

cea cms

Aild -

3
 AS) LESIA Doseri PSLA

Detection of Exoplanets

Methods, spectral observations

Jean-Philippe Beaulieu

What is a planet, historical view

According to the greeks:
any moving object in the sky is a planet.
The Sun, the moon, Mercury, Venus, Mars, Jupiter, Saturn.
Comets ?

Copernician revolution:
Sun and moons are no more « planets », but the Earth is.

Planets discovered after:
Uranus (William Herschel 1781)
Neptune (Leverrier 1846)
Pluto (Clyde Tombaugh, 1930)

Planet, dwarf planet, and the case of Pluto in 2006

What is a planet, according to IAU resolution B5, 2006

A planet is a celestial body that

1. is in orbit around the Sun,
2. has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and
3. has cleared the neighborhood around its orbit.

A dwarf planet is a celestial body that

1. is in orbit around the Sun,
2. has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape
3. has not cleared the neighborhood around its orbit,
4. is not a satellite.

The zoo is complemented by

- « moons» orbiting planets, 19 are massive enough to be round.
- small bodies, irregular shapes orbiting the sun (asteroids, comets)

Inventory of the solar system

The sun:

- A ball of plasma powered by nuclear fusion in its core.
- 99.8% in mass of the solar system
- Luminosity of 410^{8} times total luminosity of Jupiter (emitted + reflected)

Giant planets : mostly H, He, and few-10 \% of other elements
Rocky planets : mostly heavy elements

Dwarf planets : mostly heavy elements, rocks, ices
Small bodies : composed of molecular material, some in solid state

A rich diversity !

About composition and density

- Rocky planets : 3-6 $\mathrm{g} \mathrm{cm}^{-3}$ => mostly rocks and metals.
- Gazeous planets: 1-2 $\mathrm{g} \mathrm{cm}^{-3}$ => Rocky-core, ices and gazes
- Inner belt asteroids: contains metals and rocks
- Outer main belt, KBOs: less metals, more ices

Extrasolar planet detection

Oct 1 2021, 4843 planets / 3579 planetary systems / 797 multiple planet systems

Astrometry (16 objects, 2 planets ??)
Radial Velocity (966 planets in 712 systems, 173 multiple planet systems)
Transit (3454 planets in 2597 systems, 557 multiple planet systems)
Microlensing (160 planets in 143 systems, 7 multiple planet systems)
Direct detection (154 planets in 111 systems, 7 multiple planet systems)

Orders of magnitude with looking at the moon example
$1 \mathrm{arcsec}=1.86 \mathrm{~km}$
1 micro $\operatorname{arcsec}=1.8 \mathrm{~mm}$ not easy...

TABLE 1
Parallax, Proper Motion, and Astrometric Signatures Induced by

Planets of Various Masses and
Orbital Radii

Source	α
Jupiter at 1 AU (μ as)	100
Jupiter at 5 AU (μ as)	500
Jupiter at 0.05 AU (μ as) . $\ldots .$. .	5
Neptune at 1 AU (μ as) $\ldots \ldots .$.	6
Earth at 1 AU (μ as) $\ldots \ldots$.	0.33
Parallax (μ as)	1×10^{5}
Proper motion (μ as yr^{-1}) $\ldots \ldots$.	5×10^{5}
Note.-A $1 M_{\odot}$ star at 10 pc is assumed.	

Astrometric wooble

- Sensitivity

Angle variation = semi major axis / distance

Nearby planets, on wide orbits
Sirius B found this way in XIXth cent.
Barnard star and Epsilon Eridani planets in the 1970s (refuted latef)

Planet around the Barnard's star, the «dark, lifeless giant» (1963)

lic. 5. Barnard's star-yearly means, averaging 96 plates and weight 64. Time displacement curves for $P=24 \mathrm{yr}, \quad e=0.6$, $T=1950$. Circles are early means transferred 24 yr forward. The scale of the displacements is shown both in terms of 0.01 and of $1 \mu(.001 \mathrm{~mm})$ on the Sproul plates.

Fig. 8. Barnard's star and companion -Apparent relative orbit. Circle represents extreme size of image of Barnard's star.

Fig. 7. Barnard's star-apparent orbit. Eight normal points of average weight 203. O center of mass. Radii of circles indicate probable errors. $\alpha=1.30 \mu=0^{\prime \prime} .0245, i= \pm 77^{\circ}$.

The drunkard search principle

A policeman sees a drunk man searching for something under a streetlight and asks what the drunk has lost. He says he lost his keys and they both look under the streetlight together. After a few minutes the policeman asks if he is sure he lost them here, and the drunk replies, no, and that he lost them in the park. The policeman asks why he is searching here, and the drunk replies, "this is where the light is"

Radial velocity techniques

Doppler-Fizeau

Measuring radial velocity of the star oscillating around the center of gravity of the system

$$
\dot{\mathbf{r}_{\star}}=-\dot{\mathbf{r}} M_{p} /\left(M_{\star}+M_{p}\right) \quad V_{\text {rad }}=V_{0}+K \cdot[\sin (\nu(t)+\omega)+e \sin \omega]
$$

$$
\begin{array}{lr}
r=\frac{p}{1+e \cos \nu}: & \text { Amplitude of the star radial velocity } \\
p=\frac{M_{\mathrm{p}}}{M_{*}+M_{\mathrm{p}}} a\left(1-e^{2}\right) & K_{\star}=\left(\frac{2 \pi G}{P}\right)^{1 / 3} \frac{M_{\mathrm{p}} \sin i}{\left(M_{*}+M_{\mathrm{p}}\right)^{2 / 3}} \frac{1}{\sqrt{1-e^{2}}}
\end{array}
$$

