Gravitational lensing
 From planets to clusters of galaxies

Basic equations

First application: the point mass lens

Gravitational lensing

 A short history

Newton realized that masses should deflect light

First Newtonian calculation Johann Soldner (1801)

Einstein (1915) the correct deflection angle in general relativity is twice the previous Newtonian value

Zwicky (1937) realized that galaxies can split images With large enough separations to be observable

Refsdal (1964) propose to measure the Hubble constant By using time delays (trhough the variability of the lensed source)

Walsh, Carswell, \& Weymann (1979) discover the double image of a quasar QSO 0957+561

Paczynski (1986b) propose to monitor millions of star in LMC and SMC
Now gravitational microlensing can be observed

The era of gravitational lensing is opening

The first case of gravitational arc is there

Lynds \& Petrosian (1986)

Galaxy cluster Abell 370

The first gravitational arc

Lynds \& Petrosian (1986)

68.01

Giant Luminous Arcs in Galaxy Clusters
R. Lynds (KPNO/NOAO), V. Petrosian (Stanford U.)

We announce the existence of a hitherto unknown type of spatially coherent extragalactic structure having, in the two most compelling known examples, the common properties: location in clusters of galaxies, narrow arc-like shape, enormous length, and situation of center of curvature toward both a cD galaxy and the apparent center of gravity of the cluster. The arcs are in excess of 100 Kpc in length, have luminosities roughly comparable with those of giant E galaxies, and are distinctly bluer than Egalaxies - especially so in one case. Interpretations of the nature of the arcs are discussed within the framework of available data.

Soucail et al. (1987)
Galaxy cluster Abell 370

Figure 1: Image of the core of the cluster of galaxies $A 370(z=0.374)$, dominated by two giant galaxies (\#20 and \#35). The arc is located southward galaxy \# 35 and has a linear size of
$\sim 8 \mathrm{kpc}$ wide and 160 kpc long. In the lensing hypothesis it is an image of alaty $\sim 8 \mathrm{kpc}$ wide and 160 kpc long. In the lensing hypothesis it is an image of a galaxy at redshift
$z=0.59$. Note the galaxies superimposed on the arc, especially the brightest one ($\# 37$) whose (*) especially the brightest one whose

Figure 2: Schematic diagram of the lensing configuration in a three point mass model: $2.251^{14} \mathrm{M}$. for the cluster core (point 0) $3 \cdot 10^{12} \mathrm{M}_{\odot}$ for galaxy +20 and $0.710^{12} \mathrm{M}_{\text {。 }}$ for galaxy \# 37.11 and 12 are the two images of a circular source which would appear in S
without lensing. Note the large break to the night of 11 . The details of such a configuration will be given in a paper submitted to Nature.

Bogdan Paczynski
 Nature (1987)

Paczynski proposed that the arcs are the images of background galaxies which are strongly distorted and elongated by the gravitational lens effect of the foreground cluster.

This model was confirmed when the first arc redshifts were measured and found to be greater than that of the clusters.

Soucail et al. (1987)
HST (2019)

Figure 1: Image of the core of the cluster of galaxies $A 370(z=0.374)$, dominated by two giant galaxies (\#20 and \# \#35). The arc is located southward galaxy \#35 and has a linear size of $\sim 8 \mathrm{kpc}$ wide and 160 kpc long. In the lensing hypothesis it is an image of a galaxy at redshift influence has been taken into account in the lensing model.

Figure 2: Schematic diagram of the lensing configuration in a three point mass model: $2.2511^{14} \mathrm{M}_{0}$ for the cluster core (point 0)
$3.10^{12} \mathrm{M}_{\text {• }}$ for galaxy +20 and $0.710^{12} \mathrm{M}_{\text {- }}$ 3. $10^{12} \mathrm{M}$, for galaxy $\# 20$ and $0.710^{12} \mathrm{M}$.

for galaxy $\# 37.11$ and 12 are the two images | for galaxy \# 37.11 and 12 are the two images |
| :--- |
| of a circular source which would appear ins | wh a circular source which woing. Note the large break to the

nitht of 11 The detail's of such a connfiguation will be given in a paper submitted to Nature.

