 0 P1+P3
2

 , (62)

One can compute for instance

⟨q1,−q2| ρ |q1, q2⟩ =
1

2π
√
P1P3

exp
(
− (P1 + P3)(q21 + 4iP2q1q2 − 4(P22 − P1P3)q22)

4P1P3

)
.

(63)
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One finally obtains ⟨
Ŝ1xŜ2z

⟩
=0⟨

Ŝ1zŜ2x
⟩
=0⟨

Ŝ1zŜ2z
⟩
=

1
4(P1P3 − P22)⟨

Ŝ1xŜ2x
⟩
=
2
π
arctan

(
P1 − P3
2
√
P1P3

)
.

(64)

Finally optimizing in a simple situation

⟨
B̂
⟩max

= 2

√(
1

4(P1P3 − P22)

)2
+

4
π2
arctan2

(
P1 − P3
2
√
P1P3

)
. (65)
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One finally obtains ⟨
Ŝ1xŜ2z

⟩
=0⟨

Ŝ1zŜ2x
⟩
=0⟨

Ŝ1zŜ2z
⟩
=

1
4(P1P3 − P22)⟨

Ŝ1xŜ2x
⟩
=
2
π
arctan

(
P1 − P3
2
√
P1P3

)
.

(64)

Finally optimizing in a simple situation

⟨
B̂
⟩max

= 2

√(
1

4(P1P3 − P22)

)2
+

4
π2
arctan2

(
P1 − P3
2
√
P1P3

)
. (65)
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Is the bell inequality violated ?

Without decoherence: Always !

⟨
B̂
⟩max

= 2

√
1+ 4

π2
arctan2

(
P1 − P3
2
√
P1P3

)
> 2 . (66)

With decoherence : Still need to plot the curves to assess the
evolution of the two terms...
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Conclusion



Conclusion and prospects

We derived two formulas for continuous system in a Gaussian state :
Quantum Discord and Bell inequality for the most general splitting.

Soon by plotting the curves we will be able

• To assess the quantumness of the CMB in a realistic context
• To calibrate the different criterion in this situation
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Thank you for your attention !
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State of the perturbations

Without decoherence : squeezed
state

Highly quantum !

With decoherence : still Gaussian

Destroys the squeezing ?
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How ”wrong” are the classical predictions ?

See “Quantum Discord of Cosmic Inflation: Can we Show that CMB
Anisotropies are of Quantum-Mechanical Origin?”

Classical framework can not fully mimic quantum correlations.

The involved correlations are not (yet) measurable.



Quantum origin of primordial inhomogeneities vs. Large-scale
structures

• ”How much” quantum are the fluctuations ? Are they still today
? What tools to estimate the quantumness ?

• How wrong are the classical predictions ? Can you measure the
discrepancies ?

• Can a system of CMB size still be a quantum one ?



Mutual Information for quantum systems

Von-Neumann entropy of S

H(S) = −Tr
[
ρ̂S log2(ρ̂S)

]
. (67)

If S = X ∪ Y, then one has two mutual information

I(X, Y) =H(X) +H(Y)−H(X, Y) , (68)

J
(
X, Y,

{
ΠY
j
})

=H(X)−H
(
X|Y,

{
ΠY
j
})

=− Tr
[
ρ̂X log2(ρ̂X)

]
+
∑
j

pj Tr
[
ρ̂Y|ΠY

j
log2

(
ρ̂Y|ΠY

j

)]
,

(69)

where ρ̂Y|ΠY
j
=

ΠY
j ρ̂Π

Y
j

pj , pj = Tr
(
ΠY
j ρ̂
)
and

{
ΠY
j
}
is a POVM.

J
(
X, Y,

{
ΠY
j
})

is non-symmetric under X↔ Y



In Fourier space its dynamics is controlled by

Ĥ =

∫
R2×R+

d3 k
(
p̂kp̂†k + ω2(η, k)v̂kv̂†k

)
, (70)

where ω2(η, k) = k2 − (a√ϵ1)
′′

a√ϵ1
and p̂k = δL̂

δv̂∗′k
= v̂′k.

Commutation relation :

[v̂k, p̂q] = iδ(k+ q) ± knot independent. (71)

One has independent systems indexed by R2 × R+.



Evolution of the system

Liouville-von Neumann equation for each of the k ∈ R3+ system
density matrix

dρ̂sk
dη = −i

[
Ĥs
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Evolution of the system

Total Hamiltonian

Ĥtot = Ĥv ⊗ Îenv + Îv ⊗ Ĥenv + γĤint . (72)

Lindblad equation show that systems are still decoupled ! For each
k ∈ R3+

dρ̂sk
dη = −i

[
Ĥs
k, ρ̂

s
k

]
− γ

2 (2π)
3
2 C̃R(k)[v̂sk, [v̂sk, ρ̂sk]] , (73)

where C̃R(p) = 1
(2π)

3
2

∫
R3 d3k

⟨
R̂(η, x)R̂(η, y)

⟩
eik.(x−y) .
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