Measuring radial velocities

- Jupiter, $11 \mathrm{~ms}^{-1}$, 11 years
- Earth, $0.1 \mathrm{~ms}^{-1}, 1$ year

$$
K_{\star}=28.45\left(\frac{1 \mathrm{an}}{P}\right)^{1 / 3}\left(\frac{M_{\mathrm{p}} \sin i}{\mathrm{M}_{\mathrm{J}}}\right)\left(\frac{M_{\odot}}{M_{*}+M_{\mathrm{p}}}\right)^{2 / 3} \mathrm{~m} \mathrm{~s}^{-1}
$$

Cross-correlation of observed spectra with reference spectra

Using the global information from the spectra

Search for the first exoplanet.... (1990s)

Mercure
。
Venus
3

Solar system
Close rocky planets, Jupiter on 11 yrs orbit.

Meanwhile... monitoring Pulsar, because they are cool objects and because they are there

- Drunkard approach...

first planets in 1992!

THIS IS WHERE YOU
LOST YOUR WALLET?

Planets around Pulsars in 2012.

Ok, I need 11 years to get a Jupiter mass planet, but I am going to test the stability of my instrument and do repeated observations...

- Drunkard approach... first planet orbiting a star in 1995, P= 4 days ! (Mayor \& Queloz)
- Marcy \& Butler woke up after 51 Peg, confirmed it, and announced 2 other planets within a month. Data were sleeping on their computers... waiting for long periods.

Fig. 1.8 The velocity curve of the star 51 Pegasi, measured by the team led by M. Mayor at the
Haute Provence Observatory (After Mayor \& Queloz. 1995)

51 Pegasi, hot Jupiter orbiting a star

Fig. 1.8 The velocity curve of the star 51 Pegasi, measured by the team led by M. Mayor at the Haute Provence Observatory (After Mayor \& Queloz, 1995)

51 Pegasi

Mayo \& Queloz, Swiss

Marcy \& Butler, USA

Iodine cell approach (Marcy/Butler)

- Superimposing the radial velocity reference on the observed spectra

Iodine Cell method

Down to $3 \mathrm{~ms}-1$, and lot of flux lost

Simultaneous Thorium calibration (Mayor et al.)

Down to 1 ms-1, and below

HARPS, the best of the best spectrograph $1 \mathrm{~ms}^{1}$ routinely, and even better...

Grand father of ESPRESSO (VLT), $10 \mathrm{cms}^{-1}$ Codex (ELT) 2 cms

\rightarrow Temperature and pressure in the spectrograph must be regulated very precisely. $1 \mathrm{~m} / \mathrm{s}=0.01 \mathrm{~K}=0.01 \mathrm{mbar}$
\rightarrow Mechanical stability: flexures can lead to RV drifts $>10 \mathrm{~m} / \mathrm{s}$
\rightarrow Stability of the illumination of the spectrograph' slit: internal calibration or use of optical fibers that minimize the illumination effects
\rightarrow Wavelength calibration: lodine cell, Thorium-Argon lamp, laser comb, Fabry-Perot
\rightarrow Homogeneity and electronical performances of the detector: ultra-high quality + very thorough calibration are required
\rightarrow Avoiding the spectral areas rich in telluric lines (especially in the red and IR) that can be variable

Minimizing contamination by the light of the Moon

Stellar noises

Oscillations (p-modes) : star having a convective envelope. Period of a few minutes, increases if stellar density decreases. Amplitude of a few m / s for each mode. Solution: averaging with exposures of at least 15 min .

Granulation: stars with convective envelope. Amplitude integrated on the stellar disk of the order of m / s. Characteristic timescale $\sim 10 \mathrm{~min}$, or more (meso and super-granulation). Solution: several exposures per night.

Magnetic activity: rotating spots on the photosphere. Amplitude decreases and period increases with age. Amplitude can exceed $100 \mathrm{~m} / \mathrm{s}$ for a young star. Solution: targeting old stars- observing in the IR - modeling the effect of spots using activity indicators, simultaneous time-series photometry, and/or a priori knowledge of the rotation of the star - strategy adapted to the star to average at best the effects of the activity

Magnetic cycles: 11 years for the Sun. Not only the RV precision varies with the magnetic phase, but possibly the RV itself too.
Solution: targeting old stars?

Native Apps

Executables (64-bit and 32-bit) for Windows and (64-biA for Macintosh computers are available for all of our older projects (NAAP, ClassActior, ¿Kanking Tasks). The appropriate package for your (or your student's) computer sysed myst ye downloaded and installed locally. Note that these are actual applications that runip yer setive OS and their longevity depends only upon your OS. There is no similar viable solution fdr Chromebooks.

Note that every simulation available in the past on this site is contained in either the ClassAction or NAAP Labs native app. (In ClassAction look under the Animations tab.) The following guide to content is provided to assist you in navigating. Student guides and demonstration guides can be found on the NAAP Resources page.