Gravitational lensing probes all astrophysical scales A journey of increasing scale

From Galaxies To Galaxy groups

From Groups
To clusters of galaxies

What kind of information do we obtain from gravitational lensing?

Gravitational lensing offers a direct unbiased measure of the mass
Making maps of the mass distribution
Dark matter mapping

Lensing has an ability to resolve very fine structure - un-observable by other means
The structure of the lens
planets
Dark matter substructures

The structure of the source
red giant star
quasar accretion disk

Lensing offers a direct measure of mass visible or not

Direct reconstruction of mass

Lensing has an ability to resolve very fine structure
The structure of the lens: planets - Dark matter substructures

The structure of the source: red giant star - quasar accretion disk

What this course does not cover

Cosmological lensing

Cosmic shear
CMB lensing
Galaxy-galaxy lensing

Some reviews

Martin Kilbinger: Cosmology with cosmic shear observations: a review

Lewis \& Challinor : Weak gravitational lensing of the CMB

The basics of gravitational lensing

The fundamental scale
Einstein ring

The various lensing regimes

Strong lensing
Weak lensing
Intermediate regime

Lensing: bending of the light trajectory by a massive object

b Is the impact parameter

For small deviations, general relativity gives: $\quad \bar{\alpha}=\frac{4 G M}{b c^{2}}$
(see for instance Misner, Thorne \& Wheeler or Schultz)

Lensing has a fundamental scale

Let's consider a perfectly symmetrical situation
lens
observer

The lens, source and observer are perfectly aligned In this case due to the symmetry all trajectories are The same except for a rotation of the plane of the trajectory

The image of the source is a full Circle
The radius of the circle is the
Einstein radius: R_{E}

The image seen from earth

Estimating the Einstein radius

$\bar{\alpha}=\frac{4 G M}{c^{2} b} \quad$ with $\quad b=\theta_{E} D_{L} \quad$ combined with $\quad D_{S} \theta_{E}=\bar{\alpha} D_{L S}$
We obtain $\quad \theta_{E}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{L S}}{D_{S} D_{L}}}$
The Einstein radius is: $\quad R_{E}=\theta_{E} D_{L}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{L S} D_{L}}{D_{S}}}$

Typical values of the Einstein radius

Star: $\quad \theta_{E} \simeq 1$ mas $\quad R_{E} \simeq 1 A U \quad$ Unresolved blend

Galaxies:

$$
\theta_{E} \simeq 2 \operatorname{arcsec} \quad R_{E} \simeq 30 \mathrm{kpc}
$$

Cluster of galaxies:
$\theta_{E} \simeq 50 \mathrm{arcsec} \quad R_{E} \simeq 0.5 \mathrm{Mpc}$

The Einstein radius and the distance between the lens and source

$$
\begin{aligned}
& R_{E} \propto \sqrt{\frac{\left(D_{S}-D_{L}\right) D_{L}}{D_{S}}} \\
& u=\frac{D_{L}}{D_{S}} \\
& R_{E} \propto \sqrt{u(1-u) D_{S}}=f(u) \sqrt{D_{S}}
\end{aligned}
$$

For a source at fixed distance the Einstein radius is maximal
 When the lens lens is placed at mid-distance

Strong lensing

Weak lensing

Intermediate regime

Consequence of the fundamental scale: the various lensing regimes

Extended source at the center of circularly symmetric lens: thick Einstein ring

Slightly mis-aligned source or not circularly symmetrical potential

Source mis-alignement R_{S}

$$
R_{S} \leqslant R_{E}
$$

Broken ring: gravitational arcs
Strong lensing

Source far away from center of lens
(a few times the Einstein radius)
Weak effect

