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Preface

We have been doing physics for several years now. Since then, physics was mostly Fourier
transforms, solving differential equations and linear algebra. The question behind most
of the physical problems was usually How to diagonalize the Hamiltonian? This is just
because we did a lot of Quantum Physics. We were (and still are) used to the Dirac
notations i.e. the bras and the kets, operators, commutators, etc. Even when it comes
to contracting indices and using the metric tensor, Special Relativity gave us some ease.
With General Relativity, the paradigm has changed, and so the mathematical formalism.
Everything is continuous and formula are impossible to remember!. A lot of questions are
raised. What is the tangent vector tangent to? What does the connection connect? Does
a one-form act on a function? How to physically interpret the Riemann tensor? What
is the link between the Lie derivative, Killing vectors and symmetries? Does a change of
coordinates act at the same point? If you are just like me and all these questions prevent
you from sleeping, these lecture notes are made for you.

What are these Lecture Notes? This handout presents the mathematics of Gen-
eral Relativity. It aims at offering the reader a mathematical toolbox and ease behind
the concepts of Riemannian geometry. We will introduce the useful basic concepts of
differential and Riemannian geometry, discuss their interpretations and give useful tips to
easily apply these abstract concepts to physics. I will try to write these lecture notes so
that you can have different reading levels. For example, you can entirely read the handout
or just the essential at the end of each section. Several examples in violet also illustrate
the abstract concepts throughout the script. We will not prove most of the results to
keep these lecture notes relatively short. Finally, these lecture notes are mainly based on
David Tong’s lectures? and the heavy "Big Black Book"?.

What These Lecture Notes are Not? Personally in General Relativity, I know
how to apply formula, compute with several indices, integrate, change frames, etc. But
I feel that I do not deeply understand the mathematical objects I am using. To help me
understand the mathematics of General Relativity and to make things clear in my mind,
I started to write these lecture notes. And I learned a lot! Obviously, the aim was not
to write another lecture notes on General Relativity because many already exist on the
web. Instead, I wanted to focus on mathematics.

First, I need to say that this is not a physics lecture. We will not discuss Einstein
equations, present some solutions, linearize the theory to recover gravitational waves,
etc... It means basically that we will not make a clear and deep link between geometry
and gravity. But wait... Gravity is geometry! This rather simple statement gives me the
opportunity to focus on mathematics and geometry instead of physics, hoping that physics
will become more intuitive afterward. The rest is no longer my responsibility because (i)
I am just a beginner i.e. I know pretty much nothing about General Relativity, and (ii)
we have a wonderful teacher.

Finally, T would like to thank our teachers Marios Petropoulos and Philippe Grand-
clément for making me understand that I do not fully understand General Relativity.

!Can you write the torsion tensor in terms of components without looking at the formula?
2David Tong, General Relativity, University of Cambridge Part III Mathematical Tripos
3Charles W. Misner, Kip S. Thorne and John Archibald Wheeler, Gravitation


http://www.damtp.cam.ac.uk/user/tong/gr/gr.pdf
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Chapter 1

Differential Geometry

The aim of this section is to fully understand the objects we manipulate in General
Relativity. Most of the definitions are usually very formal and one loses intuition. Here,
we give a meaningful sense of how different objects should be seen or at least imagined.
Even if our discussion of differential geometry is not particularly rigorous, we will be
careful about building up the mathematical objects in the right logical order.

1.1 Differential Manifolds

The first basic notion that we introduce is the concept of manifold. As most physicists
are satisfied with a more fuzzy and intuitive definition, we will not discuss some elaborate
framework. Instead, we should think of a manifold as a curved D-dimensional space so
that if you zoom in to any patch, the manifold looks like RP. Viewed more globally, the
manifold may have interesting curvature or topology.

Figure 1.1. Example of a differential manifold in two dimensions which locally looks
like R2.

If one wants to describe physics with manifolds, one needs to make manifolds dif-
ferential. In simple words, a differential manifold M means that we can continuously
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(smoothly) go from one point p € M of the manifold to another point ¢ € M, and that
M locally looks like RP. An illustration is provided above.

Example. Some simple examples in mathematics include Euclidean space R”, the sphere S” and the
torus TP = S' x ... x S'. In statistical physics, the phase space of N particles is a 6N-dimensional

manifold.

The advantage of locally identify a differential manifold M to R is that we can
now import our knowledge of how to do maths on R”. For example, we now how to
parametrize a curve or to differentiate functions on RP”.

A differential manifold is a smooth curved D-dimensional space that is locally Eu-
clidean.

1.2 Vectors Redefined into Tangent Vectors

We know what vectors are from undergraduate physics, and we know what differential
operators are. But we are not used to equating the two. Here, we give the tools to un-
derstand in what sense a vector should now be seen as a tangent vector ¢.e. a differential
operator.

In classical mechanics working in a flat space, we describe the position of a particle as
a vector £ € R3 defined as an "arrow" drawn from some origin to a point. This notion
does not generalize to other manifolds. For example, a line connecting two points on a
sphere is not a vector. In general, there is no way to think of a point p € M as a vector.

To first understand tangent vectors at a given point p € M, we would like to give
a coordinate independent (formal) definition of differentiation, and then describe it us-

ing coordinates. Let us denote C*°(M) the set of all smooth functions over a manifold M.

Definition. A tangent vector X, is an object that differentiates functions at a point
p € M. Specifically, X, : C*(M) — R satisfying

(i) X,(f +9) = X,(f) + X,(g) for all f,g € C*(M).
(ii) X,(f) =0 when f is a constant function.

(i) X, (fg) = f(p)Xp(9) + Xp(f)g(p) for all f,g € C=(M).

The last property is of course the Leibniz rule. Intuitively, tangent vectors tell us how
things change in a given direction. They do this by differentiating. It is easy to check
that the objects

(1.1)



which act on functions obeys all the requirements of a tangent vector'. However, they are
much more than simple tangent vectors.

Indeed, the set of all tangent vectors at a point p € M forms an D-dimensional vector
space called the tangent space 7,(M). The tangent vectors d,| provide a basis for
p

T,(M). This means that we can rewrite any tangent vector as

X, =X"0,| , (1.2)
P
with X*# the components of the tangent vector in this basis. Note that to be fully rigorous
regarding the notation, one needs to write 8, instead of d,, because this object is a tangent
vector.

What is it tangent to? So far, we have not really explained where the name "tangent
vector" comes from. Consider a smooth curve in M that passes through the point p € M.
We describe the curve by some coordinates z#(\) where A\ parameterizes the curve such
that A = 0 at p € M. Before we learned any differential geometry, we would say that the
tangent vector to the curve at A = 0 is

dzt(X)
XH = ) .
d\ =0

But we can take these to be the components of the tangent vector X, which we define
as

(1.3)

_dat(N)
Xp = d\ ’A:O

The tangent vector tells us how fast any function f € C*°(M) changes as we move
along the curve. This gives also meaning to the term "tangent space" for 7,(M). It is
literally the space of all possible tangents to curves passing through the point p € M. An
illustration of a two dimensional manifold embedded in R? is shown below. Note that the
tangent spaces T,(M) and 7,(M) at different points p # ¢ are different. There is no way
to compare vectors in 7,(M) and vectors in T,(M).

Oy (1.4)

A=0

So far we have only defined tangent vectors at a point p. It is useful to consider objects
in which there is a choice of tangent vector for every point p € M. We call objects that
vary over space fields. A vector field X is defined to be a smooth assignment of a
tangent vector X, to each point p € M. Given a coordinate basis, we can expand any
vector field as

X = X"9,, (1.5)

where the X* are now smooth functions on M. This tangent vector field X, given a
certain curve parameterized by x#(\), acts on a function as a differential operator

det Of  df(N)

X(N) = X0l = o = "

(1.6)

INote that the index u is a subscript rather than superscript that we use for the coordinates .
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Figure 1.2. Illustration of a tangent vector space 7,(M) at the point p € M with a
tangent vector X = X", in a two dimensional manifold.

It means that a tangent vector acting on a function tells us about how this function
vary along the curve.

At any point p € M on the manifold, we define a tangent vector X, : C*(M) — R
that satisfies properties of differentiation (linearity, Leibniz rule, ...). The set of

objects 0,,| forms a basis of the tangent space 7,(M). Thus the tangent vector
p
can be decomposed as

X, = X*9,| . (1.7)

P
Allowing the components X* to vary on M, we define a vector field X : C*(M) —
C®(M) as

X = X"9,. (1.8)

The action of a tangent vector field X, given a certain curve parameterized by
x#(\), on a function f is

df(A)
1.9

dA J ( )
which is a number when evaluated at a point p € M.

X(f)=X"ouf =

1.3 Integral Curves

The last section was formal but essential to understand that a tangent vector is a differ-
ential object. Fortunately, there is a slightly different way of thinking about vector fields
on a manifold. This point of view is the one I use when I think of tangent vectors.



We have seen previously that the components of a tangent vector are

dazt(XN)

Xt =
dX

(1.10)

It means that to compute a tangent vector X, at a given point p € M, one must
specify a curve passing through p. As the curve is defined by x#(\), one must differenti-
ate each coordinate with respect to A to recover a tangent vector.

Example. Let us consider the curve C : {# = m/2,¢ = A} on the two dimensional sphere S? that we
parameterize with 6 and ¢. This curve clearly is the equator. To explicitly compute a tangent vector at
some point, one needs to specify a basis. We choose {0y, 0,,}. Then our vector X is written

4o 0
x- (B)- (1) -0, L
dA

The previous example shows that one can explicitly write a tangent vector if a specific
curve is given. Indeed, a tangent vector at a given point can be oriented in different ways.

Alternatively, given a vector field X = X*0,, we can integrate the differential equation
(1.10) subject to some initial conditions. The generated streamlines are called integral
curves. The integral lines are then simply describe by

z"(A) = 2"(0) + A X" + O(N\?), (1.12)

that illustrates how the tangent vector components give the variation along a curve.

Example. e Consider again the sphere S? in polar coordinates with a vector X = 9,. The integral
curves solve the equation (1.10), which are

de de
T 0 and = 1, (1.13)

that has the solution 6 = 6y and ¢ = g + A. The integral lines are shown below.

e Consider the vector field on R? with Cartesian coordinates X = (1,2?) = 9, + 229,. The equation for
the integral curves is now

dr dy 5
T 1 and T (1.14)

that has the solution #(\) = z¢ + A and y(A\) = yo + (2o + A)®. The associated flow lines are shown
below.



X1, = (1,2%) so that ::—f\ =1 and ::—K =2
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(a) X = XH9, = 0,. (b) X = XH9,, = 0, + 220,.

Figure 1.3. Some integral curves corresponding to the two examples given above.

Given a curve C parameterized by x#(\), one can compute the components of a
tangent vector X* using differentiation®

dazt(N)

dx
Alternatively, given a tangent vector X = X*0,, one can integrate (1.15) and
obtain integral curves’ parameterized by x#(\). A tangent vector tells us about
variation along a curve, as shown by

Xt =

(1.15)

(X)) = $*(0) + AX* + O(N?). (1.16)

A tangent vector must be seen as a directional derivative operator along a curve.