Windows Executables (for 64-bit machines, what most people want)

ClassAction - v2.3.msi	97.4 MB	January 30, 2020
$\underbrace{\text { NAAP Labs - v1.1.msi }}_{\text {Interactives - v1.1.msi }}$	22.4 MB	January 30, 2020
46.7 MB	January 30, 2020	

MacOS Executables

ClassAction - v2.3.pkg	97.1 MB	January 30, 2020
NAAP Labs - v1.1.pkg Interactives - v1.1.pkg	22.4 MB	January 30, 2020

The transit technique

Only planets closed to ~ 90 deg inclinaison
Transit probability $\mathcal{P}_{\operatorname{tr}}=\frac{R_{*}+R_{\mathrm{p}}}{a\left(1-e^{2}\right)} \simeq R_{*} / a$

10 \% probability for a planet at 0.05 AU around a solar like star

Transit depth $\Delta F / F \simeq R_{p}^{2} / R_{*}^{2}$
Jupiter : 1 \% depth Earth: 0.01 \% depth

transit and occultations

HD209458b transiting hot Jupiter in 1999

Observations du sol

Charbonneau et al. (1999)

Observations spatiale HST

Charbonneau et al. (2000)

Ground-based transit searches - 2002
Transit Search Programmes

Programme		$\begin{gathered} \mathrm{D} \\ (\mathrm{~cm}) \end{gathered}$	focal ratio	$\begin{aligned} & \Omega^{0.5} \\ & (\mathrm{deg}) \end{aligned}$			no. of CCDs	$\begin{gathered} \text { pixel } \\ \text { (arcsec) } \end{gathered}$	sky mag	star mag	$\begin{gathered} \mathbf{d} \\ (\mathbf{p c}) \end{gathered}$	stars ($\times 10^{3}$)	planets /month
1	PASS	2.5	2.0	127.25	2.0	2.0	15	57.75	6.8	9.4	83	18	6.3
$\underline{2}$	WASP0	6.4	2.8	8.84	2.0	2.0	1	15.54	9.6	11.8	246	2	0.8
$\underline{3}$	ASAS-3	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1.7
4	RAPTOR	7.0	1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	11.7
$\underline{5}$	TrES	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10	3.5
6	XO	11.0	1.8	10.06	1.0	1.0	2	25.00	8.6	11.9	258	3	1.2
7	HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9.7
8	SWASP	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	26.0
$\underline{9}$	Vulcan	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4.1
10	RAPTOR-F	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2.9
11	BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1.8
12	Vulcan-S	20.3	1.5	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24	8.5
$\underline{13}$	SSO/APT	50.0	1.0	5.05	2.9	3.1	2	4.20	12.5	15.5	1103	65	22.8
$\underline{14}$	RATS	67.0	3.0	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	4.2
15	TeMPEST	76.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2.9
$\underline{16}$	EXPLORE-OC	101.6	7.0	0.32	2.0	3.3	1	0.44	17.1	18.4	2881	5	1.6
17	PISCES	120.0	7.7	0.38	2.0	2.0	4	0.33	17.1	18.6	3045	8	2.7
$\underline{18}$	ASP	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2	0.6
19	OGLE-III	130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7.1
$\underline{20}$	STEPSS	240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17	5.9
$\underline{21}$	INT	250.0	3.0	0.60	2.0	4.0	4	0.37	17.1	19.5	3800	37	13.1
$\underline{22}$	ONC	254.0	3.3	0.53	2.0	4.0	4	0.33	17.1	19.5	3817	30	10.5
$\underline{23}$	EXPLORE-N	360.0	4.2	0.57	2.0	4.0	12	0.21	17.1	19.9	4196	46	16.2
$\underline{24}$	EXPLORE-S	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	20.1

Ground-based transit searches - 2002
Transit Search Programmes

Programme		$\begin{gathered} \text { D } \\ (\mathrm{cm}) \end{gathered}$	focal ratio	$\begin{aligned} & \Omega^{0.5} \\ & \text { (deg) } \end{aligned}$	$\begin{gathered} \mathbf{N}_{\mathbf{x}} \\ (\mathbf{k p i x}) \end{gathered}$	$\begin{gathered} \mathbf{N}_{\mathbf{y}} \\ (\text { kpix) } \end{gathered}$	no. of CCDs	$\begin{gathered} \text { pixel } \\ \text { (arcsec) } \end{gathered}$	$\begin{aligned} & \text { sky } \\ & \text { mag } \end{aligned}$	$\begin{aligned} & \text { star } \\ & \text { mag } \end{aligned}$	$\begin{gathered} \mathbf{d} \\ (\mathbf{p c}) \end{gathered}$	stars ($\times 10^{3}$)	planets /month
3 - 4		2.5	$\begin{aligned} & 2.0 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 127.25 \\ & 8.84 \end{aligned}$	2.0	2.0	15	$\begin{aligned} & 57.75 \\ & 15.54 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 9.6 \end{aligned}$	$\begin{aligned} & 9.4 \\ & 11.8 \end{aligned}$	83	18	6.3
		6.4									246	2	0.8
	ASAS-3	$\begin{aligned} & 7.1 \\ & 7.0 \end{aligned}$	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1.7
	RAPTOR		1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	11.7
$\underline{\square}$	+1420	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10	3.5
6	XO	11.0	1.8	10.06	1.0	1.0	2	25.00	8.6	11.9	258	3	1.2
7	HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9.7
8	SWASP	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	26.0
	-tiver	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4.1
- 10	RAPTOR-F	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2.9
-11	BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1.8
	+	20.3	1.5	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24	8.5
	007.t.	50.0	1.0	5.05	2.9	3.1	2	4.20	12.5	15.5	1103	65	22.8
	+79+5]	67.0	3.0	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	4.2
+		16.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2.9
		101.6	7.0	0.32	2.0	3.3	1	0.44	17.1	18.4	2881	5	1.6
	Perete	120.0	7.7	0.38	2.0	2.0	4	0.33	17.1	18.6	3045	8	2.7
10	910\%	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2	0.6
19	OGLE-III	130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7.1
		240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17	5.9
-	+7-1	250.0	3.0	0.60	2.0	4.0	4	0.37	17.1	19.5	3800	37	13.1
		254.0	3.3	0.53	2.0	4.0	4	0.33	17.1	19.5	3817	30	10.5
	criorerio	360.0	4.2	0.57	2.0	4.0	12	0.21	17.1	19.9	4196	46	16.2
ㄷ-1	nern+eroture	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	20.1

