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We present a well-defined formal framework, together with appropriate mathematical 
tools, which allow us to implement in a constructive way, and to investigate in full 
mathematical details, the Bonnor-Thorne approach to gravitational radiation 
theory. We show how to construct, within this framework, the general radiative 
(formal) solution of the Einstein vacuum equations, in harmonic coordinates, which 
is both past-stationary and past-asymptotically Minkowskian. We investigate the 
structure of the latter general radiative metric (including all tails and nonlinear 
effects) both in the near zone and in the far zone. As a side result it is proven that 
post-Newtonian expansions must be done by using the gauge functions (lgc)P/cn 

(p, n = positive integers). 

1. INTRODUCTION 

1.1 AMotivations 

Gravitational radiation theory, in the context of general relativity, has been the subject of 
extensive research, especially during the last twenty-five years. However, it must be admitted 
that some of the main problems of gravitational radiation theory have not yet received 
satisfactory answers. In this article and its sequels, we shall consider three of these problems, 
that we summarize in the following three questions. 

Problem 1 ('asymptotic problem'): what is the asymptotic behaviour, appropriate to 
isolated systems and consistent with Einstein's field equations, of radiative gravitational 
fields far away from their sources? 

Problem 2 ('generation problem'): what is the link between the preceding asymptotic 
behaviour and the structure and motion of the sources that generate the gravitational 
radiation? 

Problem 3 ('radiation reaction problem'): what is the back-reaction of the emission of 
gravitational radiation on the source? 

These problems were first tackled by Einstein (i9i6, I9I8) by means of a linearized 
post-Minkowskian approach. Many authors subsequently questioned the validity of the 
conclusions of these and related pioneering works on the grounds that the nonlinear structure 
of the field equations might qualitatively change the results of the linearized approach. On the 
basis of the work of Einstein et al. (1938) several authors even doubted the existence of 
gravitational radiation (see, for example, Infeld & Plebanski I 960). However, the discovery 



RADIATIVE GRAVITATIONAL FIELDS I. 381 

of a number of exact wave-like solutions of the vacuum field equations, together with the study 
of gravitational wave fronts and a thorough investigation of the algebraical and differential 
properties of the Riemann tensor gave some plausibility to the existence of gravitational 
radiation (for lucid surveys of these approaches to gravitational radiation and references to the 
numerous original works see Pirani I962a, b). Further important steps were contained in the 
work of Fock (I959) who emphasized that problem 1 above had to be split into two 
sub-problems concerning, on the one hand the asymptotic behaviour of the field at very large 
distances from the source and at very large times in the past, where one should impose a 'no 
incoming radiation' condition; and on the other hand, the asymptotic behaviour at very large 
distances and at very large times in the future where nonlinear effects introduce (in harmonic 
coordinates) divergent logarithmic deviations from the expected linearized behaviour of the 
' outgoing radiation'. Fock also pointed out that a possible method for trying to answer problem 2 
above involved the use of some kind of matching between a gravitational field computed in 
a region exterior to the source and another gravitational field determined in a region including 
the source. Another important step was taken by Bonnor (I959) who introduced a new method 
of approximation based on the simultaneous use of an expansion in powers of the mass (m) 
and radius (a) of the source, and who proved that at the nonlinear approximation of order 
m2a4 there was a secular decrease of a certain coefficient of the metric, which reduced to the 
Schwarzschild mass in the stationary case. This decrease was in perfect agreement with the 
'quadrupole energy loss' formula of the linearized theory. Shortly afterwards Bondi et al. 
(I962) and Sachs (I962) introduced a new approach to gravitational radiation theory based 
on the use of a special type of coordinate system that avoids the appearance of logarithms, 
and on a different approximation procedure. Instead of assuming that the metric admits an 
asymptotic expansion in the coupling constant G ('nonlinearity expansion') they assumed the 
existence of an asymptotic expansion in inverse powers of the (luminosity or affine) distance 
(r). (The first step of this approach had been taken earlier by Trautman 1958.) They proved 
that this assumption was not inconsistent with Einstein's vacuum field equations, in the sense 
that they could construct formal series in powers of r-1 that were formal solutions of the latter 
equations. Some of the important results of this work were the proof that a certain coefficient 
of the metric, which reduces to the Schwarzschild mass in the stationary case, is monotonically 
decreasing and a new formulation of the asymptotic behaviour of the 'outgoing' radiative 
gravitational fields ('peeling behaviour') (Sachs 196I; Newman & Penrose I962) . The 
approach of Bondi & Sachs was clarified by the geometrical 'conformal' reformulation of 
Penrose (i 963, I965). The latter conformal approach allowed the weakening of the assumptions 
used by Bondi & Sachs, and led to many further developments (for reviews see, for example, 
Geroch I 977; Schmidt I 979; Ashtekar I 984). 

However, it should be stressed that, despite its elegance, the whole Bondi-Sachs-Penrose 
approach to asymptotic structure appears at present to be unsatisfactory for several reasons. 
Indeed, although it provides an elaborate conceptual framework allowing one to prove 
theorems and to perform calculations, it rests on a set of assumptions that have not been shown 
to be satisfied by a sufficiently general solution of the inhomogeneous Einstein field equations. 
In other words, one can say (Schmidt I979) that the Bondi-Sachs--Penrose approach provides 
only a definition of a class of space-times that one would like to associate to radiative isolated 
systems (asymptotically simple space-times with sufficiently smooth past and future null 
infinities and with zero radiation fields at past null infinity), and that neither the global 
consistency nor the physical appropriateness of this definition have been proven. There are 
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some interesting examples of radiative space-times admitting at least a piece of future null 
infinity (Schmidt I98I ; Ashtekar & Dray I98 i; Bi'cak et al. I983), and recent general theorems 
of Friedrich (i 983 a, b) showing the local consistency of the Bondi-Sachs-Penrose definition with 
Einstein's vacuum field equations, but these results fall short of proving the global consistency 
of the definition with a generic solution of the inhomogeneous field equations. On the contrary, 
perturbation calculations have given some hints of inconsistency between the Bondi-Sachs- 
Penrose definition and some approximate solutions of the field equations (Bardeen & Press 
I973; Schmidt & Stewart I979; Walker & Will I979; Porrill & Stewart I98I; Damour I985). 
A second class of reasons that make the Bondi-Sachs-Penrose approach unsatisfactory is that, 
although it provides at least a tentative answer to problem 1 above, it seems to be ill-suited 
for giving answers to problems 2 and 3. Indeed it gives information on the gravitational field 
only in the form of an asymptotic expansion when r -- o, which seems a priori difficult to relate 
to the source located within r < a. 

Furthermore, the present development of gravitational wave detectors, and the observation 
of astrophysical systems where gravitational radiation reaction effects may have been or seem 
to be important (like runaway or binary pulsars) make it urgent to find at least approximate 
(but reliable) answers to problems 2 and 3 above. Several different approaches aimed at 
answering the latter problems have been proposed: some are analytical, some are half 
analytical-half numerical (e.g. perturbations around curved backgrounds), and some are 
numerical. We shall discuss here only the analytical approaches. Among these, there exist two 
main classes: the post-Newtonian approaches(1/c expansions) and the post-Minkowskian 
approaches (G expansions). The post-Newtonian approaches are fraught with serious internal 
consistency problems because they often lead, in higher approximations, to divergent integrals; 
this is well known for radiation reaction calculations, see, for example, Kerlick (i980), but is 
also easily seen to be true in the post-Newtonian wave-generation formalism of Epstein & 
Wagoner (I 975) (see, however, the improved post-Newtonian approaches of- Persides I97I; 
Winicour I983; Futamase & Schutz I983; Schafer I985). The post-Minkowskian approaches 
have not shown any signs of internal inconsistency but, because of computational difficulties, 
they have given answers to problems 2 (Kovaics & Thorne I977) and 3 (Damour I983 a, b) 
only in the special case of a source made of widely separated objects (treated as some kind of 
point masses). For more general sources the straightforward post-Minkowskian method seems 
rather powerless. Fortunately there exists another approach that can extend the reach of the 
post-Minkowskian expansion method to more general sources. This approach (Bonnor I959; 
Bonnor & Rotenberg I966; Couch et al. I968; Hunter & Rotenberg I969; Thorne I977, I980, 

I983) combines a post-Minkowskian (PM) expansion (nonlinearity expansion, or asymptotic 
expansion in powers of Gm) with a multipolar (M) expansion (expansion in irreducible 
representations of the rotation group in Thorne's formalism, or, equivalently, expansion in 
powers of the source radius a in Bonnor's formalism). We shall below call it a MPM expansion 
(Multipolar-post-Minkowskian). 

The Bonnor-Thorne approach has already been used to investigate several aspects of 
gravitational radiation theory (Bonnor & Rotenberg I966; Hunter & Rotenberg I969; Bonnor 
I974; Thorne I980; Schumaker & Thorne I983). However, it must be admitted that the whole 
Bonnor-Thorne approach still lacks a precise technical framework implementing its ideas in 
a formally clear way and showing how they lead to a well-defined approximation procedure 
for solving the field equations to all orders of nonlinearity. The first aim of the present work 
is to put forward such a clear formal framework, and to define, within it, a constructive algorithm 
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giving the (formal) general radiative solution of the vacuum field equations (taking into 
account all orders of nonlinearity). (An outline of this framework has been given in Blanchet 
& Damour I984a.) 