2Note that this is possible if one first chooses a basis and a set of coordinates.
bNote that in practice, only very simple tangent vectors can be integrated.

1.4 Transformation Law for Tangent Vectors

An especially useful basis in the tangent space at a point? p € M is induced by any
coordinate system

e

0
I % = au’ (1'17)
that must be seen as a directional derivative along a curve. A transformation from one
basis to another in the same tangent space 7,(M) at the event p € M is produced by a
matrix

2Tt is more appropriate to call a point an event.
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0 0 Ox*
/ e e e M
Yoo 0xv Ozt dx €uly- (1.18)

e

The matrix J is the Jacobian of the transformation x# — z/#. One must see this
transformation as the chain rule. The components of a tangent vector must transform
by the inverse matrix

X" =(Jrxn (1.19)

Note that we have (J~')/.J#* = 2. This inverse transformation law guarantees com-
patibility between the expressions X = X"e, and X = Xte,

X = X", = ((J7)X7) (e t) = X(J )2 T)e, = X7ote, = Xre,.  (120)

Example. Let us consider the two dimensional flat plane. One can use polar coordinates x* : {r, 0} or
Cartesian coordinates z'# : {x = rcosf,y = rsinf} to define an event, a curve, etc. The Jacobian of the
x# — a'M transformation is defined as

ox ox . i . i
(55 G5\ (cos® —rsinfd —1_ 1 [rcos® rsind
J = (gi’ §g> <sinﬁ rcos ) , I = r \—sinf cosf |- (121)

Now if we consider a tangent vector X = (0,1) = 9y in polar coordinates, one can rewrite? it in Cartesian
coordinates

o = J§ 0, = J50, + JJ 0y = —rsinbd, + rcos 00, = —y0, + x0y. (1.22)

Our tangent vector X is written X = (—y,x) in Cartesian coordinates. Notice that in Cartesian co-
ordinates, it is not obvious that our tangent vector gives rise to integral curves rotating around the origin.

The change of basis and coordinates x# — a'* of a tangent vector X is made by
the use of the Jacobian®®

© e
JH = %, (J hE = % satistying  J, J¥ =0, (1.23)

The basis tangent vectors e, = 0, transform with J

e, =e,J!. (1.24)

The tangent vector coordinates X*, depending on the choice of coordinates, trans-
form with J—1

X = (JhHEXxY, (1.25)

“Note that the equations give the components of J and J 1.
5We remember this transformation as differentiating the new coordinates with respect to the
old coordinates.

3We eliminate the origin because it is a singular point for polar coordinates.
4Note that because we transform a basis tangent vector, we use the Jacobian and not its inverse.
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1.5 Omne-Forms

We have seen that tangent vectors at an event p € M live in the tangent space 7,(M).
Since T,(M) is a vector space (one can choose {J,} as a basis), there exists a dual vec-
tor space to T,(M) denoted 7, (M). This space is called the cotangent space and its
elements are linear functions from 7,(M) to R.

An element w € T, (M) of the cotangent space is called a one-form. A one-form acts
on a tangent vector to give a number. This procedure must be seen as a scalar product®

weT(M): T,(M)—R

' X — (w|X) (1.26)

The simplest example of a one-form is the differential df of a function f. The action
of a tangent vector X on f being X (f) = X*0,f, the action of df on X is

(dfIX) = X(f) = X"Ouf. (1.27)

Noting that df is expressed in terms of the coordinates as df = 0, fdz*, it is natural
to regard {dz"} as a basis for 7(M). Moreover, we have

“w
a0,y = 0% g (1.28)

- O v

An arbitrary one-form w can then be written

w = w,dz", (1.29)

where w), are the components of w. Given a tangent vector X, one can act on this tangent
vector with the one-form®

(w|X) = (w,d2"| X"0,) = w, X" (dz"|0,) = w, X"l = w, X" (1.30)

v . .
From dz’ = %22dz”, we find the coordinate transformation of the one-form compo-
nents

da'
W= %wu (1.31)

®We draw an analogy with quantum mechanics when we write (¢|¢) with o)) € H and (¢| € H*, the
Hilbert space and its dual space respectively.

6Note that the scalar product is defined between a tangent vector and a one-form and not between
two tangent vectors or two one-forms.
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A one-form w is an element of the dual vector space 7,7(M) that acts on a tangent
vector X to give a number’ (w|X) = w,X*. Any one-form w can be decomposed®
on the basis {dz"} as

w = w,dz”, (1.32)
where w, are the components of w. The basis elements satisfy

“w
(dz"|8,) = giu = 5", (1.33)

%This action defines an inner product.
bRemember that one-form components have low indices whereas tangent vector components
have upper indices.

1.6 Tensors

A tensor of type (¢,7) is a multilinear object which maps ¢ elements of 7(M) and r
elements of 7,(M) to a number. Such an object, called a tensor of rank ¢ + r, is written
in terms of the bases described earlier as

T="T"", Oy Oy, dz” . da™. (1.34)

1---Ur

Note that we deliberately write the string of lower indices after the upper indices, and
the tensor product between basis elements is not written. In some sense this is unneces-
sary, and we do not lose any information by writing 75, ;. Nonetheless, we will see later

that it is a useful habit to get into.
Example. A tangent vector is a tensor of type” (1,0) and a one-form is a tensor of type (0, 1).

Let X; = X{‘@u with 1 <4 <r and w; = w;,dz" with 1 < j < ¢ be 7 tangent vectors
and j one-forms. The action of a tensor T' on them yields a number

T(wi,...,we X, ..., X)) =T wyy owy, X7 X (1.35)

1...Upr

As with vector fields and one-forms, we can ask how the components of a tensor
transform. We know that tangent vector basis elements J,, and one-form basis elements
da* transform as

o, =Jro, and da = (J")da". (1.36)

Then, it is clear that the lower components of a tensor transform by multiplying by J
and the upper components by multiplying by J~!. So, for example, a rank (1,2) tensor
transforms as

Oxt Oz’ O™
© 9z Oxe Oxv T TV

T, = (VT I,

pv

(1.37)

"Using the fact that 7,7*(M) = T,(M).
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for a x# — 2" coordinate transformation. Note that we usually do not write the prime
because there is no ambiguity regarding the change of coordinates. This transformation
is just the chain rule and acts at two different points.

Similarly to tangent vectors fields, we can define tensor fields by making each com-
ponents of the tensor a function that can be smoothly evaluated on the manifold. Note
that on a manifold of dimension D, a tensor T of type (¢,7) has DIt" components. For
a tensor field, each of these is a function over M.

In General Relativity, every equation satisfies the principle of general covariance
i.e. the equation preserves its form under a general coordinate transformation. As one
can define a tensor independently of the basis that we chose, a tensorial equation is valid
in any coordinate system i.e. in any frame. Note that, in particular, a tensor is zero (at
a point) in one coordinate system if and only if the tensor is zero (at the same point) in
another coordinate system.

A tensor T of type (q,r) acts on ¢ one-formes and r tangent vectors to give a
number

T(wi,...,wg X1,..., X)) =THHa 0wy owy, X7 X (1.38)

fl coo
Under a coordinate transformation, the lower components of a tensor transform by
multiplying by J and the upper components by multiplying by J~!. Intuitively,
this is the chain rule. For example,

e Ozt Oz'™ Oz
vl Qxe xv TN
The principle of general covariance tells us that every physical equation should be
written in a tensorial form such that it is valid in every coordinate system.

(1.39)

1.7 Operations on Tensor Fields

There are a number of operations that we can do on tensor fields. The basis algebraic
operations are the following.

Linear combination. Given two (q,r) tensors A, B and two scalars «, (3, their linear
combination T'= A + B is also a (g, r) tensor. In terms of components, this reads

T#l---#q — aA#l---#q . + 6Bl~t1---l~‘q

Vi...Up

(1.40)

Vi...Up"

Tensor product. Given a (g,r) tensor A and a (¢’,7’) tensor B, their tensor product
T=A®Bisa(q+¢,r+7") tensor. In terms of components, it reads

T’“"'”q-%t/ — AM1-Hg Buq+l..'uq+q/ (141)

VieVpgpt Vi...Upr Vr4leeVpypl

Contraction. Given a (g,r) tensor, one can associate to it a (¢ — 1,7 — 1) tensor via
contraction of one upper and one lower index

14



Tlu'l'“:“q . N T,Uflm/—qul — T‘ul""uqil)\ (142)

V...V, Vi..VUp_—1 VieUp_1 A"

Note that contraction over different pairs of indices will in general give rise to different
tensors. For example, T} and T, will be different in general.

Symmetrisation and anti-Symmetrisation. Given a (0,2) tensor T' = T}, dz*dz”,
one can decompose it into its symmetric and anti-symmetric parts as

1
T(X,Y)=S(X,Y)+A(X,Y) with 2 (1.43)
In index notation, this becomes
1 1
SI-U’ = §(TIJV + Tl,“> and AMV == Q(Tuy - Tyu)y (144)

which is just like taking the symmetric and anti-symmetric part of a matrix. These
operations being frequently used, we introduce some new notation. We define

1 1
Tiyw) = §(T/w +T,u) and  Tj,) = §<Tuv —Topu)- (1.45)

Note that a product of a symmetric and an anti-symmetric tensor is always zero.
Indeed, let us consider S a symmetric tensor (S,, = S,,) and A an anti-symmetric
tensor (A,, = —A,,). Then,

SMA, =—-S"A,, =-5"A,, (1.46)
where in the last step, we rewrite the indices because these are dummy indices. We finally

obtain S*A,, = 0.

Example. e These operations generalise to other tensors. For a (3,1) tensor symmetric under the two
first upper indices, one obtains

1
T(/u/)pg _ 5(71/11/,0 . 4 TR U>. (147)

e Similarly, for a totally symmetric (0,3) tensor, one obtains

1
T(/u/)\) - g(ﬂw/\ + T‘/t/\u + Tu/t/\ + T‘l/)\p + T)\'U,V + T)\l//l.)7 (148)

where we considered all permutations of three elements (hence the 3!). For a totally anti-symmetric
tensor, one obtains the same but with a minus sign when the permutation cannot be obtain from the
ordered indices with a cyclic permutation

1
T[;w/\] - 3*'(1_'/41/)\ - ]1;1)\1/ - Tvz/y,)\ + Tll)\/t + T)\/LI/ - T)\I//L)' (149)
e If a (0,2) tensor T is totally anti-symmetric, then T}, = —T,,,.

e The product of a totally symmetric tensor with a totally anti-symmetric tensor is zero. Indeed, let us
consider A*” symmetric and B,,,, anti-symmetric. Then one obtains

AMB,, = —A"'B,, = —A"B,,, (1.50)
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because 1 and v are dummy variables.