Ground－based transit searches－ 2002
Transit Search Programmes

Pro	gramme	$\begin{gathered} \text { D } \\ (\mathrm{cm}) \end{gathered}$	focal ratio	$\begin{aligned} & \Omega^{0.5} \\ & (\mathrm{deg}) \end{aligned}$	$\begin{gathered} \mathbf{N}_{\mathbf{x}} \\ (\mathbf{k p i x}) \end{gathered}$	$\begin{gathered} \mathbf{N}_{\mathbf{y}} \\ \text { (kpix) } \end{gathered}$	no．of CCDs	pixel （arcsec）	sky mag	star mag	$\begin{gathered} \mathbf{d} \\ (\mathbf{p c}) \end{gathered}$	$\begin{aligned} & \text { stars } \\ & \left(\times 10^{3}\right) \end{aligned}$	planets ／month
	－	2.5	2.0	127.25	2.0	2.0	15	57.75	6.8	9.4	83	18	6.3
		6.4	2.8	8.84	2.0	2.0	1	15.54	9.6	11.8	246	2	0.8
\bigcirc	1．．．．．．n	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1.7
$\stackrel{\square}{4}$	ハットイレス	7.0	1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	11.7
$\underline{\square}$	＋100	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10	3.5
6	XO	11.0	1.8	10.06	1.0	1.0	2	25.00	8.6	11.9	258	3	1.2
7	HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9.7
8	SWASP	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	26.0
2	Puncur	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4.1
＋	A．．．．．．．．．	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2.9
11	BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1.8
		4	7	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24	8.5
	peomity	O	1.0^{-1}	5.05	2.9	3.1	2	4.20	12.5	15.5	1103	65	22.8
	$\cdots+1$	d를	3.7	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	4.2
		6.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2.9
	（1）		3		2.0	3.3	1	0.44	17.1	18.4	2881	5	1.6
	－100－te	209	C	0.38	． 0	2.0	4	0.33	17.1	18.6	3045	8	2.7
	Puor	30.6		U		2.0	1	0.30	17.1	18.7	3125	2	0.6
	ค．．．．．．	130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7.1
	amer	240.0	0.0		4.0		8	0.18	17.1	19.5	3757	17	5.9
	\cdots	5.5	3 AP	0,60 AS	2／AR	7° A	TEP	¢． 37	17.1	19.5	3800	37	13.1
		258	$3^{3}{ }^{3} 1$	$0.53>$	$\because 0$	b）C	4 ㅌ．	$0^{33} 1$	$17{ }^{1}$	19.5	3817	30	10.5
	（1）	360.0						0.21	17.1	19.9	4196	46	16.2
－	＋10\％	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	20.1

The previous slides shows how being overoptimistic could lead to severe disillusion

Handwaving calculations with naive assumptions such as:

- CCD camera are perfect
- There is no differential refraction
- Ignoring correlated noise in the data
- Scintillation noise

It is not easy as one might think... but now, it is working fine !

Ground-based transit searches

HATNet

- 200 mm lens, F/1.8
- CCD camera
- Custom mount
- Gaspar Bakos et al.
- 70 planets (Hat North)
- 73 planets (Hat South)

The SuperWASP Camera array

Exoplanets to date : 192 since 2000

NGTS at Paranal

- 12 telescopes

20 cm aperture, f/2.8
Andor cameras
Fov 3×3 deg each 100 sq deg

Ground-based surveys - HATSouth

- 3 stations: LCO (Chile), HESS (Namibia), SSO (Australia).
- Operational: 2010 - present.
- $6 \times(4 \times 0.2 \mathrm{~m})$ telescopes, each with $8^{\circ} \times 8^{\circ} \mathrm{FOV}, 8 \mathrm{~K} \times 8 \mathrm{~K}$ pix FI CCD, sloan r filter.
- "Home-made" dome, mount, electronics, software.
- Off-the-shelf (Apogee) CCD, (Takahashi) optics, filters.

- 1 planet (HATS-1b) with $\mathrm{P}=3.44 \mathrm{~d}$.
- $\mathrm{V}<14.5$ targets. K and M dwarfs. Follow-up with extended team using multiple resources.
- Sensitive to long period and shallow transits.
- Princeton, MPIA, ANU, PUC collaboration.
- See Bakos et al. 2012, Penev et al 2012, astroph
triple transit of TRAPPIST-1c, 1 e , and 1 f .