From a practical point of view, one of the main advantages of the Bonnor-Thorne approach 
over that of Bondi-Sachs is that its spatial and temporal domain of a priori validity is expected 
to be larger. Indeed, the Bondi-Sachs approach, being an asymptotic expansion in inverse 
powers of r for fixed retarded time u t- r/c,t is a priori expected to yield a 'good' (i.e. 
uniform) approximation of an actual radiative metric only in thefar wave zone r > A (A being 
a typical wavelength). On the other hand the Bonnor-Thorne approach, being mainly a 
nonlinearity expansion, is a priori expected to yield a good approximation everywhere in the 
weak-field zone r > Gm/c2 (this assumes that the simultaneous multipolar expansion is in fact 
convergent, instead of asymptotic, and thereby does not restrict the domain of validity of the 
method beyond the fact that one must stay outside the source: r > a > Gm/c2). Now, for many 
sources we shall have A > Gm/c2, indeed this is true for slow-motion sources where 
A > a > Gm/c2, and several numerical calculations have shown that this stays true even for 
some strongly relativistic sources (gravitational collapse). Therefore the Bonnor-Thorne 
approach, covering a priori a larger domain, both in space and in time, allows the investigation 
of more aspects of gravitational radiation theory than the Bondi-Sachs approach; for instance, 
gravitational wave tails (Hunter & Rotenberg I969; Couch et al. I968; Bonnor I974) or the 
link between the far wave zone and the transition zone (r A) or even (for slow-motion 
sources) the near zone (r < A) (with the possible consequence of devising a wave-generation 
formalism, see Thorne i980). In the present article we shall limit ourselves to investigating the 
structure of a general radiative metric in the far zone and (for slow sources) in the near zone. 
In subsequent articles we shall use our general formal framework to investigate the connection 
between the Bonnor-Thorne and the Bondi-Sachs-Penrose approaches, and to study the links 
between the far-zone field, the transition-zone field, the near-zone field and the source (thereby 
extending and putting on a firmer formal basis several results of Thorne I980). This will 
provide approximate answers to problems 1, 2 and 3 above (for preliminary results, obtained 
within this framework, concerning radiation reaction effects beyond the quadrupole approxi- 
mation see Blanchet & Damour I984b). 

1.2. Assumptions 

In this paper we shall consider what we shall call Multipolar-post-Minkowskian expandable 
metrics (in short MPM metrics), i.e. formal series in powers of Newton's constant Gt 

"fl(x"):= \g ge,= f4 + Ghfl + G2hf + ... + Gnh+..., (1.1 ) 

such that each term of the series hafl(xO, x1, x2, X3) admits afinite multipolar expansion associated 
with the 0 (3) group of rotations of the spatial coordinates (which leave invariant 
r: = ((xl)2+ (x2)2+ (x3)2)1 and t: = x?/c), i.e. 

lmax 
hafi(x#) = E hnL(r, t) LL(e, o), (1.2) 

a=0 

t In this paper the symbol - is used to represent 'of the order of'. 
+ Notations: signature - + ++; greek indices = 0, 1, 2, 3; latin indices = 1, 2, 3; g: = -det (g,,,); 

f, =fPf = flat metric = diag (-1, + 1, + 1, + 1); N, Z, lR, C are the usual sets of non-negative integers, integers, 
real numbers and complex numbers; CP(U) is the set of p-times continuously differentiable functions in the open 
set U (p < + oo). See other notations at the beginning of Appendix A. 
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where I.,l is some maximum value of I (depending on n), and where L denotes the multi-index 

i1 i2...*, n: nti n.t2.. .nil with nt: xi/r (latin indices = 1, 2, 3), and where 7jL denotes the 
(symmetric)-trace-free part of nL. The sum appearing in the right-hand side of (1.2) is 
equivalent to a finite expansion in usual spherical harmonics: Yl7 (, 0) (for a discussion of 
this point and of the link between the 'orbital' expansion (1.2) and a fully irreducible tensor 
spherical harmonics expansion see Thorne (i 980) and Appendix A of this article). We restrict 
our attention tofinite multipolar expansions because this will allow us to prove rigorously many 
results concerning haO, without having to make strong assumptions about the convergence of 
multipolar expansions. This way of proceeding is essentially equivalent to the 'double (formal) 
series' approach of Bonnor (I 959) (Y =f+ Y21 Eq mP aq hpq), which leads to consider at each 
step only a finite number of values of p and q i.e. a finite order in G (mP = (Gm)P) and a finite 
multipolar expansion (Eq = El). It is, however, hoped that at the end of the construction of 
9 it will be possible to take the limit of an infinite number of multipoles. 

We wish to investigate when such MPM metrics satisfy formally (i.e. in the sense of formal 
series) the Einstein equations, which read outside the source 

Rafl(Y",(x1)) = 0. (1.3) 

In the present paper we shall impose (in the sense of formal series) three more restrictions on 
y(x). First, we shall use harmonic coordinates: 

a 8 (xl) = 0. (1.4) 

Second, we shall assume that the metric was stationary in the past, i.e. that there exists a time 
- T such that 

(t 7< T) (010tyL 4(xi, t) = 0) . (1.5) 

Third, we shall assume that before the time - T the metric was asymptotically Minkowskian 
in the weak sense that 

(t < - T) =: (lim (y9Xf(xi, t)) = Pf8). (1.6) 
r -+ oo 

All conditions (1.1 )-(1.6) are assumed to hold in some open domain D of D4 of the type r > rO 

with ro > 0 (in fact ro > a = source radius). Among the assumptions (1.1)-(1.6) some will be 
common to our sequel papers ((1.1)-(1.2)) but we leave open the possibility to relax the 
auxiliary conditions (1.3)-(1.6) by considering in further works non-harmonic coordinates, 
always radiating sources (taking the limit T-+ +o), etc... 

The plan of this paper is as follows; in ?2 we discuss the first step of the method: hX,8, that 
is the general solution of the linearized vacuum Einstein equations; in ?3 we present some 
mathematical tools which will be necessary to deal with the nonlinear higher steps haA (n > 2); 
in ?4 we show how to construct algorithmically the general hxfl; in ?5 we investigate the 
near-zone structure of the precedingly constructed general radiative metric Y; in ?6 and at 
the beginning of ? 7 we present some further mathematical tools which allow us to investigate 
(in ? 7) the far-zone structure of a general radiative MPM metric. Some of the technical details 
are relegated to the Appendixes. 
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2. GENERAL PAST-STATIONARY SOLUTION OF THE LINEARIZED VACUUM 

EQUATIONS 

The general past-stationary solution of the linearized harmonic Einstein vacuum equations 
is not only the first step of our approach, but also will constantly be used in the higher steps 
of our recursive analysis of the general solution of the nonlinear vacuum equations. Therefore, 
although several authors (notably Sachs & Bergmann I958; Sachs I96I; Pirani I964; Thorne 
1980) have already dealt with the linearized solution, the precise conditions of validity of their 
formal treatments are often unclear, so we wish to start afresh and to present a rigorous, 
self-contained, derivation of this solution within the assumptions (1.1)-(1.6). 

Let D be an open domain of l4 defined as {(x, t) I r > ro} for some r >, 0. According to the 
assumptions (1.1)-(1.6) the problem is to find the most general hfl#(xi, t) satisfying in D 

lmax 
h0l0(x , t) = f iLhctI (r, t), (2.1) 

I=0 

EjhflP(xi, t) = 0, (2.2) 

aflhlfl(xi, t) = 0, (2.3) 

t -T= a hMO(xi, t) = 0, (2.4) a t 

t s-T=> lim hMOl(xi, t) = 0, (2.5) 
r-*oo 

where :l= fPa ,fl = AL-c-2 2/at2. 
Let us first notice that the restriction in (2.1) to having only a finite multipolar expansion 

is mainly a matter of convenience when dealing with the linearized approximation. Indeed, 
if one assumes only that hxl#(x/t) is of class C2 in the open domain D, then h0fl(x/L) can be expanded 
in an absolutely point-wise convergent multipole series (see Appendix B), each term of which, 
ha- (r, t), can be computed as the following integral over the unit sphere ni ni = 1: 

h(r, t) = (21+ 1)!! jdQ(n) 7L hfl(rni, t) (2.6) 

(where (21 + 1)!!:= (21+ 1). (21-1 ) ... 3.1 and dQ(n) = sinededd5). Then without assuming 
any further conditions one can apply the projection operator appearing in (2.6) to (2.2)-(2.5), 
thereby deducing the same equations for hxL(r, t) as can be obtained by simply replacing the 
finite sum (2.1) into (2.2)-(2.5). 

Thus, let us start by looking for the most general 02(D) solution of (2.2)-(2.5) (we shall come 
back to the more restricted assumption (2.1) only after (2.25)). Let us first investigate the 
consequences of (2.2). One obtains 

[02-(1/C2) et + (2/r) ar-1(1+1)/r2] ha-L(r, t) = 0. (2.7) 

Let us introduce the usual (Minkowskian) retarded and advanced time variables 

u:= t-r/c, (2.8a) 

v:= t+r/c, (2.8b) 
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and define f(u, v): = (v-u) ->. hal4L(r, t) (2.9) 

(we suppress the indices onf for the sake of brevity). Equation (2.7) is then equivalent, in the 
domain D, to 

[(v-u) uv+(1+1) u- (1+ 1) V]f= 0. (2.10) 

The latter equation is a particular case of the Euler-Poisson-Darboux equation (Em n) 

Em,n(f) (v-u) auvf+mauf-navf=0. (2.11) 

It is easily seen that (assumingf sufficiently differentiable) 

au Em, n (f) = Em, n+?i(uf (2.12) 

therefore iff is a solution of Em, n) then auf is a solution of Em, n+l? Darboux (1 889) has shown 
that the converse is also true if n #? 0; that is, if g is a solution of Em n+i, with n =# 0, then there 
exists a solutionf of Em n such that g = Ouf (beware of the incomplete treatment of Copson 
(I975)). Therefore if one knows the general solutionf of Em, n' with n =# 0, then auf is the 
general solution of Em n+i* Exchanging the roles of u and v, and of m and n, leads to the 
knowledge of the general solution of Em+i, n: Ovf knowing the general solution of Em, n (with 
m :# 0):f. Now El 1 (f) = (v-u) auvf+ auf- af= auv [(v-u)f], (2.13) 

therefore the general solution of El, 1 is 

fi1 U(+ v-u (2.14) 

where U and V are arbitrary functions of one real variable which are at least of class Cl. 
Hence, by the preceding argument, the general solution of El+,, 1+1, with 1l FEl, which is 

precisely the equation to be solved, (2.10), is 

f= 2! 2 71vi [U(u)+V(v)1 (2.15) 

where Uand Vare arbitrary (Cl+l) functions of one real variable and where the factor 2/(1! cl+l) 
has been introduced for later convenience. From (2.9) we then get the general solution for 
ha/3 (r) t): 1L2 u) 1 IUL#(u) +V( v- ), (2.16) 

(where U2 and VRL have to be, in fact, in C1+2 ( R8) for hla to be C2 (D)). Expanding the right-hand 
side of (2.16) by means of the Leibniz formula, and going back to the r, t variables, we obtain 

(-)a, 23 (2g1 J !. 01 Ue(t- rlc) + () ?) VL# (t +/ c) (2.17) 
h1L =21 E= 1!l-)!(217 

where (J)U(x) = diU/dxj. Thanks to formula (A 35a) of Appendix A, the result (2.17) can be 
re-expressed as 

