### **Redshifted far-infrared/submm dust emission**

### from high-z QSOs

Alain Omont (IAP)

160-400  $\mu$ m emission observed at 1.2 mm (z = 2-6.4)

#### **OUTLINE**

#### **DUST MM EMISSION IN HIGH Z QSOs** (z = 2 - 6.4)

•Background : high z SCUBA/MAMBO ULIRGs

•IRAM-30m/MAMBO 1.2 mm Observations of bright QSOs

•Results : 55 detections. Statistics  $\rightarrow z \& L_{bol}$  dependence Prominent sources at z > 6 and others

•Properties and Origin of Dust Emission Evidence for dust emission Dust temperature and mass Heating : starburst or QSO. Evidence for starburst Implications

**FUTURE : ALMA etc.** 

#### **COLLABORATION**

GeneralP. Cox , A. BeelenIAS, OrsayF. Bertoldi (+ E. Kreysa)MPIfR, BonnC. CarilliNRAO

QSO samples SDSS z > 6 : X.Fan, M. Strauss PSS : G. Djorgovski

SCUBA 850µm R. McMahon, K. Isaak, R. Priddey Cambridge

CSO 350µm D. Benford, T. Phillips Caltech

Radio VLA C. Carilli, A. Petric, F. Walter NRAO

#### PARALLEL WORKS

Radioquiet QSOs SCUBA Isaak, Priddey, Mc Mahon et al. ; Willot et al., etc. Radioloud QSOs SCUBA Willott et al. Radiogalaxies : SCUBA Archibald et al., Ivison et al., etc. IRAM De Breuck et al., etc. Etc

 $\rightarrow$  X AGN

#### Highlights

• AGN  $(10^{13} - 10^{14} Lo) + ULIRG (10^{12} - 10^{13} Lo)$ 

• Massive star formation at less than 1 Gyr (where SCUBA/MAMBO galaxies not yet identifed at z>4)

- Large mass of dust → Heavy elements enrichment + dust formation
- Coeval Bulge/Black-Hole evolution → Massive Ellipticals
- Dust heating combines starburst + AGN
- First step  $\rightarrow CO$  detection  $\rightarrow \Delta V \rightarrow mapping + V$  structure with ALMA





The high z mm-submm window

Very steep submm SED of ULIRGs
→ Sensitivity at ~1mm independent of z for 0.5 < z < 10 !</li>



#### SCUBA(-MAMBO) census of high-z ULIRGs

- Take advantage of steep submm spectrum
- Account for the whole submm background
- z at Keck for radio ones (~60%) (weak AGN ?)
- $\rightarrow$  History of star formation up to  $z \sim 3-4$
- •*Small but uncertain number at z>4*
- →CO detected at IRAM-PdB in 8-10 (Neri et al 2003)



<u>SCUBA(-radio) redshift distribution</u> Chapman, Blain, Ivison, Smail 2003



#### **IRAM-30m/MAMBO 1.2 mm observations of bright high-z QSOs**

**1.** Aims

• Correlations between major starbursts and black-holes at high z

→ black-hole/spheroid mass correlation

• Easiest way to find (biased) cases of ULIRGs at very high z

**Redshifts of SCUBA/MAMBO sources are difficult to determine and practically unknown at** *z* > 4

**Better to search similar sources around known objects: (bright) QSOs or radiogalaxies** (Archibald et al. 2001)

## IRAM-30m/MAMBO 1.2 mm Observations of bright high-z QSOs

2. Sample

(Bright) QSOs ( $L_{bol} \sim 10^{13}$  -10<sup>14</sup> Lo) with z~2-6, from optical surveys : PSS, <u>SDSS</u>, etc.

Range of redshifts : large sample at z>4 ; comparison at z~2 ; largest redshifts identified  $\rightarrow$  z=6.4

**Range of luminosities :**  $M_B \sim -24 -28$ 

#### →

Omont et al. 1996 (+McMahon et aL. 1994) small sample (20) APM etc.Carilli et al. 2001deep SDSS sample (41) at z > 4Omont et al. 2001bright PSS sample (62) at z > 4Omont et al. 2003bright sample (35) at  $z \sim 2$ Bertoldi et al. 2003 (+ Bertoldi & Cox 2002, Petric et al. 2003) (6) highest  $z \rightarrow 6.4$ Beelen et al. 2004extension to fainter luminosities (40) at  $z \sim 2$  & z > 4

Total ~ 200 observed sources

(Parallel studies with SCUBA: series of papers by Priddey, Isaak, McMahon et al.)

MAMBO survey: ~200 optically selected SDSS, PSS, PG quasars at z=1-6 to study dust and molecular gas.



### **IRAM-30m/MAMBO 1.2 mm Observations of high-z bright QSOs**

#### 3. Observations

IRAM 30m Telescope Pico Veleta (Granada, Spain) 11" beam Reasonably good pointing accurracy ~2" Wobbling secondary mirror

MAMBO bolometer cameras Built at MPIfR Bonn (E. Kreysa group) 37 → 117 channels Pointed observations on central channel Good sky substraction with other channels (MOPSI software Zylka, Bertoldi, etc.)