Eclipsing binary with bright blend

Small star (same radius as Jupiter planet)
?
Variable star, correlated noise, alien spaceship, other ?

Binaries on excentric orbit

Genuine transiting planet

Mass-radius relation

A 0.1 Mo star and a Jupiter can have similar radius

Need to combine with radial velocities

b

Kepler

BY THE NUMBERS

O P YEARS IN - 0 SPACE

- MISSIONS
- COMPLETED

2. 2 - 总 FUEL

$\stackrel{(}{ }+)^{-}$

a- 0 science DATA COLLECTED

Sciemitific
PAPERS
PUBLISHED
732,128
COMMANDS
EXECUTED

R1 SUPERNOVAE DOCUMENTED

As of October 24, 2018

Mass-radius of gazeous planets and small ones in 2013...

Kepler Planet Candidates

 January 2014

Mass radius relations and isodensity curves

The Average Denisty of the Planets in our Solar System and our Moon

Classification according to density

Ternary diagrams

- $A+B+C=100 \%$
- How to plot the 3 variables together

Example of reading the figure

GJ1214b, 6.55 Mearth
Calculating different models $\mathrm{H}-\mathrm{He}, \mathrm{H} 2 \mathrm{O}$, Earth like nucleus fractions.
Isocurves for Radiu 2.5, 3, ..., 10, 12, 15 Rearth

Valencia, 2013

Ternary Diagrams for GJ 1214b and Kepler11e. These triangular diagrams relate the composition in terms of earth-like nucleus fraction, water+ices fraction, and H / He fraction to total mass, to the radius for a specific planetary mass. Each vertex corresponds to 100%, and the opposite side to 0% of a particular component. The color bar shows the radius in terms of Earth-radii, and the grey lines are the isoradius curves labeled in terms of Earth-radii. The collection of ternary diagrams for a range of planetary masses forms a triangular prism. The black band shows the compositions constrained by data for GJ 1214b for a grain-free envelope (top left), and a grainy envelope (bottom right), and Kepler-11e for a grain free envelope (top right) as projected onto the planetary mass MMM from the ternary diagrams at $M+\Delta M M+$ Delta $M M+\Delta M$ and $M-\Delta M M$-Delta $M M-\Delta M$ (where ΔM Delta $M \Delta M$ are the uncertainty values taken from the observational data).

Histogram of planet radii, 2 peaks, super-Earth and Mini-Neptune

Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days.

Lightly shaded regions encompass our definitions of "super-Earths" (light red) and "sub-Neptunes" (light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by uncertainties on the planet radii measurements.

A fabulous diversity in the exoplanet zoo Mass and Radius are not enough

5 Super Earth / Mini Neptunes in Kepler 11. Very different atmospheres !
(Lissauer et al. 2011, Valencia et al., 2013)

$50 \%\left(\mathrm{H}_{2} \mathrm{O}+\right.$ ices $)+50 \% \mathrm{H}-\mathrm{He}$

Trappist projet, hunting for transiting planets 60 cm telescope, Chile, Marocco Led by M. Gillon

TRAPPIST-1 System

TRAPPIST-1 System

Inner Solar System

The Trappist-1 system

TRAPPIST-1/Solar System Comparison

Illumination from Star
(relative to Earth/Sun)

All seven planets have similar densities, but we do not how they are composed

Possible Interiors of TRAPPIST-1 Exoplanets
 Based on precise measurements of the planet densities

Rocky surface, iron mixed uniformly with other elements throughout the interior

Mantle + Core

Rocky surface, with an iron-rich core that is proportionally smaller than Earth's

Ocean + Mantle + Large Core

Deep ocean layer on surface with larger iron-rich core; This is only possible for the cooler, outer 4 planets

And habitable planets ?

Level 0: water liquid on the surface, big enough to keep its atmosphere, not gaz giant
But... what about greenhouse effects from atmosphere? UV \& X Ray flux from star ? nature of the atmosphere ? No guaranty it is like the Earth !
So, be careful when using the word « habitable » ()

Potentially Habitable Exoplanets

[0.88] Kepler-438 b

tau Cet e*

[0.61] Kepler-186 f

[0.85] Kepler-296e

GJ 180 c*

[0.84]
GJ 667C c

[0.84] Kepler-442 b

[0.83] Kepler-62 e

[0.81]
GJ 832 c

[0.80] EPIC 201367065 d

[0.79] Kepler-283 c

Take away points.

- Lots of transiting planets, hot or warm
- Measured transit depth gives $\sim\left(\text { Rplanet } / R^{*}\right)^{2}$ and fit of light curve inclination i.
- If radial velocity is measured-> i is known, hence Mass of planet is known
- Gazeous planets with wide range of mean densities, inflated hot jupiters
- Large numbers of planets with Radius <4 Rearth
- Super-Earth (2- 8 Mo, R < 1.6Rearth)
- Ocean planets (large amount of H2O)
- Mini Neptunes (down to ~5 Mearth, and 3-4 Rearth)
- Between 1.3-2.3 Rearth radius, overlap of populations of super Earth and mini-Neptunes

Native Apps

Executables (64-bit and 32-bit) for Windows and (64-biA for Macintosh computers are available for all of our older projects (NAAP, ClassActior, ¿Kanking Tasks). The appropriate package for your (or your student's) computer sysed myst ye downloaded and installed locally. Note that these are actual applications that runip yer setive OS and their longevity depends only upon your OS. There is no similar viable solution fdr Chromebooks.