A UafI(t-r/c)+Ve(t+r/c)1 
fiL^/Lf =haL 

OL 
( /)+V(+/ (2.18) 

where AL denotes the tracefree part of i, = a 2 . 
(see Appendix A) . Up to now we 

have obtained the general solution of (2.2) alone. At this point let us impose (2.4) (past- 
stationarity). From (2.18) and from (A 30), which says that aL is proportional to 
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(r-l/8r) -= 21 (a/8(r2))1, we see immediately that, when t -T, et UaLL(t-r/c) + et V (t+r/c) 
must be an odd polynomial in r of maximum degree 21-1, with coefficients depending on t. 
Writing that the latter polynomial must be cancelled by the operator ar -at , we find that there 
exist 21 constants CG (2 <j < 21+ 1; indices suppressed) such that, when t -T, 

21+1 

at U(t-r/c) +at V2f(t+r/c) = E jCj [(t-r/c)j-1- (t+r/c) -1] (2.19) 

Separating at U from at V and integrating, we find that there exist 21+ 3 constants 
A, B, Cj (I <j < 21+ 1) such that, when t -T, 

21+1 

Us(t-r/c) = A+ C) (t-r/c)1, (2.20) 
j=l 

21+1 

VVa(t+ rlc) =B- E C,(t+ r1c)i. (2.21) 
:1=1 

From (A 33) and (A 36) we see that, when t -T, 

riL hL = a )L [(A + B)/r-2(C21+1/c2 l) r21]. (2.22) 

Now, if we impose (2.5) (past-asymptotic Minkowski behaviour) we find that C21+1 must be 
zero. Moreover, as, even when t is restricted to be anterior to - T, the advanced time t+ r/c 
can take any real value, (2.21) will give the value of VZf all over the definition domain of h0A. 
Taking into account C21+1 = 0 and the formula (A 36), we will not change the value of hx-4j 
if we replace everywhere the function (t, r) -* V1,8(t + r/c) by the function 

21 
(t, r) -> V (t-r/c) = B- G C1(t-r/c)1 (2.23) 

(note the change from advanced to retarded time). Keeping the notation UVf for the sum 
UV(t-r/c) + VVfi(t-r/c), we conclude that the general C2(D) solution of (2.2), (2.4) and (2.5) 
can be represented in D as an absolutely point-wise convergent multipolar series of the form 

h-l#(x, t) = Y (UL(tr/C)) (2.24) 

where each Ujl'(u) (the old U plus V) is a function of class Cl+2 which becomes a constant 
(= A+B from (2.20) and (2.23)) when u ?-T. Reciprocally, the representation (2.24) will 
satisfy the requirements (2.2), (2.4) and (2.5) if we choose some Us constant for u -T and 
such that the series converges point-wise to a function of class C2(D). 

To impose the remaining 'harmonicity condition' (2.3), it is convenient to follow Thorne 
(I980) and to algebraically decompose the objects Ufl. From (2.24) it is clear that UV can 
be chosen to be symmetric and trace-free with respect to the indices L: UV = T, where the 
brackets < > denote the 'symmetric-trace-free' part (see Appendix A). Now if we consider the 
objects UOL , U0, U2 from the point of view of their transformation properties under the 0(3) 
group of spatial rotations (which preserve (2.1)-(2.5)) they bear both 'spin' indices (none, i, 
ij; spin s < 2) and 'orbital angular momentum' indices (<L> = Ki1i2. .il>; orbital angular 
momentum = 1). Then it is convenient, following Thorne (i 980), to perform an 'addition' of 
'spin' and 'orbital angular momentum' indices (J = S+ L), i.e. to decompose U PO' into ten 

3I Vol. 320. A 
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irreducible algebraic pieces constructed by means of the Kronecker tensor (j), the Levi-Civita 
(pseudo) tensor (cijk) and ten symmetric-trace-free (abbreviated as STF) Cartesian tensors 
T1) J, T(2) J) .) T(10) J (J = il... . with 11-21 < j < 1+ 2) (see Appendix A for further explan- 
ations and references). Replacing this decomposition into (2.24) and converting the derivative 
operators to their usual (reducible) form aL we must do some reshuffling because of the traces 
of aL (by using A(r-1F(t-r/c)) = C-2r-1 2F(t-r/c) in D). Finally we obtain the following 
representation of h-'# by means often STF tensors AJ(u), BJ(u), ..., JJ(u) (skipping the hats on 
them) which are sufficiently differentiable functions of the retarded time u = t- r/c, and which 
are all constant if u < - T (this follows from the same property of U(u) and the fact that 
A(u), ...J(u) are constructed algebraically from U(u) andO2 U(u)) 

h?= E L(rA (2.25a) 
I 0 

h= i 
iL(r 

lBL(U)) + O {L l(r CiLl(u)) +eCiabaaL-l(r DbL(u))} (2.25b) 

E f {ajL (r EL(u)) + 8j aL(r 1FL(u))} 

+ {L-l(i(r lGj)L-1(U)) +Cab(i,j)aL-l(r HbL-1 W) I 

+ faL-2(r1IjL-2 (u)) + aL-2 (r1eab(i Jj) bL-2 (U))} (2.25 c) 
I 2 

where L-1 denotes the multi-index 1 i2... i1, L-2:= i1...i12, and the parentheses denote 
symmetrization: T =j): (1) ( Thj + Tji). Note that if the multipolar series appearing in (2.24) 
is truncated there is no problem for reshuffling the terms of (2.25) in an arbitrary manner, but 
if it is an infinite series the convergence of the algebraically decomposed series (2.25) is (a priori) 

implied by the convergence of (2.24) only if one always keep together the algebraic sub-pieces 
having (for instance) the same total number of indices on the STF tensors (which is l in (2.25) 
and which corresponds to what was noted above j in J = L+ S) (see Appendix B). As we are 
going, in the following, to play separately with Ciese sub-pieces we shall now go back to our 
initial assumption (1.2) or (2.1) restricting our consideration to truncated multipolar 
expansions. 

Let us now impose to (2.25) the 'harmonicity condition' (2.3). As the decomposition (2.25) 
is easily checked to be unique (although not orthogonal, which causes the problems of 
convergence evoked above) it is easy to deduce from the 'harmonicity condition' (2.3) 
algebraic and differential (because of A (r-1 F(u)) = c-2r-1 2F(u)) constraints among the As, 
Bs, ... and Js. To express simply these constraints let us define the following new STF tensors: 

(1 > 0) ML(u):= AL+ 2 1BL+ (2)EL+FL) (2.26 a) 

(1 > 1) SL(u):= -DL - 1HL) (2.26b) 

(1 > 0) WL(u) = + 2 (1)EL F (2.26 C) 

(I >- O) XL (U): = 2EL, (2.2 6d) 

(I >, O) YL (U): M 1BL-()E-L) (2.2 6 e) 
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where (n)F(u) denotes dn~F/d un. It is easily seen ((2.29) below) that there is a one to one 
relationship between the {e fAL, set L, DL EL, FL, HL} a nd the new set{fML, SL, WL XL, YL, ZL}1. 

Then we can express the 'harmonicity constraints' in terms of the Ms, Ss, Ws, Xs, Ys and Zs, 
together with the old Cs, Gs, Is and Js. We find Y = 0, 

(1m= 0, (2.2 7 a) 

(2 i= 0, (2.2 7 b) 

Si= 0, (2.2 7c) 
and 

CL - - MML (1) yL ~~~~~(2.28a) 

GL = 2YL' (2.2 8 b) 

IL= (2) ML) (2.2 8c) 
J= 2 (1)SL. (2.2 8 d) 

Equations (2.28), together with the 'inverse' of (2.26), i.e. 

AL= ML-(l)WL + (2)XL+ L 22a 

BL = W-1X,(2.2 9 b) 

DL = -SL- (1)ZL, (2.2 9c) 

EL = 2XL, (2.2 9 d) 

FL=(1 WL- (2)XL ~L (2.2 9e) 

HL = 2ZL, (2.2 9f ) 

show that the general harmonic hO', can be expressed uniquely in terms of the Ms, Ss, Ws, Xs, 
Ys and Zs and that these variables must satisfy (2.27) (and Y = 0). Apart from the latter 
equations, the only other constraints that the Ms, ..., Zs have to satisfy are that all of them 
must become constant when u <, - T. This implies from (2.27) that not only M(u) and Si (u) 
but also Mj(u) have to be always (Vu) constant. Replacing (2.28) and (2.29) into (2.25) leads 
to an explicit representation of/hzr in terms of unconstrained quantities. For later convenience, 
let us replace our 'old' ML and SL by some 'new' quantities: 

Wjew = - C21! (-) 1Mold, (2.30 a) 

and let us use the letter M to symbolize the set Of STF tensors {MIPLew(u) , LTjew(u)} the letter W 
to symbolize the set {WL(u), XL(u), YL(u), ZL(u)} and the square brackets []to denote a 
functional dependence. We then get: 

hixfl[M, W] = h W[] /1flW D~aW]~ak w[W] (2.31) 

with (dropping the superscript 'new' on ML and SL) 

4 (h 
canl M 1! L(r-ML(t -r/c)),(23a 

c2 7n 1!~ ~~~~~~~~~3- 
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hani[M] = E ()DL-l(r (MiLl(t-r/c)) 

+3 (l+ 1)! aaaL-1 (r SbL-1 (t-r/C)), (2.32 b) 

4 _ _ _2_ 

hcan1[A] =-4 M l I L-D2(r M(2)ijL-2(t-r/c)) 

8 (-)l, (1)82_3(t-r/ 
_ 8E (1+ 1) I aL2(reab(i Sj)bL-2(t rlc)), (2.32C) 

and with, the indices ac and , in (2.31) being raised with the flat metric fJ8 =diag 
(-1, +1, +1, +1), 

w?[W] = E aL(r-lWL(t-r/c)), (2.33 a) 
I 0 

wi[W] = 0iL(r-lXL(t-r/c)) 

+ E { L-l(r YiL l(t- r/c)) +eiabDaL-l(rlZbL_l(t-r/c))}. (2.33b) 

The suffix 'can' in hcan1[M] stands for 'canonical' because (2.32) is the canonical form of the 
linearized harmonic gothic perturbation used by Thorne (i 980), which clearly differs from the 
general h/1'f[M, W] only by an infinitesimal (harmonic in the domain D) coordinate transformation 
6xX = Gwa[W]. The coefficients in (2.30) have been chosen so that in the limiting case of a 
very slowly moving, negligibly self-gravitating, and negligibly self-stressed source (with mass 
density p) the 'new' ML and SL are simply given by (Thorne I980) 

M = &d3XpX<01X.2 .Xi'> (2.34a) 

Si. .i = |d3XP ab<%iX2 ..Xil>XaVb ( 3b 

In the general case ML and SL will not be related by such simple linear relations to the 
stress-energy tensor of the source but we shall still call them respectively the mass multipole 
moment (electric type) and the current multipole moment (magnetic type) of order 1. In the 
following, these moments will only play the role of 'functional parameters' allowing to 
represent the general vacuum metric as a complicated nonlinear retarded functional of them. 
They will reacquire a direct physical meaning only in subsequent works studying the asymptotic 
behaviour at infinity of the metric or its matching to a (possibly strongly self-gravitating) 
source. Gathering our results we get finally the following representation theorem. 