How to prove that an object is a tensor? To prove that an object is a tensor, one
has to verify that the object (its components) transforms as a tensor. Schematically, if
one obtains

T' = (..)T + junk, (1.51)

then the object T is not a tensor. Note that when one wants to manipulate tensors, it is
usually easier to deal with its components.

A linear combination of tensors is a same type tensor.

A tensor product between a (g, r) tensor and a (¢, r’) tensor gives a (¢ + ¢, 7 +17)
tensor.

Given a (g, r) tensor, one can associate to it a (¢ — 1,7 — 1) tensor via contraction
of one upper and one lower index®.

Given a tensor, one can define the symmetric and the anti-symmetric part of the
tensor

1 1
Ty = i(Tw/ +T,,) and Tyw) = §<le — Top)- (1.52)

These definitions are generalized to other tensors of higher rank. A product of a
symmetric tensor with an anti-symmetric tensor is zero.

An object T that transforms as

T' = (..)T + junk, (1.53)

is usually not a tensor.

“Note that T}, and T}, will be different in general.

1.8 Commutators and Lie Derivative

Given two tangent vector fields X and Y, we cannot multiply them together to get a
new tangent vector field. Roughly speaking, this is because the product XY is a second
order differential operator rather a first order operator. This reveals itself in a failure of
Leibnizarity for the object XY,

XY (fg) = X(fY(9) +9Y(f)) = X(f)Y(9) + fX(Y(9)) +9X(Y(f)) + X(g)lz(f),)
1.54

which is not the same as f XY (g) + ¢ XY (f).
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However, one can build a new tangent vector field by taking the commutator [ X, Y],
which acts on function f as

(X, Y](f) = X(Y(f) - Y (X(f)). (1.55)

This is also known as the Lie bracket. Evaluated in a coordinate basis, the commu-
tator is given by

oYy” oX"\ of
XY = (X" —Y* . 1.56
X, Y1(f) ( Oxt Oxt ) oxV (1.56)
It is not difficult to check that the commutator obeys the Jacobi identity
(XY, Z]|+[Y,[Z, X]|+[Z,[X,Y]]| =0, (1.57)

which one can remember as the sum of the cyclic permutations of X, Y and Z being
zero. 'This ensures that the set of all tangent vector fields on a manifold M has the
mathematical structure of a Lie algebra.

So far, we know how to differentiate a function f. This requires us to introduce a
tangent vector field X, and the new function X (f) can be viewed as the derivative of f
in the direction of X. But is it possible to differentiate a tangent vector field? Formally
speaking, we need to subtract two tangent vector living on two different tangent spaces.
This procedure is done using the Lie derivative denoted Lx. Without any construction,
we give the definition of the Lie derivative.

The Lie derivative of a function f along X is

of
pt

In other words, acting on functions with the Lie derivative coincides with the action
of the tangent vector field.

Lxf=X(f)=X" (1.58)

The Lie derivative of a tangent vector field Y along X is the commutator

LxY = [X,Y]. (1.59)

Note the analogy with quantum mechanics and for example the angular momentum.
Written in terms of components, it is

oY+ oXH
_yv
oxv oxv
We usually write (LxY )" the components of the new tangent vector as £xY*. Using
the Jacobi identity, one can show that

(LxY )" = LxY* = X" = XY0,Y" — Y9, X", (1.60)

The definition of the Lie derivative is extended to one-forms and tensors. One just has
to take into account all possible configurations to permute a certain number of objects
and remember that a normal sum "lower index with an upper index" creates a plus sign
and "an upper index with a lower index" creates a minus sign. For a (1, 1) tensor T, the
Lie derivative along X reads
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LxTV, = X0, T +T" 9,X™ —T7,0,X". (1.62)

2

Example. e In the two dimensional plane in Cartesian coordinates, let us consider f(x,y) = 2* — siny
and X = sinzd, — y?0,. Then, the Lie derivative of f along X is
Lxf = (sinzd, —y?0,)(z* —siny) = —sinz cosy — 22> (1.63)

e In the two dimensional plane in Cartesian coordinates, let us consider w = y2dz + 22dy and X =
0z + xy0,. Then, the Lie derivative components of w along X is

Lxwy = X"0rwo + w00 X" = (0y + 2y0y)y* + y* 0,1 + 220, vy = 22y* + 2%y

3 (1.64)
Lxw = XT0;w1 + w00 X" =20 + 2°.
Combining the two results, we can write
Lxw = (2zy* + 2%y)dx + (22 + 23)dy. (1.65)

Given two tangent vector fields X and Y, one can define the commutator [ X, Y] =
XY — Y X that can be written in terms of components in the following way

aY” oxY
XY= [X* - Y* : 1.
X, Y] ( Oxt OxH ) (1.66)
The commutator satisfies the Jacobi identity
(X, [Y,Z]|+[Y,[Z,X]]|+[Z,[X,Y]] =0, (1.67)

The commutator is also a tangent vector and so acts on functions to give a number.

The Lie derivative of a function f along X is

_ _ xu9f
Lxf=X(f)= X"z (1.68)

The Lie derivative of a tangent vector field Y along X is the commutator

LxY =[X,Y]. (1.69)

The Lie derivative satisfies

EXEYZ — Eyﬁxz = E[X,Y]Z, (1.70)

and can be extended to one-forms and tensors. For a (1,1) tensor T, the Lie
derivative along X reads®

LxTH, = X70,T%, +T*8,X™ — T",8, X*. (171)

“We should remember that a (), ()" gives a "+" and ()*(), gives a "-".
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Chapter 2

Riemannian Geometry

2.1 Abstract and Component Geometry

At this stage, you might wonder why things are defined in a very abstract way when in
practice we only use components to explicitly write expressions. Let us introduce two
different aspects of geometry which in fact are useful in different situations.

Abstract differential geometry treats a tangent vector as existing in its own right,
without necessity to give its breakdown into components

X =X"9, =X+ X'01 + ..., (2.1)

just as one is accustomed nowadays in electromagnetism to treat the electric field E,
without having to write out its components. The abstract approach is useful when one
wants to derive results in a simple way. For example in electromagnetism, considering
the gradient operator V instead of its components 0,, 9y, etc is the quickest and simplest
mathematical scheme one knows to derive general results.

Differential geometry as expressed in the language of components is convenient or
necessary or both when one is dealing even at the level of elementary algebra with the
most simple applications of Relativity, from the expression of the Friedmann Universe
to the curvature around a static black hole. In practice, one uses differential geometry
as expressed in terms of components. But never forget that the mathematics of General
Relativity can be seen as abstract objects existing in their own right. The last picture is
suitable for generalizing General Relativity for example when working in quantum gravity.

Example. Let us take the example of the Lie derivative of a tangent vector Y along X. One can either
define it by

LxY =[X,Y], (2.2)
or by
oY 190,44
Y= Xtou —YHF— . .
Ex < Oxt oxH ) (2.3)

However note that the Jacobi identity for the Lie derivative is easier to derive using abstract notation

than in terms of components.
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2.2 Metric

We have yet to meet the star of the show. There is one object that we can place on a
manifold whose importance dwarfs all others, at least when it comes to understanding
gravity. This is the metric. The existence of a metric brings a whole host of new concepts
to the table which, collectively, are called Riemannian geometry.

We all know that the metric is a way to measure distances between points on a man-
ifold. It does, indeed, provide this service but it is not its initial purpose. Instead, the
metric is an inner product on each tangent vector space 7T,(M).

Definition. A metric g is a (0,2) tensor field that is:

(i) Symmetric g(X,Y) =g(Y, X).

(ii) Non-degenerate i.e. if for any p € M, g(X,Y)|, = 0 for all Y € T,(M) then
X, =0,

With a choice of coordinate, one can write the metric as

g = g dztda”. (2.4)

The object g is often written as a line element ds? and this expression is abbreviated
as

ds® = g, dz"da”. (2.5)

Note that the metric can be seen as a matrix g,,. If so, this matrix is symmetric
G = Guy with real coefficients'. Using the spectral theorem, we know that the metric
can be diagonalized i.e. we can always pick a basis e, of 7,(M) so that the matrix g,
is diagonal. The non-degeneracy condition ensures that none of these diagonal elements
vanish. Some are positive, some are negative. The number of negative entries is called the
signature of the metric. In classical General Relativity, one always uses (—, +, +, +, ...)
like the Minkowsky metric. There is some mild logic behind this particular convention.
When thinking about geometry, the choice (—, 4+, +, +, ...) is preferable as it ensures that
length distances are positive. When thinking about quantum field theory, the choice
(+,—,—,—,...) is preferable as it ensures that frequencies and energies are positive.

In particular, the metric is used to define the norm of a tangent vector X

I1X|P = X"X, = g, X" X". (2.6)

Here, one can import notions from Special Relativity regarding the terminology of
the norm of a vector depending on its sign. Indeed for a tangent vector X describing

IReal coefficients come from the fact that the metric represents a physical object: the gravitational
field.
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an object’s velocity along a curve z#(\) parameterized by A, depending on the sign of
XrX, = g, X"X", the tangent vector can be spacelike’, null® or timelike*

XX, >0 spacelike

XX, =0 null (2.7)
X'X, <0 timelike

timelike

null

spacelike

Figure 2.1. Illustration of the light cone and the three types of tangent vectors.

We can use the metric to determine the length of a curve. Given a parametrisation

2*(\) of curve with tangent vector X# = 92° its length between two points a and b is

. X
given by

b
(o = / AN/ =g XX, (2.9)

Note that for timelike tangent vectors describing most of the physical trajectories, we
have g, X#*X" < 0 so the minus sign ensures that we have a positive quantity inside the
square root.

Raising and Lowering of Indices. Given a tensor, one can raise and lower indices using
the metric. These operations can of course be combined in various ways. For example,
given a tangent vector field X*, we can associate its dual covector field X,

X, = guwX”, (2.9)

and likwise for covectors

Xt = g"X,, (2.10)

2These vectors describe the velocity of objects travelling faster than the speed of light i.e. tachyons.

3These vectors describe the velocity of massless objects travelling at the speed of light 4.e. mainly
photons (maybe also gravitons?).

4These vectors describe the velocity of massive objects/particles travelling slower than the speed of
light.
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Note that there are different ways of lowering the indices, and they will in general give
rise to different tensors. It is therefore important to keep track of this in the notation.

For example g,,T". = T, and not T,,. This is the reason why the lower indices of a

tensor are written more to the right that the upper indices.