Weak distortion A round source become An ellipse

There is a statistical change in the Ellipticity of background galaxies

Weak-Lensing

Between the weak and strong lensing regime: intermediate regime

Strong-lensing $\quad R_{S} \leqslant R_{E}$

$R_{S} \geqslant R_{E}$
Weak-lensing

Variable elliptical distortion: some curvature

The position of the source defines the regime

General gravitational lensing in astrophysical context

Basic equations

Full mathematical description

The lens equation

$$
\beta D_{S}+\bar{\alpha} D_{L S}=\theta D_{S} \longrightarrow \beta=\theta-\bar{\alpha} \frac{D_{L S}}{D_{S}}=\theta-\alpha
$$

$$
\beta=\theta-\alpha \quad \text { Reduced deflection angle } \quad \alpha=\bar{\alpha} \frac{D_{L S}}{D_{S}}
$$

3D representation of the lens equation

General lens equation in vector form $\quad \vec{\beta}=\vec{\theta}-\vec{\alpha}$

General distribution of lenses: planar approximation The thin lens model

$$
\delta_{S} \leqslant D ; \delta_{L} \leqslant D ; D=D_{S}, D_{L}
$$

The vectors angle are equivalent to vectors in the plane

The lens equation for a continuous distribution in the lens plane

In the thin lens approximation the density is projected density in the lens plane Leading to a surface density

$$
\Sigma(\vec{\theta})=\int \rho(\vec{\theta}, z) d z
$$

$\Sigma(\vec{\theta})$ Is the projected surface density in the lens plane

Note: $\vec{\theta}$ is related to the local coordinate in the lens plane: $\vec{r}=\vec{\theta} D_{L}$

Introducing $\Sigma_{c r}$ the mean surface density within the Einstein radius

$$
\begin{gathered}
M=\Sigma_{c r} \pi R_{E}^{2} \\
R_{E}^{2}=\frac{4 G M}{c^{2}} \frac{D_{L S} D_{L}}{D_{S}}
\end{gathered}
$$

$$
\rightarrow \Sigma_{c r}=\frac{c^{2} D_{S}}{4 \pi G D_{L S} D_{L}}
$$

Below $\sum_{c r}$ no gravitational arcs No strong lensing

Deviation due to a point mass lens

$$
\left.\begin{array}{rl}
\bar{\alpha} & =\frac{4 G M}{b c^{2}} \\
b & =\theta D_{L} \\
\alpha & =\bar{\alpha} \frac{D_{L S}}{D_{S}}
\end{array}\right\} \alpha=\frac{4 G M}{c^{2}} \frac{D_{L S}}{D_{S} D_{L}} \frac{1}{\theta} \longrightarrow \vec{\alpha}=\frac{4 G M}{c^{2}} \frac{D_{L S}}{D_{S} D_{L}} \frac{\vec{\theta}}{|\vec{\theta}|^{2}}
$$

The lens equation for a continuous distribution in the lens plane

Source

The deviation produced by a small element of the lens is:

$$
\overrightarrow{\delta \alpha} \propto \Sigma\left(\vec{\theta}_{i}\right) d^{2} \theta_{i} \frac{\vec{\theta}-\vec{\theta}_{i}}{\left|\vec{\theta}-\vec{\theta}_{i}\right|^{2}}
$$

Weight due to local mass

Deviation due to a point mass lens

We introduce the normalized surface density (convergence)

$$
\kappa(\vec{\theta})=\frac{\sum(\vec{\theta})}{\Sigma_{c r}}
$$

Then: $\quad \overrightarrow{\delta \alpha}=\frac{1}{\pi} \kappa\left(\vec{\theta}_{i}\right) d^{2} \theta_{i} \frac{\vec{\theta}-\vec{\theta}_{i}}{\left|\vec{\theta}-\vec{\theta}_{i}\right|^{2}}$

We co-add the angular deviation for each local element

$$
\alpha(\vec{\theta})=\int \overrightarrow{\delta \alpha}=\frac{1}{\pi} \int_{L P} \kappa\left(\vec{\theta}_{i}\right) \frac{\vec{\theta}-\vec{\theta}_{i}}{\left|\vec{\theta}-\vec{\theta}_{i}\right|^{2}} d^{2} \theta_{i}
$$

$$
\alpha(\vec{\theta})=\frac{1}{\pi} \int_{L P} \kappa\left(\vec{\theta}_{i}\right) \frac{\vec{\theta}-\vec{\theta}_{i}}{\left|\vec{\theta}-\vec{\theta}_{i}\right|^{2}} d^{2} \theta_{i}
$$