THEOREM 2.1. In an open domain D = {(x, t) I r > ro > O} the most general linearized harmonic 
vacuum metric, M = fal + Gho'f, which admits a truncated multipolar expansion and which, when t -T, 
is both stationary and asymptotically (in space) Minkowskian, i.e. the general solution of (2. 1)-(2.5), admits 
the following representation 

yxlz =fx#A+Gh1a [M, W], (2.35) 
with 

hlL-3M, W] = h [AIF[A] + D0wmF[W] + I wa[ W] - fa,8 aD w'F[W], (2.36) 



RADIATIVE GRAVITATIONAL FIELDS I. 391 

where M = {ML(u), SL(u)} and W = {WL(u), XL(u), YL(u), ZL(u) } are STF-tensor functions of one 
real variable u, constant (i.e. independent of u) when u <- T, with M, Mi and Si always constant, and 
where ho-l [M] and wa[W] are given by (2.32) and (2.33). 

This theorem is stated here for sufficiently differentiable h1s, Ms and Ws (that is, of class Cn 
for some n). To find precisely the value of n appropriate to each M or W in order that h1o, be, 
for instance, C2(D), one should go back precisely through each step of the proof. Henceforth 
we shall assume, for simplicity's sake, that the Ms and Ws are all smooth (C"O(R)) and therefore 
also that hj/'# is C??(D) for any D {(x, t) I r> ro O} (the time-axis r = 0 being always 
excluded from D). 

As a final comment let us indicate that the physical meaning, in the linearized theory, of 
the constancy of respectively M, AS, and Si, is the conservation of, respectively, mass, centre 
of mass position and spin. Our constraint on past-stationarity means that we are always using 
a 'centre of mass frame' where the linear momentum is zero. It would probably be safe to 
strengthen our assumptions by requiring the choice of a suitable time-axis such that M, = 0 
('mass centred frame') but it will be more convenient to leave M, unconstrained. 

3. MATHEMATICAL PRELIMINARIES 

To investigate, within the assumptions (1.1)-(1.6), the existence and the structure of general 
solutions of the vacuum Einstein equations it will be necessary to use repeatedly the properties 
of special classes of functions of R . We gather here the necessary definitions and some useful 
results. Some further mathematical tools, concerning special classes of functions of R2 and l4 
will be expounded in ? 6 and ? 7. 

3.1. The ON(rN) class 

Definition 3.1. A complex valued function of R4:f(x, t) is said to belong to the ON(rN) class 
of functions, for some non-negative integer N (or, simply, is said to be ON(rN)) if the following 
properties hold: Vq e N, f(q) (x, t): = Oqf/ exists everywhere in R4 and satisfies 

(a) Te 1R such thatf(q) (x, t) = 0 when t -T; 
(b)f(q) (x, t) is of class CN(f4); 
(c) Vto E R, 3M > 0, 3d > 0 such that (with r: = 2 x xi)1) 

(r < d) =>(lf(q) (X, to) I < MrN). (3.1) 

In words, an ON(rN) function is a past-zero function that is, together with all its time 
derivatives, both CN(Rlt4) and O(rN) when r->0 with fixed t. By a slight abuse of notation we 
shall often write simplyf(x, t) = ON(rN), it being understood thatf = ON(rN) and g -=N(rN) 

do not implyf= g! 
As a first consequence of the definition we can state that Vm < N the partial derivative 

ofl . f(q)(x, t) (i1 ..., im = 1, 2, 3) is uniformly, over any time interval [-T, to], 0(rN-m) when 
r- 0, i.e. that Vm < N, Vto E R, 3M > O, 3d > 0 such that 

(t < to and r < d) ( amfq) (x, t)| < MrNm. (3.2) 

This is easily proven by applying to ait1fif(i) (x, t) the Taylor formula (up to the order N-rm) 
with integral remainder between the points (x, t) and (0, t). First the case m = 0 together with 
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(3.1) shows that Vn < N-1, atf pq)(O, t) = 0, then the continuity of aO. Nf(q)(X, t) gives 
a uniform bound which leads to (3.2). 

A useful criterion for proving that a functionf(x, t) that is a priori defined and regular only 
outside the time-axis (where r 0 0) can, however, be extended to an everywhere regular ON(rN) 

function is the following. 
LEMMA 3.1. Let N and K be some non-negative integers andf(x, t) afunction such that Vq e RJ ,f(q) (X, t) 

is defined on l3l x R (with R : = - {O}) and that: 

(i) 3 T such thatf(q) (x, t) 0 when t < - T, 
(ii) f (q) (XI t) C CN (93* x R;8) 
(iii) Vto UR, Vm < N, 3M > 0, 3d > 0, 3p > 0 such that: 

(t < to and O < r < d) =>(I Oil .. i f(q) (X t) I < MrK+l-mllg rIP), (3.3) 

thenf(x, t) can be extended, by continuity, to afunction on R4 which is ON'(rN') with N' = inf(N, K). 
An outline of the proof of this lemma is given in Appendix E. 
The following basic stability properties of the ON(rN) classes are easily deduced from the 

definition 3.1, equation (3.2), or lemma 3.1 (for simplicity's sake we use the 'notation' 
ON(rN) + ON(rN) = ON(rN) instead offe ON(rN) and ge ON(rN) =:f+ge ON(rN), etc. +.. 

LEMMA 3.2. (Algebraic and differential stability of ON(rN)): 

(i) ON (rN) + ON (rN) = ON(rN), 

(ii) ON (rN) X QN(rN) = ON(rN), 

atq (iii) Vqe N, QN(rN) - ON(rN), 

(iv) Vm;0 < m < N, Oil . ON(rN) = ON-m(rN-m), 
(v) VF(t) eC*(R) VIe RN, Vp > 0 (with I+p > 0), Vae2Z (with nL -ni...nil) 

*f a > 1: F(t) nL (lg r) P ra ON(rN) = ON (rN), 

* if-(N-1) < a < 0: F(t) nL (lg r) Pra ON(rN) - ON+a-1(rN+a) 

The next important stability property of the ON(rN) classes is the stability under the 'retarded 
integral', i.e. the integral operator of the 'retarded potential', defined (when it exists) as 

(EI] 1f) (x', t'): = -+ j d3xf( ,'- Ilx' -xl). (3.4) 

We shall often use the slightly improper notation: (E] -lf) (x', t') = Eljj(f (x, t)), distinguish- 
ing, when it is convenient, the 'field point' (x', t') where Lij-lf is computed, and the 'source 
point' (x, t) on which one integrates. 

LEMMA 3.3. (Integral stability of ON(rN)) ff(x t) is oN(rN) then there exist somefunctions Fi1 .. (t), 
such that 

(i) F1i... (t) = 0 when t -T, 
(ii) Fil ... ii (t) c- COO (R) I 

N-1 
(iii) (E-lf) (x t) - E xi. . .xi Fi (t) e ON (rN) 

1=0 
1i 

An outline of the proof is given in Appendix E. Symbolically we can write lemma 3.3 as 
(L = il . .,il nL = nil... n'z) 

N-i 
DlRTON(rN) = nL rlFL(t) +ONf(rN). (3.5) 

a=o 
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3.2. The Ln class 
The use of the ON(rN) classes of functions is conveniently completed by the introduction of 

some other classes of functions which involve the nth power of the logarithm of r when r--0: 
the Ln class. 

Definition 3.2. A complex valued function f(x, t) defined in UR3 x UR is said to belong to the 
Ln class of functions (for some n E N) if the following properties hold: for any positive integer 
N there exists a finite sum (fiQ = nKiZni2.. .niq> with ni = xi/r) 

SN(X) t)-= E FQap (t) iQ ra (lg r) P, (3.6 a) 
p < n 

where as Z, pe N and p < n, and where the coefficients FQap(t) are both COU(R) and zero in 
the past (t < - T for some fixed T), such that the differencef(x, t) -SN(X, t), a priori defined 
only in llR x lRt, can be extended, by continuity, to be ON(rN) (in R4), 

VNe! I, f = SN+ ON(rN). (3.6b) 

Note that in definition 3.2 we have restricted the powers a of r that appear in SN to be (positive 
or negative) integers because this is going to be the case in the following applications but it 
is not necessary to do so in general, the essential properties of the Ln classes are preserved if 
aeC. 

In short, we can say that Ln is the class of functions that admit, when r--0, an asymptotic 
expansion to all order N, along the scale (or gauge) functions ra(lg r)P, with 0 < p < n, with 
coefficients admitting a finite multipolar expansion (the coefficients of which are smooth and 
zero in the past), and with a 'good' ON(rN) remainder. Note that allfeLn are C"(R3, x UR) 
and that n < m Ln c Lm. 

The basic stability properties of the Ln classes under algebraic and differential operations 
are as follows. 

LEMMA 3.4. Iff(x, t) -LEn and g(x, t) E Lm, then 

(i) f(x, t) +g (Xn t) C suP (n, m 
(ii) f(x, t) . g (x, t) c- Ln+m) 
(iii) Vq c-N, Vp c-N, aq ail . ipf(X,t) c-Ln. 