### **IRAM-30m/MAMBO 1.2 mm Observations of high-z bright QSOs**

#### 3. Observations

IRAM 30m Telescope Pico Veleta (Granada, Spain) 11" beam Reasonably good pointing accurracy ~2" Wobbling secondary mirror

MAMBO bolometer cameras Built at MPIfR Bonn (E. Kreysa group) 37 → 117 channels Pointed observations on central channel Good sky substraction with other channels (MOPSI software Zylka, Bertoldi, etc.)

**rms** ~ 30 mJy in 1 sec. Average rms ~0.6-0.7 mJy → 2h per source Several hundreds of hours of observation





### **IRAM-30m/MAMBO 1.2 mm Observations of bright QSOs**

4. Summary of results

High rate of detection : ~55 sources detected  $\rightarrow$  ~ 25%

Strong propensity to the presence of interstellar matter (dust) around active massive black holes  $\rightarrow$  fuel of QSO activity, black-hole/bulge coeval growth

#### $\rightarrow \rightarrow \rightarrow$

- •No significant dependence on z
- •Small dependence on L<sub>opt</sub>
- •Evidence for DUST emission
- •Starburst or AGN dust heating ?
- •Arguments for substantial contribution from starburst

#### $\rightarrow \rightarrow \rightarrow$

Prominent sources: BR 1202-725 z=4.7, PSS 2322 z=4.1, SDSS J1148 z=6.4, etc.

 $(\rightarrow \rightarrow \rightarrow$ 

CO search at IRAM or VLA → C. Carilli)

### FIR flux (estimated) vs. redshift





The redshift behavior of  $L_{FIR}$  is very different from radiogalaxies where a strong increase with z is observed by Archibald et al.2001

# FIR is not correlated with rest-UV



#### Information from high angular resolution 1.3 mm dust observation

1.35 mm Continuum



PSS 2322



**IRAM Plateau de Bure Interferometer** 



BR1202-0725

- 1.3 mm dust detection at IRAM interferometer in more than 10 high z QSOs
- In most cases emission not resolved with 1-2" resolution (or not detected) In some cases PdB intensity significantly smaller than MAMBO-30m intensity
   → weak emission partially extended vs 2" ??
- A few resolved lensed objects:
  - Spectacular : Cloverleaf, APM0855 ....
  - Marginally extended : BR0952, PSS2322 (Cox et al. 2002) ....
- The unique case of BR1202-0725 with 2 strong sources 4" apart (Omont et al. 1996)
- → (complex) lens or two (merging) ULIRGs ??

#### **Dust emission from the most distant quasars Bertoldi et al. 2003**

+ CO detection ( $\rightarrow$  C. Carilli)







#### SDSS J1148+5251

Mambo 1.2mm (contours) on z' SLOAN image

Dust at z=6.42 !

1.4 GHz radio VLA-NVSS

Elliptical galaxy at z = 0.05



Keck K'

#### **CONFIRMATION OF DUST ORIGIN OF THE EMISSION**

• Flux ratios 850 µm / 1.2 mm characteristic of dust SCUBA : Isaak et al. 2002, Priddey et al. 2003

• Flux ratios FIR / radio comparable to local ULIRGs VLA : Carilli et al. 2001, Petric et al. 2004, Beelen et al. 2004

• Many are confirmed as radio quiet from deep VLA observations Carilli et al. 2001, Petric et al. 2004, Beelen et al. 2004

• A few are found weakly radio loud, but dust emission confirmed *Carilli et al. 2001* 

• Radio to mm Spectral Energy Distribution (SED) very comparable to templates of starburst dust emission : M 82, etc. Cox et al. 2002 SED from radio to submm of bright QSO PSS2322 at z=4.1 is in good agreement with standard SED of the template local Luminous IR Galaxy M 82





Proportionality of radio (synchrotron) and far-IR (dust) luminosities of star forming regons/galaxies on 4 orders of magnitude



250 GHz to 1.4 GHz spectral index

#### **DUST TEMPERATURE & FAR-INFRARED LUMINOSITY**

mm/submm emission dominated by cold dust at 30-50 K (Benford et al. 1999, Priddey & McMahon 2001)

#### **DUST TEMPERATURE & FAR-INFRARED LUMINOSITY**

mm/submm emission dominated by cold dust at 30-50 K (Benford et al. 1999, Priddey & McMahon 2001)

> **FIR-submm Spectral Energy Distribution of high-z AGN** Benford et al. 1999  $\rightarrow$  T<sub>dust</sub> ~ 40-50 K ( $\rightarrow$  100 K)





#### **DUST TEMPERATURE & FAR-INFRARED LUMINOSITY**

mm/submm emission dominated by cold dust at 30-50 K (Benford et al. 1999, Priddey & McMahon 2001)