Finally note that this notation of raising and lowering indices with the metric is con-
sistent with denoting the inverse metric by raised indices because

9" =g"9"" g:p, (2.11)

and raising one index of the metric gives the Kronecker tensor,

g*‘)‘gA,, = gh =6t (2.12)

The metric g is a (0, 2) tensor that enables us to define a line element

ds* = g = g,, dz"da”. (2.13)

The metric is symmetric g,, = g,, and can always be diagonalized. Its inverse is
g™ so that g"gy, = d4. Tt is also used to define the norm of a tangent vector X

1 X[ = X*X, = g X" X" (2.14)

When regarding a tangent vector field X as a particle/object’s velocity along a
trajectory /curve x#(\) parametrized with \, its norm is said to be spacelike, null or
timelike depending on its sign. Along such a curve, the metric is used to determine
its length between two points a and b

b
ewb:/ A/ — g XP X (2.15)

2.3 Covariant Derivative and Connection

We have already met one version of differentiation. A tangent vector field X is, at heart,
a differential operator and provides a way to differentiate a function f. We write this
simply as X (f). As we saw previously, differentiating higher tensor fields is a little more
tricky because it requires us to subtract tensor fields at different points. Yet tensors eval-
uated at different points live in different tangent vector spaces, and it only makes sense to
subtract these objects if we can first find a way to map one tangent vector space into the
other. To do this, we used the flow generated by a tangent vector X as a way to perform
this mapping, resulting in the idea of the Lie derivative Ly.

There is a different way to take derivatives, one which ultimately will prove more
useful. The derivative is again associated to a tangent vector field X. However, this time
we introduce a different object, known as connection to map the tangent vector spaces
at one point to another tangent vector space at another. The result is an object, distinct
from the Lie derivative, called the covariant derivative.
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2.3.1 Definition of the Connection

First, we give an abstract definition of the covariant derivative, also called connection.
This definition will be useful to understand that there are many such connections and so
covariant derivatives. Ultimately, we will chose one connection, the Levi-Civita connec-
tion, to perform computations in the physical spacetime.

Definition. A connection is a map from one tangent vector space 7,(M) to another
T,(M). We usually write this map as V(X,Y) = VxY and the object Vx is called the
covariant derivative. Note that the connection takes as inputs two tangent vectors. It
satisfies the following properties for all tangent vectors fields X,Y and Z,

(i) Vx(Y+Z)=VxY +VxZ.
(i) VixigvZ = fVxZ + gVy Z for all functions f and g.
(ili) Vx(fY) = fVxY + (Vx[)Y where we define Vx f = X(f).

The covariant derivative endows the manifold M with more structure. To elucidate
this, we can evaluate the connection in a basis J,, of the tangent vector fields. We can
always express this as

Vo, 0 = T%.0,, (2.16)

with I'Y, the components of the connection. It is no coincidence that these are denoted
by the same greek letter that we use for the Christoffel symbols. However, for now, you
should not conflate the two; we will see the relation between them when we introduce the
Levi-Civita connection.

Mapping two different tangent vector spaces is what allows the connection to act as a
derivative. In what follows, we will use the notation
V.=V,

This makes the covariant derivative V, look similar to a partial derivative. Using the
properties of the connection, we can write a general derivative of a tangent vector field as

(2.17)

w*

VxY =Vx(Y*0,) = X(Y")0, +Y"Vx0,
= X"9,Y"0, + XYV, 0, = XV (9,Y" +TLY?) 0.
The fact that we can strip of the overall factor of X” means that it makes sense to
write the components of the covariant derivative as

(2.18)

(V,X)" =V, X = 9, YF +T" Y?, (2.19)

where we use the sloppy and sometimes confusing notation (V,X)* = V,X*. Note
that the covariant derivatives coincides with the Lie derivative on functions Lxf =
Vxf = X(f). It also coincides with the old-fashioned partial derivative V,f = 0,f.
However, its action on tangent vector fields differs. In particular, the Lie derivative
LxY = [X.,Y] depends on both X and the first derivative of X while, as we have seen
above, the covariant derivative depends only on X. This is the property that allows us
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to write Vx = X"V, and think V, as an operator in its own right. In contrast, there is
no way to write "Lx = X*L,".

The Connection is Not a Tensor. We can see this immediately® from the definition
V(X,fY)=Vx(fY) = fVxY + Y X(f). This is not linear in the second argument,
which is one of the requirement of a tensor.

However, let us illustrate this using components. We ask what the connection looks
like in a different basis

g 0 _ 9 0

e oxh Qxt Qxv

= J4d,. (2.20)

In the basis {9, }, the connection is written Vg 0, = I'},0,. Substituting in the
transformation (2.20), we have

L0, = Vig0,(J)0x) = J7Vo,(J)0N) = J7J)T7\0- + J5,000,.J). (2.21)

v o

We can write this as

U0, = (JSI)T0, + J50,0]) 0 = (JJ)T0, + J70,0]) (J~1)La),. (2.22)

pv-pu T o o

Stripping off the basis tangent vectors 9, we see that the components of the connection
transform as

I = (J YIS IT, + (J 20, (2.23)

pv

The first term coincides with the transformation of a tensor. But the second term,
which is independent of I', instead depends on 0., is novel. This is the characteristic
transformation property of a connection.

Differentiating other Tensors. One can use the Leibnizarity of the covariant derivative
to extend its action to any tensor field. Here, we give some examples. For a one-form w,
we obtain

Vo, = 0yw, =T w,. (2.24)

1%
For a (1,1) tensor T, one obtains
v, =01+, 1T —T, 1T (2.25)

The pattern is clear; for every upper index we get a +I'T" term while for every lower
index we get a —I'T" term.

5We see here in practice the power of using abstract differential geometry rather than in terms of
components.
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The connection V(X,Y) = VxY is a map from one tangent vector space X €
T,(M) to another Y € T,(M). The connection is not a tensor. Evaluated in a
basis {0, }, it reads

Vo0, = V.0, = 9,0, (2.26)

where T, are the components of the connection”. In terms of components, the
connection (or the covariant derivative) reads’

VX" = 8,X" + T, X°. (2.27)

The covariant derivative coincides with the Lie derivative for scalar functions
Vxf = X'V,f = Lxf = X(f) = X*"0,f. Using the Leibnitz rule, one can
extend the action of the covariant derivative to any tensor fields®

Vuwy, = 0w, — T wp. (2.28)
v, =01+, 1T —T, T (2.29)

“At this stage, the I'’s are distinct from the Christoffel symbols and so one can define many
different connections.

’Note that we always use the sometimes confusing notation V, X" = (V,X)" = (Vy, X)".

“For every upper index we get a +I"T" term while for every lower index we get a —I'T" term.

2.3.2 Levi-Civita Connection and Christoffel Symbols

So far, note that the connection V has been defined without the use of the metric and that
one can define many different connections, depending on the choice for the I'’s. However,
something nice happens if we have both a connection and a metric. This nice property is
called the fundamental theorem of Riemannian geometry.

Theorem. There exists a unique connection that is compatible with the metric g in the
sense that

Vxg =0 for all tangent vector fields X. (2.30)

This connection is said to be metric compatible. In other words, a connection is
metric compatible if the covariant derivative of the metric with respect to this connection
is everywhere zero. We can demonstrate both the existence and uniqueness of a metric
compatible connection by deriving a manifestly unique expression for the connection co-
efficients in terms of the metric. To accomplish this, we expand out the equation of the
metric compatibility for the three different permutations® of the indices

vo'g;w = ao'g;w - Fé,ug)\u - nggu)\ =0
vuguo = augua - F:\”/gAO' - ]‘—‘i\to’gll)\ =0 (231)
vugo',u = augo'lf - F;i\gg)\,u - F;),\,ugo')\ = 0.

6The metric is symmetric so we have three permutations instead of six.
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We subtract the second and third of these from the first, then multiply by the inverse
of the metric to obtain’

log 1 (o
Lo = 597 (0u9up + OuGup = DpGuv) - (2.32)

This is one of the most important formulas in this subject; commit it to memory.
This connection we have derived from the metric is the one on which conventional Gen-
eral Relativity is based. It is known as the Levi-Civita connection. The associated
connection coefficients are called Christoffel symbols. We then found a link between
two independent objects: the metric and the connection. Both concepts can be related if
one assumes a particular connection: the Levi-Civita connection.

The fundamental theorem of Riemannian geometry states the existence of a unique
connection that is compatible® with the metric in the sense that

VoG = 0. (2.33)

This connection is called the Levi-Civita connection and its components are the
Christoffel symbols

1
FZZ/ = §gop (augl/p + augup - apQ,uy) . (234)

The metric and the connection, two a prior: independent objects, can be linked by
choosing a specific connection: the Levi-Civita one, on which conventional General
Relativity is based.

2Note that we need also the torsion-free property to define a unique metric compatible connec-
tion.

2.3.3 Useful Properties of the Levi-Civita Connection

After defining the Levi-Civita connection, one can rewrite the definition of the Lie deriva-
tive by using the covariant derivative. Indeed, the Lie derivative of Y along X is

LxY"=X"0,Y'-Y"0,X"
= X"V, Yt -Y"V, Xt — (L X"Y? —Tt X7Y") (2.35)
= X"V, Yt -Y"V, X"
because using the Levi-Civita connection®, we have I'7,, = T'7 . This shows that the Lie
derivative LxY* is also a tangent vector field that transforms as a tensor. Note, however,

that the Lie derivative, in contrast to the covariant derivative, is defined without reference
to any metric.

Using the Levi-Civita connection, it is easy to show that the inverse metric also has
zero covariant derivative

"Note that we obtain the result if we consider the connection coefficients being symmetric with respect
to both lower indices. This is a property of a torsion-free manifold. This notion will be introduce later
when we define the torsion tensor.

8Meaning we also consider the torsion-free property.
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Voguw =0 and V,¢" =0. (2.36)

This nice property allows us to raise and lower indices inside the covariant derivative
by passing the metric through the covariant derivative. For example, if X, is a obtained
by lowering an index of the tangent vector X* by X, = g,, X", then

VoX, =Vo(9uwX") = 9, Ve X", (2.37)

where we used both the Leibnitz rule and the fact that V,g,, = 0. For a higher order
tensor, it reads

V,TH = g""V Ty, (2.38)

Covariant derivatives commute on scalars. This is of course a familiar property of the
ordinary partial derivative, but it is also true for the second covariant derivatives of a
scalar and is a consequence of the symmetry of the Christoffel symbols in the second and
third indices I'j, = '] and is also known as the no torsion property of the covariant
derivative. Namely, we have

V. Vof =V Vuf = V,0,f — V,0.f

' . (2.39)
== augl/f - ija)\f - 8Vauf - Fy‘uakf = 07

because the usual partial derivatives commute. Note that the second covariant derivatives
on higher rank tensors do not commute. We will come back to this in our discussion of
the curvature tensor later on.

Another useful property is when the covariant derivative lies in between a defined
constant norm. Let us consider a tangent vector X with constant norm’ X, X* = e.
Then,

XMV, X, = X*9,X, — T, X" X,
= 0,(X,X") - X,0,X" — T X'X,
= —X,0,X" — X,(V,X° — 8,X)
= —X,V, X"

(2.40)

Using the fact that one can raise and lower indices inside the covariant derivative with
the metric and using the previous result, one obtains

X'V, X, = —0ug"’ XV, X5 = -6 XV, X5 = - XV, X5, (2.41)

which leads to X*V,X,, = 0.