Proof. (i) is easily deduced from definition 3.2 and lemma 3.2; to prove (ii) let us first notice 
that because of the uniqueness of asymptotic expansions for any given function f the powers 
of r must have a (possibly negative) minimum value ao(f), independent of N. Therefore, when 
considering the productf . g one must, if inf (ao (f ), ao (g)) < 0, insert the 'expansions' off and 
g (f = SNX + ?N'(rN'), . . .) UP to the order N' = N + 1- inf (aO (f) ) ao (g) ) and then apply the 
last property of lemma 3.2; (iii) is also deduced from lemma 3.2 if one uses N' = N+p. N 

Finally the most important property of the Ln class is its behaviour under the integral 
operator D Ij (the 'retarded integral' defined by (3.4)). The first difficulty is that the action 
of Ejl on a functionfe Ln is not a priori defined, becausef will often (if a0(f) is too negative) 
not be locally integrable near x = 0. Therefore a first step will consist in defining a convenient 
generalization of the operator ORI1 appropriate to the Ln class. There is no unique way to do 
that, but it proved very convenient to define such a generalization by using an approach based 
on complex analytic continuation. This type of approach to define an otherwise divergent 
integral has been introduced by Marcel Riesz (1938) and has since been used (and found 
indeed very useful and often superior to other methods) in many different contexts: quantum 
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field theory, classical theory of point particles, distribution theory, general relativistic dynamics 
of condensed bodies, to quote a few (for references and an introduction to the method see 
Damour I983 a). In particular it was essentially the original method of Riesz which has been 
used recently, with a complex parameter denoted A, in a study of the general relativistic 
equations of motion, including radiation reaction effects, of two condensed objects (Damour 
I983 a, b). Here we shall introduce a somewhat different approach (accordingly we shall use, 
instead of A, the letter B to denote the complex parameter). The final results of this approach 
are equivalent to the ones obtainable by means of Hadamard's concept of 'partie finie' 
(Hadamard 1932); however, the use of analytic continuation provides one with a more flexible 
and powerful technical tool. 

Before coming to grips with the real problem, let us give a simple example of the use of 
complex analytic continuation to associate a finite number to a divergent integral. Let us 
consider a function, f, of one real variable r, of the following form: f(r) = Ca ra, where E 
denotes a fnite sum over a E Z (so that a > - no for some no E N ) and where the CaS are some 
(real or complex) coefficients. Because of the pole-like singular behaviour off(r) when r -> 0, 
the integral I = f f(r) dr will be in general undefined. Introducing a complex parameter B, 
let us consider the function fB(r) : rB xf(r). If B belongs to the right half-complex-plane 
D: = {B; Re (B) > nO- l},fB(r) will be integrable so that we can define the following function 
of a complex variable: B e D -> F(B):= f rBf(r) dr. An easy explicit computation yields 
F(B) = E ca(B+ a + 1)-1, and F(B) is seen to be analytic in its domain of definition DIE). But now 
the function of B:G(B):= Eca(B+a+1)-1 is defined and analytic all over C':= C-i, the 
complex plane deprived of the integers. Hence we can extend, in a natural way, the definition 
of F(B) = fJ rBf(r) dr to all Bs of C' as being the analytic function G(B) ('analytic continuation' 
of F(B)). In this case we see immediately the possibility of this analytic continuation because 
we can use the same formula E ca(B+a+ 1)-1 all over C'. In the general case, it will not be 
possible to exhibit such an explicit formula (G(B)) for F(B) valid all over C', but the main 
interest of analytic continuation into some preassigned domain, which for the cases of concern 
to us here will be from D to C' (in fact C' U D), is that when it exists it is unique. Therefore 
it is sufficient to prove that a given function F(B), originally defined and analytic only in some 
open domain of C, can, by any procedure (for instance step by step), be continued, as an analytic 
function of B, all over C' to be able to speak of the uniquely defined F(B) all over C'. Coming 
back to our simple example (F(B) = Jo r f(r) dr), if B = 0 is not a singularity of the analytic 
continuation G(B) of F(B) we shall associate to the divergent integral f0f(r) dr the number 
I: = G(0). On the other hand, if B = 0 is a singularity of G(B) we shall associate to the divergent 
integral f f(r) dr the coefficient, say I, of the term in zeroth power of B in the Laurent expansion 
of G(B) around B = 0. In both cases one has I = E2a ? ica(a+ 1)-' (and I coincides with 
Hadamard's 'partie finie' of f0f(r) dr). We shall now generalize this procedure to define a 
convenient generalization of the integral operator ORI acting on an arbitrary function of the 
class Ln. 

LEMMA 3.5. Letf(x, t) eLn and Be (C, then the function of B, calculated by (3.4) for any fixed point 
(x', t') C R38 x R8, 

F(B) = D1l((r/ri)Bf(x, t)) (3.7) 
has the following properties: 

(i) F(B) is defined and is analytic in B in some half-plane Re (B) > bo; 
(ii) F(B) can be analytically continued all over C': = C- Z. 
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(In (3.7), r1 is a constant, to be chosen at will, that plays no role in the following reasonings. 
Therefore we shall here choose units such that r1 = 1. We will come back to the choice of r1 
in ?5.) 

Proof. By definition, we know that for any positive integer N, rBf can be written as a finite 
sum of terms of the type F(t) nrQ rB+a (lg r)P (where, as remarked above, the powers of a are 
bounded from below, VN: a > ao), plus a 'remainder' rB ON(rN). Moreover, each of the 
preceding terms are zero in the past. Therefore all possible problems concerning the 
convergence of F(B), equation (3.7), for any fixed point (x', t') E lRl x R, will come from the 
behaviour of rBf when r->0. First it is clear that if we choose Re (B) large enough 
(> bo =-inf (ao, 0)) all the terms constituting rBf will be continuous everywhere. Therefore 
F(B) is at least defined in the half-plane Re (B) > bo. Now, if we formally differentiate F(B) 
with respect to B under the integral sign, by using (O/IB) rB = rB lg r, we are led to study the 
triple integral Ll-l(rB (lg r)f). With B in the previous half-plane, this new integral has a 
compact support and its integrand is continuous in all its variables; therefore, by a standard 
theorem, F(B) is analytic and OF(B)/ B = D1-l(rB (lgr)f). This proves (i). To prove (ii), we 
remark that F(B) can be written as a finite sum of terms, plus a 'remainder', that are all 
separately defined and analytic in the half-plane Re (B) > bo. It is then sufficient to prove that 
each of these terms can be analytically continued, as far as wished, to the left in C'. First, by 
iterating what has been just said about OF(B)/ B we see that we can write 

Fj1 1 (n-Q rB+a (lg r) P F(t)) = P/IBP { 1 (nQ rB+a F(t))}. (3.8) 

It is then sufficient to study the analytic continuation of terms without logarithms. Let us 
also define, as a short-hand notation, the following function of B (analytic in 
C-{-a-q-3, -a+q-2}) 

fiQ rsB+a+2 
A-'(nAQrB+a) =(B+a+2-q) (B+a+3+q) 

This notation is justified by the easily verified fact that (A: = V &ii) 
A(A-1(4Q rB+a)) = nQ rB+a. (3.10) 

Using this notation let us now prove the identity (where F(t) is any C??(WR) function, zero in 
the past (t -T) and where (2)F(t): = 02 F(t)l/t2): 

a R (F(t) 1jQ rB+a) = F(t) A-'(AQ rB+a) +_ Ijl((2)F(t)A -l(,iQrB+a)). (3.11) 

The proof of (3.1 1) is as follows. If we first take Re (B) large enough, all the functions appearing 
in (3.11) will be well differentiable in lRl, then it is easily seen that the equality deduced from 
(3.11) by applying the d'Alembert operator D- = A-c-2 t to each side of (3.11) will be 
verified. Now, as both sides of (3.11) are well differentiable, are zero in the past and as their 
d'Alembertian are everywhere identical, we conclude from the uniqueness theorem for the 
wave equation (see e.g. Fock I959, ?92), that is essentially from the Kirchhoff formula, that 
the equation (3.11) must be true. More generally we obtain by iterating (3.11) (with 
A-k:= (A-1)k the kth iteration of the operator A-1 of (3.9)) 

[R (F(t) 4Q rBa) =Em 2m )F(t) A-m-- (fQ rB+a) + _ EV1 ((28+2)F(t) A8 n(4Q rB+a 

(3.12) 

32 Vol. 320. A 
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The identities (3.11) and (3.12) have been proven only when Re (B) is large enough, but, by 
the uniqueness of analytic continuation, these identities will be valid in the whole domain of 
the B plane where any of the sides of these identities can be analytically continued. From (3.9) 
we see first that A-m-1(fiQ rB+a), with for definiteness a c- , is certainly an analytic function 
of B in C' = C - ; (with some poles at some integer values of B) and that it involves r to the 
power B + a + 2 + 2m. This last fact improves the convergence of the retarded integral 
appearing in the right-hand side of (3.12). Indeed, from the arguments used to prove (i), we 
see that this integral, and thus the right-hand side of (3.12) is analytic in the domain 
Re (B) > - a - 2s -2 except some integers. This proves, therefore, that the left-hand side of 
(3.12), i.e. DJ1(F(t) nQ rB+) can be analytically continued in the domain Re (B) > -a-2s-2 
except some integers. As this is true for any integer s > 0 (because F(t) e C?S (R)) we conclude 
that Dj1 -(F(t) nQ rB+a) can be analytically continued in C' = C - Z. Thanks to (3.8), the same 
is true of F1 -(F(t) niQ rB+a (lgr)P). Finally, as the 'remainder' term of F(B): DIj1 (rB ON(rN)) 
is clearly analytic for Re (B) > - N and that N can be chosen arbitrarily large, we conclude 
that F(B) can indeed be analytically continued all over C'. U 

From the preceding proof we conclude also that F(B), equation (3.7), will have at most 
multiple poles at some integer values of B (because the denominators in (3.9) and the 
differentiation aP/aBP in (3.8) can generate at most such multiple poles). We are mainly 
interested in the neighbourhood of B = 0 because we want to generalize the usual 'retarded 
integral' Lj1f, hence we introduce the following definition. 

Definition 3.3. Given fe Ln, we shall call 'finite part of the [generally divergent] retarded 
integral -l-lf' the constant term C0(x', t') (zeroth power of B) in the Laurent expansion of 
the meromorphic function Djj1 [(r/r1)Bf(x, t)] near B = 0: 

Dii-1 [(r/r1) Bf(x, t)1 = Cj(x, tl) B'. (3.13) 
i =-1I 0o 

We will denote it (remember that the 'field point' (x', t') E 1R x R) 

CO(x', t) = FP []R11 [(r/r1)Bf(x, t)], (3.14a) 
B=O 

or, more simply, if there is no ambiguity: 

C0 =: FP FLj-1 (3.14 b) 

The two fundamental properties of the operator FP Dj11 are as follows. 
THEOREM 3.1. We have: (i) Vfe Ln, D (FP Dif) = f; (3.15) 

(ii) fc-Ln =:> FP URFE 1 Ln+l. (3.16) 
(Note the increase by one unit of the superscript n). 