Note that every simulation available in the past on this site is contained in either the ClassAction or NAAP Labs native app. (In ClassAction look under the Animations tab.) The following guide to content is provided to assist you in navigating. Student guides and demonstration guides can be found on the NAAP Resources page.

Windows Executables (for 64-bit machines, what most people want)

ClassAction - v2.3.msi	97.4 MB	January 30, 2020
$\underbrace{\text { NAAP Labs - v1.1.msi }}_{\text {Interactives - v1.1.msi }}$	22.4 MB	January 30, 2020
46.7 MB	January 30, 2020	

MacOS Executables

ClassAction - v2.3.pkg	97.1 MB	January 30, 2020
NAAP Labs - v1.1.pkg Interactives - v1.1.pkg	22.4 MB	January 30, 2020

Choose a planet, plot radial velocity, transit curve

- GJ 436b, hot Neptune, 22 Mearth, 3.95 Rearth, star 0.4 Mo
- GJ1214b Mini-Neptune, 6.5 Mearth, 2.6 Rearth, star 0.15 Mo

Radial velocity at $10 \mathrm{~ms}-1$ and $1 \mathrm{~ms}-1$
Transit photometry at 0.5 millimag or 3 millimags.

If the star is a star like the sun, how does it look?
Not that easy to get the planet...

It is easier with smaller stars (more RV amplitude and larger transit), but the smaller stars are colder, more active, so RV and photometry can be tricky.

Searching for planet via microlensing

$t_{\varepsilon}=70 \sqrt{M / M o}$ day:

Radial velocities \& transits

Microlensing

PLANET 1997

PLANET 2005

A first frozen super Earth

Gas giants are are, super Earth-Neptunes are common
Same direction as the core accretion model predictions

$$
\begin{aligned}
& M_{*}=0.22_{-0.11}^{+0.21} M_{\text {SUN }} \\
& M_{\mathrm{p}}=5.5_{-2.7}^{+5.5} M_{\text {EARTH }} \\
& a=2.6_{-0.6}^{+1.5} \mathrm{AU}
\end{aligned}
$$

Properties of the star \& the planet

Like Hoth planet from star wars

OGLE-2005-BLG-169Lb : a ~13 M_{\oplus} planet

Gould et al. 2006, MicroFUN, OGLE, RoboNet

With KECK, detecting the lens in 2013 Measuring proper motion

Planet hunting in 2013

- Network of telescopes, round the clock observations, online analysis.

From 4 telescopes, to a fleet of 45+ telescopes on alert Including DOME C

2007-2011: 4-7 planets/year $2012=22$ planets. 2013-2019 = 10-15 planets/year

Ground-space parallax to measure masses

Tatooine

Detection efficiencies 2002-2007

Cassan et al. 2012, Nature

Cold planets, mass-ratio function, suzuki et al. 2016

Snow line approximated as $2.7 \times \mathrm{M} / \mathrm{Mo}$ (AU)

Exoplanets today: huge diversity

3800+ PLANETS, 2700 PLANETARY SYSTEMS KNOWN IN OUR GALAXY

Histogram of planet radii, 2 peaks, super-Earth and Mini-Neptune

Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days.

Lightly shaded regions encompass our definitions of "super-Earths" (light red) and "sub-Neptunes" (light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by uncertainties on the planet radii measurements.

Gaseous giant planets
 Formed elsewhere and migrated

Terrestrial planets, formed in situ ? Remnant of gaseous giant ?

Does the planet have	Primary or secondary an atmosphere? Spectral observations	H_{2} retained ore not
Habitable conditions?	Energy budget Albedo/thermal emission	
Temperature?		
$\mathrm{H}_{2} \mathrm{O}$?		

Gaseous planets

formed elsewhere and migrated

Terrestrial planets

formed in situ? Or remnant of gaseous planets' core?

Atmospheres as a probe of planetary interior and formation

Metallicity $=$ fraction of heavy elements (heavier than H and He)
For Solar System atmospheres, metallicity $\approx[C] /[C]_{\text {solar }}$
For exoplanetary atmospheres, metallicity $\approx[0] /[\mathrm{O}]_{\text {solar }}$

- Metallicity decreases with planetary mass in the Solar System
- Sub-Neptunes/Neptunes planets formed in-situ should have a relatively low metallicity
\rightarrow Measuring the metallicity allows to test formation and migration mechanisms

Transit depth:

$$
\delta_{t r a}=\left(\frac{R_{p}}{R_{\star}}\right)^{2}
$$

Occultation depth:

$$
\begin{aligned}
& \delta_{o c c}= \frac{I_{p}}{I_{\star}}\left(\frac{R_{p}}{R_{\star}}\right)^{2} \\
&
\end{aligned}
$$

Flux ratio day side of the planet / star

At different wavelength, because of different absorbing molecules-> different effective radius

Scale height in an atmosphere

$$
P(z)=P\left(z_{0}\right) \exp \left(-\frac{z-Z}{H}\right)
$$

Pressure falls off exponentially with height in atmosphere with uniform temperature.
$H=\left(\frac{R T}{M g}\right)$ has the dimension of distance and is called, the scale height.
M is the mean molecular mass, $2.3 \mathrm{~g} / \mathrm{MOL}$ for hot Jupiter, $28 \mathrm{~g} / \mathrm{MOL}$ for Earth

Atmosphere of gazeous planets more extended than Earth like !