9For example, this is the case for velocity tangent vectors parametrized with the proper time. In this
case we have e = 0,41 depending on whether the object/particle is massive or not.
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The Lie derivative can be expressed in term of the covariant derivative®

LxYH = X"V, Y* —Y'V,XH. (2.42)

One can raise and lower indices inside the covariant derivative by passing the metric
through the covariant derivative’. For example,

VUX,U = g/u/vaXV

2.43
VIt = g'" VT, (243)

Covariant derivatives commute® on scalars f
V.V, f =V, V,f =0, (2.44)

but it is not the case for higher rank tensors. For tangent vectors X with constant
norm X, X" = ¢, one has

X'V, X, =0. (2.45)

“This property comes from I'), =17 .
bThis property comes from V,g,, = 0 and V,g"" = 0.
¢This property comes from the fact that usual partial derivatives commute.

2.4 Torsion and Curvature

We saw previously that one can define a connection. In practice, we use the Levi-Civita
connection whose components can be expressed in terms of the metric. However, the
defined connection is not a tensor. Fortunately, one can use the connection to construct
two tensors.

2.4.1 Abstract Definition and Components

The first tensor that one can construct is the torsion. It is a (1,2) tensor T" and so takes
as inputs a one-form w and two tangent vectors X and Y. It reads

T(w; X,Y)=w(VxY — Vy X — [X,Y]). (2.46)

The second tensor that one can construct is the Riemann tensor, also called cur-
vature. It is a (1,3) tensor R and so takes as inputs a one-form w and three tangent
vectors X,Y and Z. It reads

R(w;X,Y,Z) :w(VXVYZ—VYsz—V[XAf}Z). (2.47)
Alternatively, one could think of torsion T" as a map between two tangent vector spaces

T(X,Y)=VxY - VyX — [X,Y]. (2.48)

Similarly, the Riemann tensor R can be viewed as a map between two tangent vector
spaces that gives a differential operator acting on a tangent vector space
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R(X,Y)=VxVy - VyVx — Vixy] (2.49)

It is not obvious from the definition that these objects are tensors. To actually demon-
strate that T" and R are tensors, we need to show that they are linear in all arguments.
This is a good example of using the abstract notation to derive expressions. Linearity
in w is straightforward. For the others, there are some small calculations to do. For
example, we must show that T'(w; fX,Y) = fT(w; X,Y) where f is a scalar function.
To see this, we just run through the definition of the various objects

T(w; fX,Y) = w(V,xY - Vy(fX) - [/ X,Y]) (2.50)

We then use V;xY = fVxY, Vy(fX) = fVyX +Y(f)X and [fX,Y]| =
fIX, Y] =Y (f)X. The two Y (f)X terms cancel, leaving us with

T(w; fX,Y) = fw(VxY —VyX — [X,Y]) = fT(w: X,Y). (2.51)

Similarly, for the Riemann tensor we have

R(w; fX, Y, Z) = W(fovyz — VnyXZ — V[fX7Y]Z)
=w([VxVyZ - Vy(fVxZ) - VixviZ + VyxZ)
=w(fVxVyZ - fVyVxZ -Y(f)VxZ - fVixv)Z + VyxZ)
= fR(w; XY, Z).
(2.52)

Linearity in Y follows from the linearity in X because both tangent vectors play a
similar role. But we still need to check linearity in Z,

R(w; XY, fZ) =w(VxVy(fZ) - VyVx(fZ) - Vixv|(fZ))
=w(Vx(fVyZ +Y(f)Z) - Vy(fVxZ + X(f)Z)
- fVixyZ - [X,Y](f)Z)
=w(fVxVy + X()VYZ + Y (/)VxZ + X (Y (f))Z  (2.53)
—[VyVxZ -Y(f)VxZ - X(f)VyZ - Y (X(f))Z
- fVixyZ - [ X, Y](f)Z)
— fR(w; XY, Z).

Thus, both torsion and curvature define new tensors on our manifold.

The next step is to evaluate these tensors in a coordinate basis {0,} with the dual
basis {dz*}. The components of the torsion are

T}, =T(dz";0,,0,)

=dz”(V,0, — 0,0, — [04,0,])

= d2’(I7,0, — T7,0,)

=17, -I7,
where we used the fact that dz?0, = 6/ and [9,,9,] = 0. We learn that, even though '/,
is not a tensor, the anti-symmetric part '}, —I') | does form a tensor. Clearly, the torsion
is anti-symmetric in the lower two indices

(2.54)
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PP
T, =17, (2.55)
Connections which are symmetric in the lower indices, so I'y, = I')  have zero torsion.

Such connections are said to be torsion-free. This is the case for the Levi-Civita con-
nection'®

The components of the Riemann tensor are given by'!

Ry, = dz*(V,V,0, = V., V0, = Vig, 0,10,)
=dz°(V,V,0, - V,V,0,)
= da”(V,u(T5,05) — V., (1),00)) (2.56)
= da?((0,7,)0% + T3, T7n0r — (8,175,005 — I I7,0;)
= 0,7, — 0,17, + T, I, =T I,

Clearly, the Riemann tensor is anti-symmetric in its last two indices

R°, =—R° (2.57)

puv Py

Note that it would be quite unpleasant to have to verify the tensorial nature of this
expression by explicitly checking its behaviour under coordinate transformations.

Using the connection, one can define the torsion, a (1,2) tensor T', by

Tw; X,)Y)=w(VxY - VyX — [X,Y]), (2.58)
and the Riemann tensor, a (1,3) tensor R, by

R(w;X,Y,Z) :w(VXVyZ—vaXz—V[ny}Z). (259)
Their components are obtained by evaluating T and R in a coordinate basis {0, }
with the dual basis {dz*}. One obtains
T¢, =T%, —T%,
R}, =0.I7,— 0,7, + T

Connections with vanishing torsion are called torsion-free connections. These con-
nections verify

o (2.60)

vp u>\ Ko w\

re,=TI?,. (2.61)

The Levi-Civita connection is torsion-free.

10 Actually, the torsion-free property is one requirement to derive the Levi-Civita connection components
in terms of the metric. The fundamental theorem of Riemannian geometry states the existence of a unique,
torsion-free, connection that is metric compatible.

1 Note the slightly counter intuitive, but standard ordering of the indices.

30



2.4.2 Identities and Properties of the Riemann Tensor

There is a closely related calculation in which both the torsion and te Riemann tensors
appear. We look at the commutator of covariant derivatives acting on tangent vector
fields. One can check that

IV, V27 =V, N, 2° =V, N,2° = RS, 7" — TN ,2°. (2.62)

ppv

This expression is known as the Ricci identity. Note that in practice, we will always
work with the Levi-Civita connection so that the torsion is zero. One then obtains

V.. V,|Z° =V,V,2° —V,V,2° = R%, 7" (2.63)

puv

It is perhaps surprising that the commutator [V, V,], which appears to be a differ-
ential operator, has an action on vector fields which (in the absence of torsion, at any
rate) is a simple multiplicative transformation. The Riemann tensor measures that part
of the commutator of covariant derivatives which is proportional to the vector field, while
the torsion tensor measures the part which is proportional to the covariant derivative of
the vector field; the second derivative does not enter at all. One must remember that the
Riemann tensor measures the failure of the covariant derivative to commute.

The extension of the above formula to any higher order tensors follows the usual
pattern, with one Riemann tensor contracted with every index. For example,

V., VT =v,v,T-V,V,T* =R TP + RS T, (2.64)

ouv oy

There are also a number of symmetric properties satisfied by the Riemann tensor when
we use the Levi-Civita connection. We will just state but not prove the following results.

If we lower an index on the Riemann tensor and write R, ., = ga,\R;}W, then the
resulting tensor obeys the following symmetry identities

Rap;uz = _Rapuu
Rapuu = _Rpauu (265)
Roppv = Ruvop-

The Riemann tensor also satisfies the following cyclic permutation relation

Rop/u/ + Rauup + Roupu =0 (266)

We can now count how many independent components the Riemann tensor really has
in dimension 4. The anti-symmetric property of the last two indices implies that the sec-
ond pair of indices can only take (3 x 4)/2 = 6 independent values. The anti-symmetric
property of the first two indices implies the same. The symmetric property implies that
the Riemann tensor can be seen as a symmetric 6 x 6 matrix and thus has (6 x 7)/2 = 21
components. The cyclic property adds an additional constraint so that the Riemann ten-
sor has 20 independent components. Note that in dimension D, the Riemann tensor has
D?(D? —1)/12 independent components.

Finally, the Riemann tensor also satisfies the so-called Bianchi identity
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VARUp;w + VoRp)\,uz/ + VpR)\a;w =0. (267)

Note that for a general connection there would be additional terms involving the
torsion tensor. This cyclic identity is closely related to the Jacobi identity for the covariant
derivative

[[V/m VV]v Vﬂ] + va vp]’ V“] + [[vp’ Vu]7 V,,] =0. (2-68)

Figure 2.2. Illustration of the Ricci identity with the Levi-Civita connection.

The Riemann tensor measures the failure the failure of the covariant derivative to
commute?®

V., V,)2° =V,V,2° —V,V,2° = R°, Z°. (2.69)

puv

The above formula is extended to any tensor. For example,

V., VT =V, Vv,T%-V,V,T* = R* T°° + RS T*. (2.70)

ouv opuy

The Riemann tensor verifies the following properties

Ropwr = = Ropup
Hoour =~ Hpoy (2.71)
Roppw = Ruvep
Ropuw + Ropwp + Rovpp = 0.
and the Bianchi identity
V)\Rapw/ + vaRp/\;w + va)\U;w = 0. (2.72)

In dimension D, the Riemann tensor has D?*(D? — 1)/12 independent components.

¢This formula is valid when using a torsion-free connection.
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2.5 Ricci and Einstein Tensors

There are a number of further tensors that we can build from the Riemann tensor and that
are especially important in General Relativity. First, it is frequently useful to consider
contractions of the Riemann tensor. Even without the metric, we can form a contracted
Riemann tensor called the Ricci tensor
Ry, = R, (2.73)
The Ricci tensor associated with the Levi-Civita connection, which is always used
in practice, is symmetric. It inherits its symmetry from the Riemann tensor. We write
R, = 9°’Roppw = 9°° Rypvop, giving

R[LV = RV}L . (2 . 74)

One can go one step further with contractions and create a function R over the man-
ifold. This is the Ricci scalar, also called scalar curvature,

R=R!'=g"R,, (2.75)

This scalar can be seen as the trace of the Ricci tensor. The Bianchi identity has a
nice implication for the Ricci tensor. If we write the Bianchi identity

V)\Rapw/ + vaRp/\pl/ + va)\U/U/ =0, (276)
and multiply by ¢"*¢””, one obtains

V*Ruo — VoR+ V'R, =0, (2.77)

which means that V¥R, = %V,,R. This motivates us to introduce the Einstein tensor

1
G =R, — §Rg,u,, (2.78)

which has the property that it is covariantly constant, or divergent less, meaning

VIG,, = 0. (2.79)

The Riemann tensor contains all the information about the curvature of the manifold.
However, note that vanishing Christoffel symbols does not mean the manifold is flat. This
is because the connection is not a tensor. But the Riemann tensor is a tensor and so if
it vanishes in one coordinate system, it must vanish in all of them. Given some horrible
coordinate system, with non-vanishing Christoffel symbols, we can always compute the
corresponding Riemann tensor and thus the scalar curvature R to see if the manifold is
actually flat.