- $\rightarrow$  L<sub>FIR</sub> ~ 3-4 10<sup>12</sup> (S<sub>1.2mm</sub> / mJy) Lo  $\rightarrow$  ~ 10<sup>13</sup> Lo
- Comparable to brightest SCUBA sources
- Typically ~ 0.1 L<sub>opt</sub>
- Probably at a few 100 pc to ~1 kpc from the center
- (no direct relation with AGN obscuration by very close dust)
- (possibility of :
  - warmer closer dust component : seen in mid-IR Haas et al., Freudling et al., etc.
  - colder dust component, farther out)

### **MASS OF DUST**

- Typically ~  $10^8 \, Mo$
- But inversely proportional to uncertain dust emissivity
- $\rightarrow$  M<sub>H2</sub> ~ a few 10<sup>10</sup> Mo

### WHICH HEATING FOR COLD DUST ? $\rightarrow$ FAR-IR LUMINOSITY ?

### **STARBURST OR AGN ?**

#### Both are viable :

### • For AGN heating :

(see e.g. Sanders et al. 1989, Andreani et al. 1999, Willott et al. 2002, Haas et al. 2003, Freudling et al. 2003, etc.)

- L<sub>FIR</sub> is only a tiny fraction of L<sub>bol</sub> (~0.1)
- Possible to imagine adequate geometry/ UV radiative transfer

• Higher T (>~100 K) dust detected in far/mid-IR must be heated by the AGN



Models of AGN strong dust emission by Haas et al. 2003

Haas et al. 2003

### • Starburst powering of dust heating

•. Is known to dominate in most local and high z ULIRG's (where  $L_{FIR} \sim 10^{12}$  Lo) :

- ISO spectroscopy (Genzel et al., etc.)
- Correlation of L<sub>FIR</sub> with CO and with radio
- No X-Ray detection of most SCUBA sources

•. Extension to  $L_{FIR} \sim 10^{13}$  Lo is possible in exceptional objects : central collapse or major merging in massive ellipticals ?

•. → Arguments for a <u>substantial starburst contribution</u> to heating of cold dust in millimeter detected high z QSOs :

- Correlation with CO in strong sources above CO detection limit
- Correlation with radio intensity seems rather general
- Large starbursts are needed to quickly synthesize stars and metals

### WHICH HEATING FOR COLD DUST ? → FAR-IR LUMINOSITY ?

### **STARBURST OR AGN ?**

#### **Conclusions**

- Both are viable
- Probably a combination of both in various proportions
- Proportions may depend on redshift, with more starburst at z > 4 than at z ~ 2 ? as for radio-quasars/radiogalaxies (Willott et al. 2002)
- But some starburst probably always present in 1.2mm detected sources

#### FRACTION OF TYPE I QSOs AMONG SCUBA/MAMBO SOURCES

- Density of SCUBA/MAMBO sources with  $S_{1.2mm} > 2 \text{ mJy}$  : ~ 1000/deg<sup>2</sup>
- Density of SCUBA/MAMBO AGN with  $S_{1.2mm} > 2 \text{ mJy} : >~ 100 150 / deg^2$ ?
- Density of detectable (25%) QSOs with  $M_B < -26.5 : \sim 0.5 / deg^2$
- Detection rate smaller at  $M_B \sim -24 25$

→ Density of all detectable Type I QSOs with  $M_B < -23$  uncertain but smaller than SCUBA AGN density

#### **PROPECTS : IMMEDIATE FUTURE**

#### SCUBA, MAMBO $\rightarrow$ SMA, APEX, SIRTF $\rightarrow$ CARMA, E-IRAM, LMT, BLAST...

Systematic characterisation of highest z AGN (sub)mm emission

- Cold Dust :  $\rightarrow$  tracer of molecular gas
- (+ CO :  $\rightarrow$  confirmation of starburst,  $\Delta V$ ,  $T_{gas} \rightarrow C$ . *Carilli*)
- → parallel growth of Bulge & Black Hole
- → Cold dust in classical optical QSOs
- Improve statistics on whole range of  $M_B$  down to ~ -23
- •Peculiar classes: (BAL Willott), red, weakly radioloud
- Further studies at z<~1 (+radio *Mohan*)
- SEDs with SIRTF

→ Cold dust in X-ray AGN, various classes: Optical, Obscured, Type 2, ...

→ CO in most luminous dust emitters



### FARTHER FUTURE

### New Facilities: ASTRO-F, HERSCHEL, (WIDE) ...

### **DOMINATED BY ALMA**

- 64 movable 12-meter antennas in submm site
- Sensitivity gain ~ 100 / existing equipment
- >~1000 in imaging speed



ALMA at Chajnantor



### FARTHER FUTURE

### New Facilities: ASTRO-F, HERSCHEL, (WIDE) ...

### **DOMINATED BY ALMA**

- 64 movable 12-meter antennas in submm site
- Sensitivity gain ~ 100 / existing equipment
- >~1000 in imaging speed
- Higher frequency  $\rightarrow$  T<sub>DUST</sub>
- CO + Dust detection in ALL QSOs & radiogalaxies → highest z
- C<sup>+</sup>, CI and other molecules
- Spatially resolved / Velocity
- Companions, proto-clusters
- Lensing





Redshift z