I) Transit

Spectroscopy

Effect of mean molecular weight

- The expected depth of the absorption features in a haze-free atmosphere is proportionalto the atmospheric scale height

Variation of transit depth:
$\Delta \delta_{t r a}=\frac{\pi\left(R_{p}+N_{H} H\right)^{2}}{\pi R_{\star}{ }^{2}}-\frac{\pi R_{p}{ }^{2}}{\pi R_{\star}{ }^{2}} \quad 2 N_{H} \delta_{t r a}\left(\frac{H}{R_{p}}\right)$
Scale height: $\boldsymbol{H}=\frac{\boldsymbol{R} \boldsymbol{T}}{\boldsymbol{M g}}$; Number of scale heights: $\boldsymbol{N}_{\boldsymbol{H}} \approx 7$ (for low resolution)
\rightarrow Transit spectroscopy easier for high scale height (e.g. hot giant planets)

I) Transit

Spectroscopy

Effect of mean molecular weight

Variation of transit depth:
$\Delta \delta_{t r a}=\frac{\pi\left(R_{p}+N_{H} H\right)}{\pi R_{\star}{ }^{2}}{ }^{2}-\frac{\pi R_{p}{ }^{2}}{\pi R_{\star}{ }^{2}} \approx 2 N_{H} \delta_{t r a}\left(\frac{H}{R_{p}}\right)$
Scale height: $\boldsymbol{H}=\frac{\boldsymbol{R T}}{\boldsymbol{M} \boldsymbol{g}}$; Number of scale heights: $\boldsymbol{N}_{\boldsymbol{H}} \approx \mathbf{7}$ (for low resolution)
For an Sun-like star:

- Hot Jupiter ($\left.T=1300 \mathrm{~K}, g=25 \mathrm{~m} \mathrm{~s}^{-2}, M=2.3 \mathrm{~g} / \mathrm{mol}\right): \delta_{\text {tra }} \approx 0.01, \Delta \delta_{\text {tra }} \approx 4.10^{-4}$
- Earth-like planet $\left(T=280 \mathrm{~K}, g=10 \mathrm{~m} \mathrm{~s}^{-2}, M=28 \mathrm{~g} / \mathrm{mol}\right): \delta_{\text {tra }} \approx 10^{-4}, \Delta \delta_{\text {tra }} \approx 2.10^{-6} \quad 22$

I) Transit

Spectroscopy

Effect of mean molecular weight

Variation of transit depth:
$\Delta \delta_{t r a}=\frac{\pi\left(R_{p}+N_{H} H\right)^{2}}{\pi R_{\star}{ }^{2}}-\frac{\pi R_{p}{ }^{2}}{\pi R_{\star}{ }^{2}} \approx 2 N_{H} \delta_{t r a}\left(\frac{H}{R_{p}}\right)$
Scale height: $\boldsymbol{H}=\frac{\boldsymbol{R T}}{\boldsymbol{M} \boldsymbol{g}}$; Number of scale heights: $\boldsymbol{N}_{\boldsymbol{H}} \approx \mathbf{7}$ (for low resolution)
For Trappist-1 ($0.015 \mathrm{R}_{\mathbf{s}}$):

- Hot Jupiter ($\left.T=1300 \bar{K}, g=25 \mathrm{~m} \mathrm{~s}^{-2}, M=2.3 \mathrm{~g} / \mathrm{mol}\right): \delta_{\text {tra }} \approx 0.7, \Delta \delta_{\text {tra }} \approx 2.10^{-2}$
- Earth-like planet ($T=280 \mathrm{~K}, g=10 \mathrm{~m} \mathrm{~s}^{-2}, M=28 \mathrm{~g} / \mathrm{mol}$): $\delta_{\text {tra }} \approx 6.10^{-3}, \Delta \delta_{\text {tra }} \approx 10^{-4}$

The Sun's planets are cold

Some key O, C, N, S molecules are not in gas form

Warm/hot exoplanets

O, C, N, S (TI, VO, SI) MOLECULES ARE IN GAS FORM

FURTHER EVIDENCE OF VEGETATION ON MARS
William M. Sinton

There has been evidence pointing to the presence of vegetation on Mars. PhotoThere has long been evidence poe Lowell Observatory have for decades show sumer a wave of hs taken by E. C. Sliphensity of the dark regions. Every spry (1). In addition to the sonal variation of the intensitlar regions toward the equator that were never dark have bedarkening spreads from the pon-systematic changes; ard blended into the desert regions seasonal variation there are non- have become light and blencurred in 1954 when an area come dark, and a few dark arpearance of a dark region was newly dark (2). years. A striking case of the appe longitude and 20° lating development for many years. during 580,000 square miles at 240 , however, been undergoing Harvard College Observator Mars (3). in which it is situate the 61-inch telescope of thence of organic molecules the resonance

The author using made a new test for the preses at 3.5μ as a result this band was the 1956 opposition madess strong absorption band in the plants tested, atoms attachOrganic moleculesydrogen bonds. It was of their carbon-hydrog a result of interactionfin molecules. \quad of the band in the double, most likely ed to the same carbon the 1956 observations indoubt as to the reality not ascertained in ght reflected from Mars, but they which produced the absorption improved equipment and Furthermore, the regions of Mars which prost was made agai this work. At the 1958 oppositio band were established.
the reality and distribution of the band

Detection of 3 molecular bands in 1956...