The elementary and universal applicable method for computing the components of the
Riemann tensor and thus the Ricci tensor and finally the curvature starts from the metric
components in a coordinate basis, and proceeds by the following scheme:

I'~09 o R~ODHIT, p  Rlow Ry
G 7, R, R, — R. (2.80)

We see here that if one knows the metric, one knows everything about the manifold.

Note that the Christoffel symbols can be obtained in a straightforward by varying the
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(a) Positive curvature R > 0. (b) Negative curvature R < 0.

Figure 2.3. Surfaces with different curvatures.
action. We will see this in another section.

One obtains the Ricci tensor by contracting the Riemann tensor

R, = R’ (2.81)

pov*

The Ricci scalar, also called scalar curvature, is defined as the trace of the Ricci
tensor

R=R!=g¢"R,, (2.82)

One can then define the Einstein tensor

1
G/w = R;uz - ERguw (283)
which is covariantly constant, or divergent less, meaning

V*G,, = 0. (2.84)

Starting from the metric, one can have a complete description of the manifold by
following this scheme
Ry

I'~dg o RNOTHIT g Blow
(|9 > I R, I8y =0 I (2.85)

2.6 Parallel Transport

Although we have now met a number of properties of the connection and especially the
Levi-Civita connection, we have not yet fully explained its name. How does it connect

different tangent vector spaces?
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The answer is that the connection connects tangent vector spaces at two different
points of the the manifold by mean of a map called parallel transport. As we stressed
earlier, such a map is necessary to define differentiation. Note that it does not make any
sense to ask if two tangent vectors are parallel in a curved space. However, given a metric
and a curve connecting these two points, one can compare the two by dragging one along
the curve to the other using the covariant derivative.

Take a tangent vector field X and consider some associated integral curves with co-
ordinates z#(\), such that

_dx*
Codn
We say that a tensor field T is parallely transported along the defined curve if

X* (2.86)

VxT = 0. (2.87)

To illustrate this, consider the parallel transport of a second tangent vector field Y.
In terms of the components, the last condition reads

XIV,YY = X"0,Y" + T, Y"). (2.88)
If we now evaluate this on the curve thinking of X#0,Y" = %, one obtains
dy” 5
I + I, X*Y? =0. (2.89)

These are a set of coupled, ordinary differential equations. Given an initial condition
x#(Ng) corresponding to a point p € M, these equations can be solved to find a unique
tangent vector at each point along the curve.

Parallel transport is path dependent. It depends on both the connection and the
underlying path wich, in this case, is characterised by the tangent vector field X. To
parallely transport an object between two points, one must first define the parametrized
curve.

Example. On the two dimensional sphere in spherical coordinates (0, ¢), let us parallely transport the
vector Y = 0, = (0,1) between the point p = (6 = o, = ¢g) and ¢ = (6 = a,¢ = o + 0) that is
along a curve parallel to the equator. First we need to define a parametrized curve C. Here we take
C={0=a,¢=y+ I} where X is the parameter. We then define the tangent vector corresponding
to this integral curve

dz*
X = X4, = -0, = 0 x 9 + 60, = (0,0), (2.90)
so that
XV, YY" =0 leadsto V,Y"=0. (2.91)

Using the definition of the covariant derivative in terms of the components, the last equation is a set
of coupled first order differential equations

2, Y’ +1% ve =0
{ ’ e (2.92)

0, Y? +T2,Y" =0.

35



In practice, these equations are very hard to solve. Here, we know the Christoffel symbols and the
fact that 6 is constant. Solving these equations (with constant § = «) where the constants of integration
are found with the initial tangent vector leads to

Y? = sina sin(cosa d
{ ( ) (2.93)

Y% = cos(cos ad).

Note that after a round trip (6 = 27), we do not recover the same tangent vector except along the
equator f = a = /2.

Figure 2.4. Illustration of the above example of parallel transport on a sphere.

The connection maps to tangent vector spaces at two different points of the manifold
by the parallel transport. A tensor T is parallely transported along an integral curve
z#(\) defined by the tangent vector field X which satisfies X* = 9= if

VxT = 0. (2.94)

For a tangent vector field Y, it reads in terms of components
dy”
dA

These are a set of coupled, ordinary differential equations that can be solved exactly
only in a very few cases.

+T% XFYP = 0. (2.95)

2.7 (Geodesics and auto-parallels

A geodesic is a curve tangent to a tangent vector field X that obeys

VxX =0. (2.96)

Along a curve x#(\) parametrized by A, we can write the above equation in terms of
components
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d2z+ dz” dz*
+1I7 - =
dA? PN dA
This is precisely the geodesic equation. We can characterise geodesics by the property

that their tangent vectors are parallely transported (do not change) along the curve. For
this reason geodesics are also known as auto-parallels.

(2.97)

Note that for the Levi-Civita connection, we have Vxg = 0. This ensures that for
any tangent vector field Y parallely transported along a geodesic X, we have

T IX.Y) =0, (2.98)

which tells us that Y makes the same angle with the tangent vector X along each point
of the geodesic.

A geodesic, also called auto-parallel curve, is a curve that is always tangent to its
tangent vector X, namely

VxX =0, (2.99)
which in terms of components reads
d2z+ dz¥ da?
+ I - =
d\? PN dA

These are coupled differential equations that can be solved to find the curve
parametrized by x#(\).

0. (2.100)

2.7.1 Affine and Non-affine Parametrisations

To understand the significance of how one parametrises geodesics, observe that the geodesic
equation (2.97) is not reparametrisation invariant. Indeed, if one change of parametrisa-

tion A — A, then

da# B Q da#

—_— = 2.101
dh  dAd)’ ( )
and therefore the geodesic equation can be written
2.1 v p 2 123 o
S Vi (Q) dAdet (2.102)
d\? d\ dA d\/ dA? dx

Thus the geodesic equation retains its form only under affine changes A=a\+b
so that 327’2\ = 0. Parameters that make the right-hand side of (2.102) vanish are called
affine parameters and are related to each other by affine transformations. The geodesic
equation (2.97) written in this form is said to be affinely parameterised.

Conversely, if we find a curve a#()\) that satisfies
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d2aH dx¥ dz? ~ dz#
— e S o), (2.103)

dA? d\ dA dA
for some function C’(S\), we can deduce that this curve is the trajectory of a geodesic, but
that it is simply not parametrised by an affine parameter. Denoting f(A) = A, an affine

parameter \ is determined by

R = —% ie. % — exp ( / d50(5)> , (2.104)

where f = %. So for C(\) = 0, we have an affine transformation between A and \. Note

that the proper time 7 is an affine parameter for massive particle trajectories.

In general, an auto-parallel curve in terms of components is such that

d2xH dz¥ dz? dz#
W T - 2.1
o Ty = W eL108)

where C()) is a function of the parameter A. However, one can always chose a
parameter A for which C'(\) = 0. Such parameters are called affine parameters.
Affine parameters are related to each other by an affine transformation A\ — \ =
aX + b. For example, proper time® 7 for massive particles is an affine parameter.

“Defined by ds? = —c2d?r.

2.7.2 Geodesics as Extremal Line Elements

If we assume the differential manifold M to be the four dimensional spacetime, all objects
follow geodesics. In other words, objects follow paths that extremizes their line element'?.

. . 13 . . . _ d ]
Let us take the example of a timelike'” particle trajectory parametrized by X" = <.

Here, X* is associated with the particle’s velocity. This is why we usually denote this
vector V' or U. The elementary trajectory length is

ds = /—gudardz”. (2.106)

We then introduce the following action

S = / AL = / dX /=g XPXV. (2.107)

We know that extremizing the action leads to the Euler-Lagrange equations

oL d [ 0L dxt

— = ith X+ =—. 2.1
Dzt dA (aXu) W D) (2.108)

Let us now apply the Euler-Lagrange to the previous defined Lagrangian £ = \/—g,, dX*d X" =

@/—gw,ddi;%. Recalling that the metric g,, depends on z*, one obtains

I2This is the principle of least action.
13Such that X, X* = g, X' X" <0.
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oL i 09 PG

gz" 215 dx? (2.109)
8Xo— - _ZgO'Z/X bl

so that, using the Leibnitz rule and the chain rule % = X?0,, one has

d [ oc d 1\ 1 _.00m ., 1 dXv
a(aXo> = 9o X a(z) T e N ey (2H0)

Writing down the Euler-Lagrange equation with all the terms and rearranging the
expressions leads to

2.V n v v
d%x 1 gW> da* dx dx (2.111)

oV i\o ov — J{VYo N = )\ oV 1y
e —i—(@#g 20290 ) gy — (N gy

where we have defined C'(\) = %j—f. A standard trick here is to see that the first term

inside the parenthesis can be symmetrized

1
aMgUI/ = 5 (augm/ + auQau) . (2112)

Multiplying the above equation by the inverse metric ¢*° and using the definition of
the Christoffel symbols, one finally obtains

d’z® Lo detde” ( )dxa
d\2 oax dh d\’

(2.113)

We note that this is the geodesic equation using a non-affine parameter. However, if
one executes the same steps with the following Lagrangian

L=—g,X"X", (2.114)

the resulting Euler-Lagrange equations leads to an affinely parametrized geodesic

Az~ dztdz”

iVl + N A (2.115)
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The Euler-Lagrange equation associated with a Lagrangian £(x#, %) is

m
) with X" = % - (2.116)

o _a (oc
orr  d\ \ OX*

Extremizing the element line with the Lagrangian £ = @/—gw%% leads to a
non-affinely parametrized geodesic

d2z> dz# da” dz®
_ @ 2= = = — 2.117
o Tl ay =W (2.117)
where C'(\) = %g_p However, one can simplify the derivation by considering
= —guu‘ﬁc—;%. Extremizing the action with this Lagrangian leads to an affinely
parametrized geodesic
d2z> dz* dx”
—_— o —— = 2.118
e eIy (2.118)

One can always choose an affine parameter (for example proper time for massive
particles) and apply the Euler-Lagrange equations without the square root.

2.7.3 Computing Christoffel Symbols from the Action

If the answer to a problem or the result of a computation is not simple, then there is no
simple way to obtain it. But when a long computation gives a short answer, then one
looks for a better method. It is exactly the case when computing Christoffel symbols from
the metric. It usually involves much wasted effort. Indeed in most cases, one computes
many I'’s that turn out to be zero. Here, we present the "geodesic Lagrangian" method
that provides an economical way to tabulate the I's.