Proof. The property (i) is obtained by noting first that, for Be C', (choosing r1 = 1) 

LII(L-1 (rBf)) = rBf (3.17) 

(Indeed (3.17) is true if Re (B) is large enough for the function rBf to be sufficiently 
differentiable all over 4, then it is still true (in R3 x R) for Be C' by analytic continuation.) 
By using (3.13) and rBf eBlgrf=Zoo oBi (lgr)Jf/j! we see generally that 

j< 0=Q> Ci(x, t) = 0, (3.18) 

g (r)= 
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The particular case j = 0 yields (3.15). To prove (ii), we have to control better the pole 
structure of DjR1 (rBf) near B = 0. From the proof of lemma (3.5) we see that the B = 0 poles 
.~~~ 

in _P 
EL11 (rBf) = E aB ([DR1 (F(t) Q rB+a)) + Dij (rB ON(rN)) (3.20) 

will come, if they exist, only from the 'SN terms' in the right-hand side of (3.20). Moreover, 
we note that the poles appearing explicitly in (3.9) will always stay simple in the iterated 
operator A-m-1(71Q rB+a) (because their positions differ by an odd integer and they jump, at 
each iteration, by 2 units). Hence we can write 

Atm-1 (iQ rB+a) = (D(B)/B) nQ rB+a+2m+2 (3.21) 

where D(B) is a rational function of B which is analytic (no poles) at B = 0. Now the crucial 
step is to notice that the finite part at B = 0 of OP/IBP(D(B) rB/B) is proportional to the 
coefficient of BP+? in the MacLaurin expansion of D(B) rB - D (B) eB Ig r which is clearly a 
polynomial in (lg r) of order p + 1, that is: 

OP t) A a+2m+2 p+1 
FP a (F(t) A-m-1(Q r B+a)) = F(t) nQ ra+2+2 L a (lg r)i. (3.22) 
B-OOB i=0 

Replacing now (3.12) into (3.20), and taking the finite part, we obtain 

FP Dj1 (rBf) = FP ( -m-(nQB+a)) 
B=o p n m=OB=O C 

+ RFP {[: ( (2+2FAs1(gQrB+a))}+Di11(ON(rN)). (3.23) 
p 1< n B=0 2? 

The first sum in (3.23) is known from (3.22). Moreover, if s is large enough it can be checked 
that it is possible to commute FP and Djj1 in the second sum. Then, if 2s > N-aO-1, we see, 
thanks to (3.22) and lemma 3.2 (v), that the second sum is of the type Ll (ON(rN)). This leads, 
for any given N, to 

FP Llj1l(rBf) _ E F(t) nQra (lgr)P+ OR (?(rN)), (3.24) 
B=O p < n+1 

where now the maximum value of the powers of lgr is n+ 1. A final recourse to lemma 3.3 
(equation (3.5)) allows us to break the 'remainder term' in (3.24) in a 'sum term' plus a 'good' 
ON (rN) remainder. This concludes the proof of theorem 3.1. 0 

As a final comment we can say that theorem 3.1 proves that the operator FP CR1 is a 
convenient generalization of the usual 'retarded integral operator' D j-1 when dealing with 
'singular sources' f belonging to the Ln class. Indeed, it provides a solution g of the 
inhomogeneous wave equation D2g =f (which is, like f zero in the past), and this solution lives 
in the next class Ln+1 so that it is possible to iterate the operator FP Djj1. This is what we are 
going to do in the next section. 

4. GENERAL PAST-STATIONARY MPM SOLUTION OF THE VACUUM EQUATIONS 

The aim of this section is to construct algorithmically the most general (formal) solution of 
the vacuum Einstein equations fulfilling the assumptions (1.1)-(1.6). Let us recall first that by 
inserting the post-Minkowskian expansion (1.1) 

32-2 
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into the Einstein tensor density 2g(RO - 2Rg4) =: 2g E0, one obtains 

00 

2gEaJ = E Gn pHa M (hn) -Nan4(hm; m < n)}, (4.2) 
n=1 

where 
Ha-#*3 (hn): =f #PW +aA#snP -f avhMn# -f thanv (4.3) 

is linear in ha-, but where NanO is a nonlinear algebraic function of the 'previous' hm (m < n) 
and their first and second partial derivatives (with Nj =-0). Symbolically, the structure of Nin' 
is (with indices and coefficients suppressed) 

n 
Nn = E a a )O hm, . hma) 44 

a=2 ml+...+ma=n 
mb < n 

where the two partial derivatives have to be distributed (possibly with repetition) among the 

hmbs (for instance N2 h1 02 h1 + Oh1 Oh1). From the contracted Bianchi identities (Ea4;- / 0) 
and the structure of Hal0) it is clearly seen that if the vacuum Einstein equations are satisfied 
up to order n - 1 (included) then the 'nonlinear source' Nn satisfies identically 

a, NxnA? 0 (4.5) 

Imposing now the harmonicity condition (1.4) (at each order n) as well as the extra multipolar, 
past-stationarity and asymptotic conditions (1.2), (1.5) and (1.6), we get the following 
sequence of systems to be solved (with fl- f/'v' ) 

DhanA = Nxnf (hm; m < n), (4.6 a) 
E:n 

a, hxn8 = ?0 (4. 6 b) 
imax 

h-nA = E hanxL(r, t) jjL, (4.6c) 
1=0 

t- T=* a hl8= 0, (4.6d) 

t -T=* lim hanA8 = ? (4.6 e) 
r -oo 

To find the most general solution of (4.6), i.e. the most general past-stationary-asymptotically 
Minkowskian vacuum MPM metric, in harmonic coordinates, we shall proceed in three steps. 
First (?4.1) to construct a 'particular' solution of (4.6), second (?4.2) to show that this 
'particular' solution 'contains' the general solution, and third (?4.3) to show the use of a 
simpler 'canonical' solution. 

4. 1. Construction of a particular solution: yArt 

THEOREM 4.1. Given a finite set of CO(WR) STF tensors M(u) = {ML(u), SL(u)} and W(u) = 

{WL(U), XL(u), YL(u), ZL(U)} (1 < lmax [AM, W]) arbitrary except for the constraints that all 
thefunctions ML(u), ..., ZL(u) are constant when u <- T and that M, M? and Si are always constant, 
then there exists an algorithm which constructs, for any ne R?I, ten functions of IR3 x R 
(which are functionals of M and W): hx8rtn [M, W](x, t) solving (4.6) and such that 
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Proof. Let us first decompose, for convenience, M(u) and W(u) in their 'stationary' parts 
sA) sW (defined as their constant values before -T) and their 'dynamic' parts 

DM(u):= M(u) - SM, D W(u): = W(u) - sW (which are zero before - T). Then the first step 
of the algorithm consists in defining h,parti[M) W] to be the right-hand side of (2.31), with 
(2.32) and (2.33), i.e. 

hpart 1 [Mn WI: = hx2A8 l [Ml + dax wfl[ WI + 0,8 wx [ WI]-P,8 ajf wV WIl.(47 

We can clearly decompose hpart 1 [M, W] in a 'stationary' part shpart1:= hpart1(x, T) = 
hpart 1 [sM, s W] and a 'dynamic' part Dhpart 1: = hpart 1 (x, t) - hpart 1 (x, -T) = 
hpart 1 [DM, D W] (which is zero before - T). Theorem 2.1 states that hpart 1 solves (4.6) for 
n = 1, thus the only thing to prove is that Dhpart1 eLO, that is, that if Fe C?O(R;) is zero in the 
past then aL (r-1F (t- r/c)) e LO. This is proven by first applying Taylor's formula (with integral 
remainder) to F(t-r/c) about r = 0 up to the order N+l+ 1. Then, expanding aL by means 
of (A 31) leads to a sum of terms of the type (q) (t) fiL ra plus a 'remainder' of the type 

_ IfiLfr f dx(p !)1 ( -x)P X2) (t-rx/c). Now one checks that this remainder satisfies 
the hypotheses of lemma 3.1 with K = N. Therefore the remainder is ON(rN) as was to be 
proven. Let us now assume, as an induction hypothesis, that we have already constructed all 
the hartm [M, W] for m < n- 1, satisfying theorem 4.1 and decomposed in stationary and 
dynamic (past-zero) parts, shpartm and Dhpartm e Lm-1. Replacing these hms in Naln leads to a 
similar decomposition of Nn in a stationary N and a dynamic DNf (past-zero) part. We deal 
with sN, in Appendix C; let us here concentrate upon DNfl. Thanks to equation (4.4), to lemma 
3.4 and to the structure of shn discussed in Appendix C we see that DNNn e LP, where 
p = sup ( (mb-1)) (with almb= n, mb < n and 2 < a < n). The maximum is reached 
for a = 2 and is p = n -2. Hence the effective nonlinear 'source' DNnfl (dynamic part of the 
right-hand side of (4.6 a)) belongs to Ln-2. Therefore if we solve (4.6 a) by means of the operator 
FP D-1, i.e. if we pose for (x', t') Ee x Ra 

DpflA (x , t') FP []i1 ((r/rl) BDNan(x, t)), (4.8) 
B=O 

then by theorem 3.1, DPf eLn-1 and 

IDPn'3 DNn/- (49) 

We still need to satisfy the harmonicity condition (4.6 b). The 'divergence' a18 DPa- is obtained 
by first computing the divergence of the right-hand side of (4.8) (without the FP sign), which 
thanks to the Bianchi identity (4.5) is equal to B EZ j1 ((r/rl) B r-lni NinDi) (i = 1, 2, 3). Taking 
the finite part of the latter expression means finding the residue, at B= 0, of the same 
expression without the factor B in front. Hence 

aflDpfl = Residue OR1((r/rl)Br-1r nDNli). (4.10) 
RB=o 

As r1 rt~ DNf EL8D2, it can be decomposed as a sum of terms of the type nL ra (lg r)P F(t) plus 
a remainder ON(rN). Now the remainder, when multiplied by rB, will not generate any pole 
at B = 0. We have seen in the proof of theorem 3.1 that the poles Of D l(nLrB?aF(t)) were 
always simple (' 1/B). Therefore by formula (3.8) the poles of F-1D(iiL rB+a(lg r)P F(t)) arc 
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multiple (- l/BP+1) and we see that the residue of D jl(nLrB?a (lgr)PF(t)) is zero except in 
the logarithmic-free case (p = 0). Now we have 

li(iL rB+a 1J3XALB+a F(t' -Ix' - XI/c) n r F(t)) - -- 
dIxn-rI(4.11) 