${ }_{3}^{3.56}{ }_{3} 3.43$ fron Earth atmorne...

Figure 1. Infrared opectra of Karo snd the suln. The upper curve ohows the spectrin of the sur with sbsorptions proxuces 67 witer shd mithane in the esarth's asiosphere. The mudde ourve ${ }^{28}$ the spectrue of icszonis, the desure restice,
vithin the circle in the gketch. The botton curve shows the spectrum of a strip scross Mara ks sham in the skot aboorptions supposediy tue to erganit asolecules.

Figure 2. The spectio of diazonia wid sytila Msjor ofter division by the salkr spectruk. The dashed portion of the curre is the region through atroeg wethane and water-vapor absorption and the variations are not believed to be signifigant.

We need good line lists...
Exomol and other groups

IN CINEMAS 20 MAY 2019

Water vapour absorption as a function of temperature and wavelength

Key molecules absorbing in IR

The Earth, 1970s, Nimbus-4

The acquisition of spectroscopic data of the Earth from artificial satellites has changed the old question of whether the phenomenon of terrestrial life is unique or not...

1980s, voyager satellite

Titan

IRIS / Voyager R = $4.3 \mathrm{~cm}-1$
Samuelson et al. (1983)

Line identification @ 5 um: R > 200

Line identification : R > 100

More recent spectra in our solar system

Temperature-Pressure profile in hot Jupiters

Thermal profiles for the hypothetical 'hot', 'warm' and 'cool' exoplanets (as labelled) used in the chemical models shown in figure. The grey dashed lines represent the equal-abundance curves for $\mathrm{CH} 4-\mathrm{CO}$ and $\mathrm{NH} 3-\mathrm{N} 2$. Profiles to the right of these curves are within the N 2 and/or CO stability fields. The dot-dashed lines show the condensation curves for MgSiO , Mg2SiO4 and Fe (solid, liquid). Moses 2014

Temperature-pressure Profile

Molecules lines list
(a) (i)

Which molecules are expected to be abundant?

Spectral signature of a transiting planet

$\mathrm{R}_{\mathrm{p}}{ }^{2} / \mathrm{R}_{\mathrm{s}}{ }^{2}$

Molecule a
Molecule b

Let's chat with Emilie about it !

STIS: Lya HD 209458b
~9\% absorption in the Ly α line, No red/blue shift

Ben-Jaffel, ApJL, 2008

15\% absorption in the Lyo line

Vidal-Madjar et al., Nature, 2003 Ballester, Sing, Herbert, Nature, 2007

STIS: Lya HD 209458b

Planetary properties of the upper atmosphere

Koskinen et al., Nature, 2008

Stellar wind

Holmstrom et al., Nature, 2008

Koskinen et al., 2010; Yelle, 2003; Lecavelier et al., 2003; Lammer..2004, Tian et al. 2005

CII Transit Measurements (Linsky et al. 2010)

C II 1335.69 A. Difference: black-red

Coaddition of both C II lines

SiIII Transit Measurements (Linsky et al. 2010)

essentilelement of life,
hecause without water,
you cent make coffee.

Water vapor in the hot Jupiter HD189733b

Tinetti et al., Nature, 2007; Beaulieu et al. 2008

HD189733b, Water + Methane

Swain, Vasisht, Tinetti, Nature, 2008

HD 189733 b

- Models with H2O, CH4, clouds and hazes (Emilie)

Figure 8 : Transmittance spectrum on HST STIS and WFC3 observations (Sing et al. 2016) of hot Jupiter HD189733b.

Figure 9 : Transmittance spectrum on SpeX (Danielski et al. 2014) and HST NICMOS (Swain et al. 2008) of hot Jupiter HD189733b.

Hubble: transit spectroscopy

Tinetti, et al., 2010

Spectroscopy to learn the structure of the planet

Density observations

Same mean density - Different atmospheric signatures

GJ 1214b $\mathrm{M}=6.55 \mathrm{M}_{\mathrm{E}}$

GJ1214, super Earth ? Mini Neptunes ? With HST clouds are currently hidding molecules Need to go further to the IR

What about Kepler 11 planets?

Snellen et al., 2010, VLT spectra of HD209458b

Figure S2: Models used for the transmission of carbon monoxide (top panel), water vapour (middle panel), and methane (lower panel) in the atmosphere of HD209458b.

Gravity spectra of betapicb, R=500 and $\mathrm{R}=70$

1) mass ~ brown dwarf
2) low C/O ratio for the planet suggests a formation through coreaccretion, with strong planetesimal enrichment.

Snow line approximated as $2.7 \times \mathrm{M} / \mathrm{Mo}$ (AU)

Histogram of planet radii, 2 peaks, super-Earth and Mini-Neptune

Completeness-corrected histogram of planet radii for planets with orbital periods shorter than 100 days.

Lightly shaded regions encompass our definitions of "super-Earths" (light red) and "sub-Neptunes" (light cyan). The dashed cyan line is a plausible model for the underlying occurrence distribution after removing the smearing caused by uncertainties on the planet radii measurements.