One normally thinks that the connection coefficients T'j, must be known before one
can write the geodesic equation. However, when one affinely parametrizes the geodesic
equation, it is simple to apply the Euler-Lagrange equation and explicitly find the geodesic
equation. Thus, one can use this fact to compute the Christoffel symbols.

To do this, one must explicitly write down the Lagrangian that leads to an affine
parametrised geodesic

B dat da”
= _gm/aﬁ
and use the Euler-Lagrange equation. One then identifies the resulting equations with
the affinely parametrized geodesic equations and reads out the Christoffel symbols.

c = —guiti, (2.119)

Example. Let us consider the two dimensional sphere parametrized with (6, ). We want to compute
the Christoffel symbols without using the formula involving the metric. Instead, we write the affinely
parametrized Lagrangian

L=—gui'it" =— (92 + sin? 9gb2> . (2.120)

The Euler-Lagrange for 2° = 0 leads to

40



oL 0L _ 5 4 4L _

20— —25in 6 cos 0 2, i D9 —20, (2.121)
so that
0 — sinf cosf $? = 0. (2.122)
The Euler-Lagrange for z! = ¢ leads to
5 { . 1 0L ; p
% =0, gfj = —2sin’A¢ and d(—)\ 9% = —45sinf cos A0y — 2sin® H @, (2.123)
so that
. cosf . .
$+2——0p = 0. (2.124)
sin @
These two equations enable us to read out the Christoffel symbols
. . cosf _
F:)w = —sinflcosd and Tj7 = F&G =0 (2.125)

One can computes with less effort the connection components I'j,, by writing down
the Lagrangian

da* dx”
_guuaa
and using the Euler-Lagrange equation. One then identifies the resulting equations
with the affinely parametrized geodesic equations and reads out the Christoffel
symbols.

B = g it (2.126)
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Chapter 3

Advanced Topics

3.1 Symmetries

We all know that symmetries are very important in physics because in most cases they
simplify the problem. We also know that symmetries are very important because a sym-
metry implies that something is conserved. This is of course the Neether’s theorem. Here,
we discuss the symmetries of the spacetime metric. Intuitively, the notion of symmetry
is clear. If you hold up a round sphere, it looks the same no matter what way you rotate
it. We want a way to state this mathematically.

3.1.1 Killing Vectors

Let us first recall the expression of the Lie derivative along & of a (0,2) tensor T" written
in terms of the covariant derivative

LTy, =8Vl +T,,V,67 +T1,,V,£°. (3.1)
=0

This formula becomes particularly simple if applied to the metric because £V, g,
when using the Levi-Civita connection. After lowering the indices, one obtains

‘cﬁg;w = v,uél/ + vué,u- (32)

To mathematically define a symmetry, we need the concept of a family of integral
curves', also called a flow. A flow can then be identified with a tangent vector field &
which points along the tangent vector to the flow at each point p € M

o A
dA
This flow is said to be an isometry if the metric looks the same at each point along
a given flow line. Mathematically, this means that an isometry satisfies

(3.3)

Leg=0, (3.4)

which, according to (3.2) can be written

Vﬂfu + vufu = 0. (35)

!The concept of integral curves was defined in Section 1.3.
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This is the Killing equation and any tangent vector field & satisfying this equation
is known as a Killing vector.

In practice, it is not always easy to find Killing vectors except in some peculiar situa-
tions. Indeed, let us explicitly write that the Lie derivative along some tangent vector &
og the metric vanishes

£ oG + guoz&fga + gauaﬂfa = 0. (3'6)

If we now try to solve this equation with a constant tangent vector & and assuming
that the metric does not depend on a coordinate x™ i.e. % = 0, then the above equation
boils down to

50{ a9y = 0. (37)
We then see that the tangent vector € = (0,...,1,...,0) where the 1 is at the n'" posi-
tion is a Killing vector.

Moreover, it is easy to show that if & and x are Killing vectors, then any linear com-
bination with non-varying constants a&€ + bx and [€, x| are also Killing vectors.

Example. o For a two dimensional sphere described in (6, ¢) coordinates, the metric reads>

ds? = d#? + sin? 0 dy?. (3.8)

The metric does not explicitly depend on ¢ so & = 9, = (0,1) is a Killing vector.

e For the Schwarzschild metris written in the usual spherical coordinates (¢, 7,6, )

oM 2M\ "
.

one sees that it does not depend on ¢ nor ¢ so that £ = 0y = (1,0,0,0) and x = 9, = (0,0,0,1) are
Killing vectors.

A Killing vector is a tangent vector £ that satisfies the Killing equation

Leg =0 de. V& + V,6 =0. (3.10)

If the metric does not dependent on a coordinate x™, then

B
¢ =(0,..,0, 1 ,0,..,0), (3.11)

nth position

is a Killing vector.

3.1.2 Conserved Charges

We are used to the fact that symmetries lead to conserved quantities. In the present
context, the concept of "symmetries" is replaced by "symmetries of the metric", and we
therefore expect conserved charges associated with the presence of Killing vectors. Here

2We set the radius R = 1.
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are two important examples.

Let £" be a Killing vector and z#(\) be a geodesic associated to the tangent vector
X*_ then the quantity

£ X", (3.12)
is a conserved quantity along the geodesic. Indeed,
X"V, (£, XH") = XV( X!V €, + €, V., XH)
= X'XY  V,§, + X'V, XH
~—— ———

symmetric

=0.

(3.13)

anti-symmetric =0 geodesic

Let &* be a Killing vector and 7" the covariantly conserved symmetric energy-
momentum tensor, V,T"” = 0, then the current

&I, (3.14)
is covariantly conserved. Indeed,
V.(&TH) = T V., o+ VT =0. (3.15)
~ S~——
Symmetric ,n¢i symmetric =0

Hence, as we now have a conserved current, we can associate with it a conserved
charge in the way discussed above. The argument evidently relies on the fact that T is
symmetric and covariantly conserved i.e. divergent-less.

Example. As an example of application, let us derive the energy conservation equation for the Schwarzschild
metric where we assume® 6 = /2

) oM . oM\ ' >
a == (1= 2 ar 4 (1-20) et (3.16)
T

We know from te previous section that ' = 9; and & = 0, are Killing vectors. Let us consider a tangent
vector field* U such that U, wU" = e where € = 0,4+1. We then know that —F = f,t,,U” and L = {fUM are
conserved quantities®. Denoting U* = (U%,U",0,U¥), one obtains

g;u/gél U" = it Ut

L 17 D (3.17)
g;wgioU = gwpUV:
which leads to
E L
Writing UaU® = g1(U%)? + ¢, (UT)? + g (U?)? = € leads to
L? 2M
(U")? + (72 - e) (1 ~ T) = F% (3.19)

3We assume planar trajectories.
4Namely the velocity of an object /particle.
5The total energy and the angular momentum respectively measured by observers at infinity.
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Let ¢ be a Killing vector and z*(\) be a geodesic associated to the tangent vector
XH*g.e. X"V, X" =0, then the charge

Eu X", (3.20)

is a conserved quantity along the geodesic.

Let &* be a Killing vector and T"” a covariantly conserved symmetric tensor®,
V,T" =0, then the current

&, (3.21)

is covariantly conserved i.e. divergent-less.

“For example the energy-momentum tensor.

3.1.3 Useful Identity Relating Curvature and Killing
Vectors

In Riemannian geometry the rich interplay between symmetries and geometry is reflected
in relations between the curvature tensor and Killing vectors of a metric.

Let &* be a Killing vector, then it must obey

V. V.§ = R),,80, (3.22)
where R}, is the Riemann tensor. Indeed, when applying three times the Riemann tensor
identity

V.V, -V, V,.§° =R 5, (3.23)
and the Killing equation

V., +V.,6, =0, (3.24)

one obtains

Vuvufp = Vuvyfp p/ujgg
= _vl/vpgl.b p;u/ga'
- _vpVV€M puygo' _'_ Rf”/pfa

(3.25)
=V, V.6 — p;wga + wapg"
= VWV & — R & + 1,8 — Ry
=—=V,\Vi§, — R} & + R 6 — R) G0
so that
V.V.,§, = RZW)&,, (3.26)

where we used the Bianchi identity.
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Let ¢* be a Killing vector, then it must obey

V. V.& = /), 0, (3.27)

uvp

where R, is the Riemann tensor.

3.1.4 Maximal Symmetry and Constant Curvature

In order to understand how to define and characterise maximally symmetric spaces, we
will need to obtain some more information about how Killing vectors can be classified.
Our starting point is, as in the previous section, the identity reproduced here with the
explicit z-dependence included for present purposes

V.V, (x) = BT, (2)& (). (3.28)

In particular, this shows that the second derivatives of the Killing vector at a point g
are again expressed in terms of the value of the Killing vector itself at that point. This
means that, remarkably, a Killing vector field £, (x) is completely and uniquely determined
everywhere by the values of {,(x¢) and V,&,(zo) at a single point z. Since, in an D-
dimensional spacetime there can be at most D linearly independent vectors (£,(x¢)) at
a point, and at most D(D — 1)/2 independent anti-symmetric matrices (V,&,(x¢)), we
reach the conclusion that an D-dimensional spacetime can have at most

. D(D2— ) D(D2+ D (3.20)

independent Killing vectors. A spacetime with this maximal number of Killing vectors is
called maximally symmetric.

Example. The D-dimensional Minkowski spacetime is maximally symmetric. Note that D(D + 1)/2
for D = 4 agrees with the dimension of the Poincaré group®, the group of transformations that leave
the Minkowski metric invariant. We can also cite the de Sitter and the anti-de Sitter spacetimes being

maximally symmetric.

One can also show that maximally symmetric spacetimes have constant curvature
R = constant. For such spacetimes, one can show that the Riemann tensor takes the
following form

R
R;wpa = m(gupgua - ganup)- (330)

63 rotations, 3 boosts, 3 translations and parity.
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A D-dimensional spacetime is maximally symmetric is it has

D(D +1)

2 )

independent Killing vectors. Those spacetimes have constant curvature R =
constant and the Riemann tensor can be written

R
Rp,l/po‘ = m(gupgua - g;wgup>' (332)

(3.31)

3.2 Variational Calculus

Although we have met variational calculus when deriving the geodesic equation from
the Euler-Lagrange equation, we will now introduce variational calculus of tensors. Ulti-
mately, the aim is to be familiar with how to derive the Einstein equation starting from
the Einstein-Hilbert action. This way of deriving the Einstein equation is more suitable
for beyond classical General Relativity extensions because all our fundamental theories of
physics are described by action principles.

3.2.1 Covariant Volume Element

In this section we will address the issue of generally covariant integration in a spacetime
equipped with a metric. It is immediately apparent that the integral of a scalar f(x) over
spacetime [dPx f(z) is not generally covariant because one has to introduce the Jacobian
of the coordinate transformation which in general is not equals to one.