The poles of the right-hand side of (4.11) will come only from the integration on an arbitrary 
small neighbourhood of x= 0 (IxI ? 6). Expanding then F(t'-Ix'-xI/c)/Ix'-xI 
in Taylor series around x = 0 leads to a series of terms of the type 
aQ (r'1F(t' - r'/c) ) ({f d?L nQ) ( +J6 drrB?2+a+?e). The angular integral is zero except if q = 1+ 2k 
(k eR N) (see Appendix A), and the radial integral has a residue if and only if a + q = -3. When 
both conditions are met, the residue is proportional to ap (r'-1 (2k)F(t' -r'/c)) (it satisfies (3.18) 
as proven above). Changing the names of the space-time variables: (x', t') -> (x, t), we conclude 
that D8f Dpfy3(x, t) is a finite sum of terms of the type aL(r-TF(t -rc)), where F(t) is Co and zero 
in the past. From ? 2 and Appendix A it can be uniquely decomposed by means of STF tensors. 
Hence we can write, in a unique manner, 

a84 DP ?4 = a aL (r- "A (-/), (4. 12 a) 

a8fDPA' = aiL(r BL(t -r/c)) 

+ {aL_l(r CiL_l(t rlc)) +eiabaaL_l(r1DbL_l(t-r/c))}, (4.12b) 

where AL(U), BL(U), CL(u) and DL(u) are STF tensors which are C?D(R) and zero when u -T. 
Because the As, Bs, Cs and Ds are uniquely determined we can now algorithmically define a 
new object Dqy by the formulae: 

0qfl: = cr-1 (-1)A- c aa (r-1 (-1)Aa) + c2 a(r1 (-2)Ca), (4.13a) 

Dqoi: = cr1 (-1) C- ceiabaaa(r 1 ()Db)- - 'Ll(TA?Ll), (4.13b) 
t 2 

Dq : =-6 Ir-[1 + aa (r-1Ba)] 

+ E {(I/c) aL2(r1 ()AijL-2) +25ijaL(r BL) -6aLl(i(rT1Bj)L-1) 
t 2 

+ L-2 (r1 (2)BijL-2)-aL-2 (r1CijL-2)-2aaL-2 (6ab(i rDj) bL-2) }, (4.13 c) 

where 
u Ru 

(-1)A (u): f dx A (x), (-2)A (u):= dx (-1)A (x), 
-O 00-00 

(M)A(u):= dA(u)/du, ... and all the As, ..., Ds are taken at the retarded time u = t-r/c. Dqafl 

has been constructed so as to satisfy (in R 3 x R) 

FL Dqnf 0, (4.1 4 a) 

a#B Dqo# a- (4.14 b) 
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Let us note that it would be possible to construct, from the same As, ..., Ds other objects 
satisfying also (4.14); for instance, such an object is Dq'O-ljg with Dq'o= Dq Dqo?i = an '00 = ~~~~~~~~~Dq qfi but. 

Dqnl - Dqnl E {36'iJaL(rBL)- 2aL 2(r ( ijL-2)+G6L.1(i(r Bj)L-)} (4.15) 
l>2 C 

However, we adopt Dqfylfl rather than Dqfl-# because the trace of q is simpler: 

Dqss =-3[r-1B + Oaa(r-1Ba)]. If we finally define 

hart n: DPxn + Dqnf + shxartn (4. 16) 

where the stationary part shpartn is given in Appendix C, then we check that by construction 
hpartn solves (4.6) and that moreover, as DPn e L-1 and Dqn (which has a structure similar 
to hpart1) belongs to LO then, by lemma 3.4, Dhpartn Ln-. Therefore, the theorem 4.1 is proven 
by induction. o 

In other words, we have constructed a particular MPM metric 

00 

gap8 rt[M W]:=fx,8+ E Gnh8hprn (4.17) 
n=1 

formal solution of the vacuum equations and past-stationary and past-asymptotically Mink- 
owskian. We shall now prove that this 'particular' solution 'contains', in fact, the general 
solution of the problem. 

4.2. Construction of the general solution: Ygen 
THEOREM 4.2. The most general past-stationary and past-asymptotically Minkowskian vacuum MPM 

metric in harmonic coordinates, i.e. the general solution of (4.6) (with (4.1)), can be formally expressed 
by means of the 'particular' solution (4.17) as 

cx ]nim- (4.18) Magen p aprt E n1ni E Gn 1Wn (418 _n=l n=l 

where the Mns and Wns are arbitrary finite sets of STF tensors satisfying the hypotheses of theorem 4.1, 
and where all the series in G must be expanded and rearranged according to the usual rules offormal power 
series. 

Proof. The proof is by induction, let us just show on the first two steps how it works. Theorem 
2.1 and definition (4.7) guarantee that the theorem is true at order G. Hence there exist some 

Mis and Wls such that the general h, is hgen 1 = hpart1 [M1, W1]. Then hgen2 must satisfy 

halgeln2= N02'(hpartll M1, W11]), (4.19 a) 

gelhgn2 =0. (4.19b) 

We know already one particular solution of (4.19), namely hpart2 [M1, W1], therefore the 
general solution will differ from it only by the general solution of the associated homogeneous 
system: Lh = 0, 0h = 0 (plus the boundary conditions (4.6d, e)), which is nothing else than 
the linearized problem of which we know the general solution. Hence we see that there exist 
some M2, W2 such that 

hgen2 hpart2 [M1- W1] + hpart l [M2, -W2] (4.20) 
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It is then easy to check that (4.20) can be rewritten as 

f+ Ghgen 1 + G2hgen2 = part [Ml + GM2, W, + GW2] + O(G3). (4.21) 

The same reasoning is readily extended to any order Gn. U 

4.3. Coordinate transformations and the 'canonical' solution: 

Definition 4. 1. Given arbitrary STF tensors M = {ML(u), SL(u) } alone (satisfying the hypotheses 
of theorem 4.1) we define the 'canonical' metric as 

Ycan [M]: = part [M, 0], (4.22) 

that is by annulling all the Ws in the 'particular' metric constructed in the proof of theorem 
4.1. 

It would seem at first sight that 9can is a very special type of vacuum (MPM) metric. However, 
we are going to show that it is geometrically (or physically) as general as the most general 
vacuum harmonic metric, because it differs from it only through an arbitrary harmonic 
coordinate transformation and an arbitrary redefinition of the 'physical' multipole moments 
M= {ML(U), SL(U)}. To do this we need first to control the general transformations between 
two harmonic coordinate systems (valid in the domain outside the time-axis). 

THEOREM 4.3. Given a finite set of STF tensors W'(u) = { WL(u), XL'(u), YL(u), ZI(u)} constant in 
the past but otherwise arbitrary, and a general harmonic vacuum metric (parametrized by M, W), there exists 
an algorithm which constructs a coordinate transformation TWrw[] to a new harmonic coordinate system of 
the type: 

Xz= X'+GW#part1 [WI] + ... +Gn WPIartn [W']+- (423) 

such that all the Wpartns are stationary in the past (t < - T), satisfy (W/partn(X, t)- 
Wpartn(X,-T)) eL-1, and where wparti[] is the functional given in (2.33). A functional 
dependence on M and W is understood in W/partn[W'] (n > 2). 

Proof. The condition for T,,[f/] to lead to another harmonic system is simply (as we start 
from a harmonic one) 

0 = (la,,X a#xV) - tl(x) aa, X # (4.24) 

Looking for x'/1 = x/" + Gw/ + ... + Gn w# + ... we must solve: 

tfl(x) al A{w/ + Gw/ + ... + Gn lw/+.} = 0. (4.25) 

We know the general harmonic vacuum metric, which can be written as ff4l + 
Gharti[M, W] +..., where the Ms and Ws represent formal series E Gn1Mn, G 
that we shall not need to explicitly expand here. We then get a sequence of equations to be 
solved for the ws: 

L1wl = 0, (4.26) 

n-1 
w =- p art- [M, W] O2 #M. (4.27) 

m=l 

We choose as particular solution of (4.26) the right-hand side of (2.33) written for Wk, XL, YL 
and ZL; this defines wpart 1 [W']. Then we proceed by induction as for the preceding algorithm 
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for 9part' except that now we have no differential constraints on wgn (comparable to a haff = 0). 
We separate the ws in stationary and dynamic parts. At each induction stage (n > 2) we define 

n-1 
DWpartn [W']: =FP ( E hxArt n-r A[M, W] x8Wart m [w]) (4.28) 

(where ( )D denotes the dynamic part of ( )). This definition is meaningful, because 

Dhn-m n eLn-m-l and (by induction hypothesis) DWpartm e Lm-1 imply that the right-hand side 
of (4.27) belongs to Ln-2, hence DWpartn Ln-2+l = Ln-1 (by theorem 3.1) (sw, treated in 
Appendix C, section C2, does not create any problem). U 

After having defined such a particular coordinate transformation we have a result analogous 
to theorem 4.2. 

THEOREM 4.4. The most general 'finite multipolar', past-stationary and past-asymptotically vanishing 
(in space) coordinate transformation of the form: x/' = xl1 + Gwl1, with w/, = wz + ... + Gn'w- +..., 

which leads from an arbitrary harmonic metric 9part [M, W] to another one can be formally expressed as: 

Wen= WpartI E Gn1 -Wj (4.29) 
Ln=1 

This theorem is proven by the same method as used in the proof of theorem 4.2. The reason 
why it works lies in the fact that the general 'finite multipolar' solution of the homogeneous 
equation (4.26) has been found in ?2 as being of the form (2.24), and that the tools of appendix 
A show that such a general solution can always be (uniquely) written as (2.33) that is precisely 
as Wpart 1 [some W]. 

We are now ready to state the last result of this section, showing that the canonical MPM 
metric Ycan [M] defined by (4.22) contains the same geometrical (or physical) information as 
the general MPM metric 9gen [M, W], because they differ at most by a coordinate transformation 
and a redefinition of the multipole moments. 