We introduce the potential

$$
\phi(\vec{\theta})=\frac{1}{\pi} \int_{L P} \kappa\left(\vec{\theta}_{i}\right) \log \left(\left|\vec{\theta}-\vec{\theta}_{i}\right|\right) d^{2} \theta_{i}
$$

Then: $\quad \vec{\alpha}=\vec{\nabla} \phi$

Then finally the lens equation takes the simple form:

$$
\begin{gathered}
\vec{\alpha}=\vec{\nabla} \phi \\
\vec{\beta}=\vec{\theta}-\vec{\alpha} \xrightarrow{\longrightarrow}=\vec{\theta}-\vec{\nabla} \phi \\
\phi(\vec{\theta})=\frac{1}{\pi} \int_{L P} \kappa\left(\vec{\theta}_{i}\right) \log \left(\left|\vec{\theta}-\vec{\theta}_{i}\right|\right) d^{2} \theta_{i} \quad \kappa=\frac{1}{2} \Delta \phi
\end{gathered}
$$

The lens equation describe a general change in coordinates from the source coordinates $(\vec{\beta})$ to the lens coordinates $(\vec{\theta})$

Lensing is a coordinate re-mapping from the source plane to the lens plane

Additionally the coordinates change introduced by lensing Conserve the surface brightness of the source (see Misner, Thorne \& Wheeler, or Schultz)

The conservation of surface brightness, plus the coordinates transform provided by the lens equation is a complete description of gravitational lensing
$\vec{\beta}=\vec{\theta}-\vec{\nabla} \phi \quad+\quad$ surface brightness conservation

First application: point mass lens

Basic equations

Amplification of the source

Direct calculation
Jacobian
Total amplification
Light curve
Fundamental degeneracies

Astrometric effects

Basic equations
Amplitude of the effect

Lensing by a point mass lens

Lensing operates in a plane

Moving the source induce a rotation of the plane The plane rotates along the ($\mathrm{O}-\mathrm{L}$) line

Consequence: the images are on the (L, S) line

For convenience we use lens plane coordinates: $\quad r_{S}=\beta D_{L} \quad r=\theta D_{L}$

We work along the (L,S) line:

The images are aligned with the (L,S) line Moving the source rorates the line and images

Lens equation

$$
r_{S}=r-\frac{r_{E}^{2}}{r}
$$

Re-normalization by the Einstein radius, $\quad r_{S}=\frac{r_{S}}{r_{E}} \quad ; \quad r=\frac{r}{r_{E}}$

$$
\text { Lens equation } \quad r_{s}=r-\frac{1}{r}
$$

Lens equation
 $$
r_{s}=r-\frac{1}{r}
$$

Two solutions: $r=\frac{r_{s} \pm \sqrt{r_{s}^{2}+4}}{2}$

Two images of the source

Typical separation a few mas

Total amplification: sum of the flux of the two images (images usually not separable)

Amplification: $A=\frac{r}{r_{S}} \frac{d r}{d r_{S}} \quad A=A_{1}+A_{2} \quad r_{1,2}=\frac{r_{s} \pm \sqrt{r_{s}^{2}+4}}{2}$

$$
A=\frac{r_{S}^{2}+2}{r_{S} \sqrt{r_{S}^{2}+4}}
$$

Other method: lensing is a change in coordinates
The amplification is the change in the volume element in the coordinate transform
This is the determinant of the Jacobian matrix J

$$
J=\left|\begin{array}{ll}
\frac{\partial x_{S}}{\partial x} & \frac{\partial y_{S}}{\partial x} \\
\frac{\partial x_{S}}{} & \frac{\partial y_{s}}{\partial}
\end{array}\right| \quad x_{S}=x-\frac{x}{r^{2}} \quad ; \quad y_{S}=y-\frac{y}{r^{2}} \quad \longrightarrow J=\frac{r^{4}-1}{r^{4}}
$$