Let us recall the standard tensorial transformation behaviour of the metric under
coordinate transformations r — a/,

Ozt Oz
g;ﬂ(x,) = @Wg;w(x)- (333)
it follows that the absolute value of the metric determinant |g| = |det g| does not

transform like a scalar but instead transforms as

A ox'
"=ldet [ — ) = ‘d t | —
J ‘ ¢ (8x’> g “\ oz
In particular its square root /g transforms as
ox’'
"= |det | —
Ve ’ ¢ (6$>

Therfore the combined expression d”x /g is invariant under general coordinate trans-
formation

-2

g. (3.34)

-1

NG (3.35)

dPz’ /g’ = dPz /3, (3.36)

and can be used to define integrals of scalars f(x) in a generally covariant way
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APz’ /g f(z') = /de\/gf(x). (3.37)

Note that this is also frequently the quickest way to determine the volume element in
non- Cartesian coordinates in Euclidean space.

Example. Let us derive the volume element of the three dimensional euclidean space in spherical
coordinates (r,0,¢) denoted by {a'#}. The usual Cartesian coordinates are denoted {z*}. Instead of
laboriously determining the Jacobi matrix for the coordinate transformation, and then calculating its
determinant, all one needs to know is the metric

ds? = dr? + r2d6? + r? sin? 0(1’,92. (3.38)

Computing the determinant of the metric is straightforward because it is diagonal g = r*sin?# and
therefore we have

d®z = \/gd3z’ = r?sinfdrdfde, (3.39)

which is of course the standard result.

The covariant volume element for integration is d°x v/9 which is invariant under
general coordinate transformation z — x’

dPz’ /g’ = APz /3, (3.40)

and can be used to define integrals of scalars f(x) in a generally covariant way

0 7 1) = [ Pz V5 1(a). (3.41)

3.2.2 Divergence Theorem

Gauss’s theorem, also known as the divergence theorem, states that if you integrate
a total derivative, you get a boundary term. There is a particular version of this theorem
in curved space. Before dive in, let us first state the following result.

Lemma. The contraction of the Christoffel symbols can be written as

1
I = —0,9, 3.42
= V9 (3.42)

where g = det g. Note that for Lorentzian manifolds, the metric determinant is negative
and so one needs to perform the following replacement det g — det |g|. Indeed, from the
explicit relation between the Christoffel symbols and the metric, one obtains

1 1 _ 1

However, there is a useful identity for the log of any diagonalisable matrix A. They
obey

Tr [log A] = log det A. (3.44)
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This is clearly true for a diagonal matrix, since the determinant is the product of
eigenvalues while the trace is the sum. But both trace and determinant are invariant
under conjugation, so this is also true for diagonalisable matrices. Applying it to our
metric formula above, we have

1 1 1
FZV = §Tr [0, logg] = 581, log det g = d,detg =

2 detg

1
———=0,+/detg, 3.45
TorgrVdetg (3.45)
which is the claimed result. With this at hand, we can now prove the following theorem.

Theorem. Consider a region of a D-dimensional manifold M with boundary OM. Let

n* be an outward-pointing, unit vector orthogonal to OM. Then, for any tangent vector
field X* on M, we have

/ dPz\/gV X" = / APtz yn, XH (3.46)
M oM

where ;; is the pull-back of the metric to M and vy = det 7.

Proof. Using the lemma above, the integrand is

VEVIXY = VRO 4 T X) = VGOX" + XP0,/5) = (XY, (347

so that the integral is

/d%\/gvﬂ)@:/ dPz0,(/g X*), (3.48)
M M

which is now an integral of an ordinary partial derivative so we can apply the usual
divergence, also called Stokes’ theorem, that we are familiar with. It remains only to
evaluate what is happening at the boundary OM. For this, it is useful to pick coordinates
so that the boundary OM is a surface of constant x". Furthermore, we will restrict to
metrics of the form”

g 0
G = (709 1). (3.49)

Then by our usual result of integration, we have

/dDyc(?,,(\/EX“):/ AP x4y X (3.50)
M oM

The unit normal vector n* is given by n* = (0,0, ..., 1), which satisfies g,,n*n” =1 as
it should. We then have n, = g,,n” = (0,0, ..., 1) so wa can write

/de&,(\/ﬁX“):/ AP te Ay n, X (3.51)
M oM

which is the result we need. As the final expression is a covariant quantity, it is true in
general.

"We construct a metric 7i; for the boundary hypersurface.
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The contraction of the Christoffel symbols can be written

1
T = —0,\/7, 3.52
=g V9 (3.52)

where® g = det g.

Consider a region of a D-dimensional manifold M with boundary oM. Let n* be
an outward-pointing, unit vector orthogonal to OM. Then, for any tangent vector
field X* on M, we have

/ dPz\/gV X+ = / dP~ 1tz n, X, (3.53)
M oM

where v;; is the pull-back of the metric to OM and vy = det ~.

?Note that for Lorentzian manifolds, the metric determinant is negative and so one needs to
perform the following replacement det g — det |g|.

3.2.3 Einstein-Hilbert Action

Gravity is also a fundamental theory that can be described by action principles. The
straight-jacket of differential geometry places enormous restrictions on the kind of actions
that we can write down. These restrictions ensure that the action is something intrinsic
to the metric itself, rather than depending on our choice of coordinate.

In General Relativity, the gravitational field is identified with a metric g,, on a four
dimensional Lorentzian manifold that we call spacetime. To build the Einstein-Hilbert
action that governs the metric dynamics, we know, from a previous section, that we need
the covariant volume element to integrate over a manifold. Furthermore, given that we
only have the metric to play with, the simplest scalar function is the Ricci scalar R. This
motivates us to consider the wonderful concise action

S = /d4x\/—_gR, (3.54)

which is the famous Einstein-Hilbert action®. Note that the minus sign under the square
root arises because we are in a Lorentzian spacetime. As a quick sanity check, recall that
the Ricci tensor takes the schematic form R ~ OI' + I'T" while the Levi-Civita connection
itselfis I' ~ d¢g. This means that the Einstein-Hilbert action is second order in derivatives,
just like other actions we consider in physics.

Note that written in this way, the Einstein-Hilbert action is suitable to consider that

classical General Relativity is just an approximated theory of a more general theory with
the following action

S:/d‘lx«/_—g (R+ 0o + 03B + ), (3.55)

8Note that a dimensional analysis requires that the physical action must be multiplied by ¢3/(167G).
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where o; are constants. For example truncating the series expansion up to second order

i.e. keeping only the ~ R? term gives rise to the so-called Starobinsky potential which

can describe inflation during an early stage of the Universe”.

In General Relativity, the gravitational field is identified with a metric g,, on a four
dimensional Lorentzian manifold that we call spacetime. The metric dynamics is
governed by the Einstein-Hilbert action

S = /d4:c\/—_gR. (3.56)

3.2.4 Action Variation

In this section we would like to determine the Euler-Lagrange equation arising from the
Einstein-Hilbert action. We do this in the usual way, by starting with some fixed metric
guw(x) and seeing how the action changes when we shift g, (x) = gu(z) + dg..(x). We
then try to write the integrand of 0S5 as proportional to dg"”.

Writing the Ricci scalar as R = g"” RR,,,,, the Einstein-Hilbert action changes as

35 = [ 4% (519" B + V=000 1R + V=3 BRW) . (357)

The aim is then to derive the variation of the inverse metric, the covariant volume
element and the Ricci tensor.

It turns out that it is slightly easier to think of the variation in terms of the inverse
metric 0g"”. This is equivalent to the variation of the metric dg,,, the two are related by
Goug"” = 6, so that

(59/)#)9”1/ + gp#(;g‘“’ =0 de g = _gﬂpgw(;gpo' (3-58)

The middle term in (3.57) is already proportional to dg*”. We now deal with the first
and third terms in turn.

First, we use the standard trick logdetA = Tr[log A] for any diagonalisable matrix A
to write

§(detA) = Tr[A"10 A]. 3.59
- d(derA) = T[4 154 (3:59)
Applying this result to the metric, we have
SV=g = () g5g = S mggs (3.60)
- 2 \/_—g g g gul/ - 2 gg gul/' .
Using ¢"09,, = —g,,0g"", one obtains the variation of the covariant volume element

9However, this potential has been proved wrong by the latest Planck satellite data of the Cosmic
Microwave Background.
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1
0\/—g = —5\/—ggw,6g‘“’. (3.61)

We now claim that that the final term ¢g"”6R,, is a total derivative (boundary term)
and can be written as'’

g"oR,, =V, X" with XM= g™l — g"oIY . (3.62)
using all the previous results, the variation of the action can then be written
1
68 = / d*z /=g [(RW — §R gw) Sgh + V“X“] . (3.63)
This final term is a total derivative and by the divergence theorem, stated in a previous

section, we ignore it. Requiring that the action is extremised 05 = 0, one obtains the
metric equation of motion'!

1
G = Ry = 5 R g = 0. (3.64)

Varying the Einstein-Hilbert action reads

58 = / d*z ([6/=g9" Ruw + V/—910¢" ) Ry + V=09 9" [ORW]) . (3.65)

Varying the covariant volume element and the Ricci tensor reads

1 14
0v/=9 = =5V 990"
g"OR,, = V, X" with XM = g"gTk — gheT% .

The last variation turns out to be a boundary term. Using all the previous results,
the variation of the action is written

(3.66)

2

Ignoring the boundary term and requiring the action to be extremised 0.5 = 0, one
obtains the Einstein field equation in vacuum

68 = / d*z /=g KRW g gw,) Sg" + VHX“] : (3.67)

1
G = Ry — 5R gy = 0. (3.68)

Note that they simplify somewhat; if we contract the last equation with ¢**, we find
that R = 0. Substituting this back in, the vacuum Einstein equation is simply the
requirement that the metric is Ricci flat

R,, =0. (3.69)

10We do not prove this result because it is very long. Note that one can easily derive this result in
normal coordinates but these are not introduced in these lecture notes. For interested people, I found a
Youtube video that explicitly makes this derivation.

Hn vaccum.
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https://www.youtube.com/watch?v=FR1vc9tVuH8

Note that we happily discarded the boundary term, a standard practice whenever we
invoke the variational principle. Tt turns out that there are some situations in General
Relativity where we should not be quite so cavalier. In such circumstances, one can be
more careful by invoking the so-called Gibbons-Hawking boundary term.
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The Essential in a Scheme

Differential Manifold M

!

Defining tangent vectors X = X*0,,
one-forms w = w,dz*, tensors T' = T} 0,dz",
Lie derivative £

/\

Metric g, Connexion and covariant
l derivative VxT
Geodesics by extremizing l

S=[d\\/—guXrX". Auto-parallel curves and

parallel transport
Spacetime symmetries \ /
Killing vectors &#

Fundamental theorem
of Riemannian geormetry

Conserved quantities ‘

Levi-Civita connexion
(torsion-free, Vxg = 0)

|

Einstein-Hilbert action S = [d*z /=g R

|

Einstein field equations
Black holes, gravitational waves, etc...
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