$A=J^{-1} ; A \rightarrow \infty \longrightarrow \quad$ Einstein circle=critical line

$$
A=A_{1}+A_{2}=\frac{1}{\left|J_{1}\right|}+\frac{1}{\left|J_{2}\right|}=\frac{r_{S}^{2}+2}{r_{S} \sqrt{r_{S}^{2}+4}}
$$

Typical microlensing amplification curve in astrophysical context

$$
u \equiv r_{s}
$$

$$
u^{2}=u_{0}^{2}+v^{2} t^{2} \quad A=\frac{u^{2}+2}{u \sqrt{u^{2}+4}}
$$

All length are in units of the Einstein radius

We measure: $\quad u_{0} \equiv \frac{u_{0}}{R_{E}} \quad ; \quad v \equiv \frac{v}{R_{E}}=t_{E}^{-1}$
The crossing time: t_{E} is directly related to $R_{E}=\sqrt{\frac{4 G M}{c^{2}} \frac{D_{L S} D_{L}}{D_{S}}}$
But the velocity is unknown
And R_{E} does not relate directly to the mass since the distances are unknown

Fundamental degeneracies

The first light curves of microlensing events

Alcock etal. (1997)
(Galactic Bulge events)

Astrometric effects

The observable quantity: the shift between the source and centroid position

Calculation of astrometric effects

The position of the images centroid $\quad \bar{u}=\frac{u_{1} A_{1}+u_{2} A_{2}}{A_{1}+A_{2}}=\frac{u\left(u^{2}+3\right)}{u^{2}+2}$

The observable quantity: the shift between the source and centroid position

$$
\Delta=u-\bar{u}=\frac{u}{2+u^{2}}
$$

The two projected component of Δ are:

$$
\Delta_{\xi}=\frac{t-t_{0}}{t_{E}\left(2+u^{2}\right)} \quad \Delta_{\eta}=\frac{u_{0}}{\left(2+u^{2}\right)}
$$

$$
u^{2}=u_{0}^{2}+v^{2} t^{2}
$$

The astrometric effect may increase with Increasing Impact parameter (Unlike the amplification)

Lensing by point mass lens:some interesting problems

The extended source problem: the source is not a point The source has a finite size and surface brightness profile

The moving observer: the effect of the earth orbital motion

The extended source problem

$$
\rho_{S}(x, y)
$$

$$
\sim \delta A_{I}=\rho_{S}(x, y) A(u) d x d y
$$

Source

$$
A_{T}=\int \delta A_{I}=\int \rho_{S}(x, y) A(u) d x d y
$$

$$
u^{2}=(x+V t)^{2}+\left(y-u_{0}\right)^{2}
$$

The extended source problem

$$
A_{T}=\int \rho(x, y) A(u) d x d y
$$

$$
A(u)=\frac{u^{2}+2}{u \sqrt{u^{2}+4}}
$$

No real singularity: constant circular area at center in polar coordinates

$$
A_{0} \rightarrow \int_{0}^{R} \frac{\sqrt{u^{2}+2}}{u \sqrt{u^{2}+4}} u d u
$$

Write a numerical code to integrate over the source
Constant brightness
Limb darkening for stars (color effects ?)
General method to reconstruct the density profile of the source?

Illustration of the effect

A first case showing finite source size effect

MACHO-1995-BLG-30

Other interesting problem for point mass lenses
The effect of the earth orbital motion
Parallax effect for the longer microlensing events

The earth motion change the line of sight and the impact parameter: estimate the effect

The first parallax event

Alcock etal. (1995)
The solution with parallax

Velocity: $75 \pm 5 \mathrm{~km} \mathrm{s-1}$
angle of $28^{\circ} \pm 4^{\circ}$
Dlens $=1.7+1.1-0.7 \mathrm{kpc}$

$$
\mathrm{M}=1.3+1.3-0.6 \mathrm{M} \odot
$$

dotted line: fit without parallax