THEOREM 4.5. Given a general harmonic vacuum MPM metric 9gen' there exist an harmonicity preserving 
coordinate transformation Tw and a finite set of 'multipole moments' M (themselves expressed as a formal 
series En==1 G8-'Mn as in theorem 4.2) such that: 

Tw 9gen = 9ean [M] (4.30) 

Proof. By the preceding theorems it is sufficient to prove that an arbitrary 9part [M', W'] 
can be transformed by some coordinate transformation into some 9can [Ml. The proof is by 
induction; it consists in constructing the looked-for coordinate transformation as a formal 
product = ... Twpart[Gn-Wn] o ... o Tw G WpartW] (4.31) 

Thanks to theorem 2.1, the first step is achieved by choosing W, = W-W (if W' = 

En?=l G-1 Wn), which effectively transforms 9part [Al', W'] into another harmonic metric 
(i.e. some 9 part [M", W"] ) that differs from 9acan [M1 ] (if M' = . ?n?= 1 Gn-W Mn ) only by terms 
of formal order G2. Hence, W" = GW' +.... Then we choose W2= - W2 and apply Wpart [GW2] 
and so on. 0 

It must be noticed that the final 'physical multipole moments' M parametrizing the 
canonical final metric will be obtained as 

M = M' + GY/1 [M', W'] +... + Gn_n [M, W'] + * (4.32) 

where the d1 will be complicated nonlinear integro-differential functionals of the moments 

33 Vol. 320. A 
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M', W' parametrizing the general solution ygen. The same applies to the coordinate 
transformation putting 9gen into canonical form; it can be written as wpart [W] with 

W = -W'+ G*' [M', W'] +. + Gn#,n [M,, W'] +* . (4.33) 

Theorem 4.5 justifies (within our formal framework) the assumption made by several 
authors, notably Thorne (1980), that the general radiative metric can be expressed as a 
functional of only two sets of STF tensorial functions of one real variable, some 'mass' multipole 
moments ML(u) ('electric-type') and some 'current' multipole moments SL(U) ('magnetic 
type') with the only restrictions that M (the 'total mass'), Mi (the 'centre of mass position') 
and Si (the 'intrinsic total angular momentum' or 'spin') be constant (in the 'centre of mass 
frame'). To avoid misunderstandings let us make it clear that, at this stage, the time-varying 
MLs and SLS are only formal functional parameters allowing us to represent the general 
past-stationary and past-asymptotically Minkowskian MPM harmonic vacuum metric 1gen. 

They will acquire a more direct physical meaning only at a later stage, when matching to a 
source or when studying the asymptotic behaviour. However, in the case where we restrict our 
general time-varying multipole moments to be always constant, or simply if we look at the 
structure Of Ygen before the time - T, or for any time t but for large r (spatial infinity) we 
recover a physical situation well studied by many authors (notably, Geroch 1970; Hansen 
1974; Thorne 1980; Beig & Simon 198I; Beig 198I; Giirsel I983; Simon & Beig I983 and 
references therein). In this situation, the MLs and the SLS have been shown to have a 
well-defined geometrical meaning. 

5. NEAR-ZONE STRUCTURE OF THE GENERAL SOLUTION 

In the preceding section we have shown how to construct algorithmically the most general 
MPM vacuum metric in harmonic coordinates. Evidently, as we are mainly interested in studying 
the gravitational radiation emitted by an actual source, the previous vacuum metric can be 
of use only outside the source. For physical applications it is useful to distinguish several spatial 
regions outside the source. If a denotes the (characteristic) size of the source and A the 
characteristic wavelength of any radiation field emitted by the source, one traditionally 
distinguishes: a 'near zone' (r << A), an intermediate or 'transition zone' (r A) and a 'far 
zone' also called radiation or 'wave zone' (r > A) (see e.g. Jackson I975, p. 392). A far as its 
radiative properties are concerned, a field behaves quite differently in the preceding three 
regions (see e.g. Finn I985). Moreover, when nonlinear effects are important (as it is the case 
for the gravitational field) one must also distinguish between strong-field regions and weak-field 
regions (r > Gc-2M, M being the characteristic mass of the source). Thorne (i980) has also 
introduced a further distinction between a 'local wave zone' and a 'distant wave zone' that 
need not concern us now. One expects a priori the general MPM vacuum metrics (investigated 
by Bonnor & Rotenberg I966; Thorne I980; and this work) to be able to provide good 
approximations to the actual metric only in the weak-field part of the region outside the source 
(i.e. r > a and r > Gc-2M) (this is when assuming to deal with a very large number of 
multipoles; if one keeps only a few multipoles one must probably stay far away from the source: 
r > a). On the other hand, the radiative behaviour of the field, i.e. the distinction 
near/transition/far zones, does not seem to place any further limitations on the approximate 
validity of the MPM expansions. In ? 7 we shall investigate the far-zone behaviour of the general 
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MPM metric; here we shall concentrate on its behaviour in the near zone (r << A) outside the 
source (r > a). This presupposes that a < A, which defines the so-called 'slow sources' (a < A 
implies generally that the characteristic velocity within the source v < c). To formalize the 
asymptotic behaviour of y7f when r < A (and a << A), it is convenient to introduce the 
characteristic period P of the waves emitted (so that A = cP), to use units for space and time 
such that a = 0(1) and P = 0(1) (and thus v = 0(1)), to use as constant r1 in equation (4.8): 
r1 = A = cP, and then to consider a sequence of sources which become more and more 'slow' 
(a/A-0), which means in our source-based system of units that the number c measuring the 
velocity of light goes to infinity: c-+ co (J. Ehlers, personal communication I 983) .t We have 
seen ((2.32) and (2.34)) that if we attribute to ML(t) and SL(t) their usual physical dimensions 
(so that ML Mal, SL Mal+l/P stay O(M) when c-o oo), then explicit powers of c appear 
in h7-fl Let M = {ML, SL} denote the finite set of the 'multipoles' allowing us to construct 

9can [M]. With the preceding choice of units, each hcapnn [M] becomes a function of x, t and 
c and a multilinear functional (of order n) of the elements of M. In other words, hean n is a sum 
of terms each of which is, as concerns its algebraic structure, an arbitrary element (say En) 
of the nth tensorial power of M: Mn, i.e. a tensor product of n multipoles chosen among M: 

E ML ML ...ML SL ... SLB (5.1) 

Each such En is then multiplied (with contractions) by some Levi-Civita and Kronecker 
symbols. To each En e Mn we can associate two integers: s(En) the number of 'current 
moments' among the n multipoles, and b(En) the total number of indices among the MLs and 
the cijaSaL ls appearing in En (when endowing the SLS with their natural c associates), i.e. 

s(En): = s, (5.2 a) 

n 
b(En): =S+ la. (5.2b) a==1 

With these notations it is easy to prove by induction (starting with (2.32) and using definitions 
(4.8), (4.13) and (4.16) together with the fact that El lf(x/c, t) = c2g(x'/c, t')) that the 
dependence on c of hcann (x, t, c) can be reduced to 

hcann(X, t, c) = E fI+(Er) hE(x/c, t), (5.3) 

where hEn which involves only the ratio x: c, is algebraically constructed only from a single 
element En of Mn. Combining now the 'factorization result' (5.3) with the previously 
demonstrated fact (? 4) that Dhn E Ln-1 and the known structure of shn (Appendix C) we find 
that, for any positive integer N, we can write: 

hcann(X, t, C) = E In+b(I) { FQap,(t) fi (r/c)a (Ig (r/c)) +RN(x/c t)} (5.4) 

where the functions FQap(t) are C?? and constant (and even zero for p # 0 or a = 
-(n+b (En)-s(En))) when t <-T, where -(n+ b (En)-s(En)) < a < N (as shown by 
induction), where 0 < p < n-I and where RN(Y, t) is an ON(rN) (y, t) function. 

t For a definition of a precise framework in which one can investigate the limit process cG-- 00 see Ehlers (I984) 
and references therein. 

33-2 
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In the case of 'slow sources', with a convenient choice of units (a = 0 (1), P = 0 (1), c -> so) 
we can consider that for all fixed r, r/c - r/cP = r/A -> 0, and therefore that the formula (5.4), 
which came originally from an asymptotic expansion when r ->0 (mathematically), can be 
reread as an asymptotic expansion when r/c- r/A - 0 (with r fixed), i.e. as a 'near-zone 
expansion' giving the asymptotic behaviour of the metric outside a slow source when a < r < A. 
As such, (5.4) confirms and generalizes (because 'tail terms' have been fully taken into account 
here) a result of Thorne (I980; ?ix). Note however that the FQap(t) of (5.4) are complicated 
nonlinear retarded functionals of the multipole moments and not, as in Thorne's incomplete 
treatment, antiderivatives of contracted products of the derivatives of the moments. An 
interesting by-product of (5.4) is obtained by re-expressing the preceding 'near-zone expansion' 
in a more formal way as an expansion when c-> so with fixed r, that is, by using a common 
terminology, as a 'post-Newtonian expansion'. Then, as a corollary of (5.4), we see that, up to 
an arbitrary order N, hcan (c) admits the following post-Newtonian expansion: 

hcann(c) = E 2n?+(En) { k ( +g()} (5.5) 
~En eMn n)o< Op <n-1 I\J 

o <_ k <_ N 

The remarkable fact is that (5.5) proves that Ycan admits a post-Newtonian expansion of 
arbitrary order only if one uses as scale (or gauge) functions the (lgc)Pc Pk (p, k e N) (or some 
finer set of gauge functions). This proves that the usual post-Newtonian assumptions, according 
to which yi admits a post-Newtonian expansion along the simple powers lIck, is inconsistent 
with the nonlinear structure of general relativity. This inconsistency has, in fact, already shown 
up in the higher orders of post-Newtonian expansions where the assumption of simple powers 
l cIk leads to the appearance of divergent integrals (see e.g. Kerlick 1980; Futamase I983). 
Anderson et al. (i982) have pointed out, using some matching arguments and a partial 
integration of Einstein's equations, the necessity to complete the set of simple powers lc k 

(k e N) by (lg c) Ick (ek lg e in their notation) when considering the 'near-zone' expansion. 
Here we have shown directly that the integration of the full vacuum Einstein equations, up 
to arbitrary post-Minkowskian order, necessitates the extension of the set of scale functions to 
the (lgc)P Pck (p, k e N). It is notable that such simple scale functions are sufficient; one could 
have apriori expected higher order terms to necessitate the use of c-k lg (lg c) terms, for instance. 

6. THE RETARDED INTEGRAL OF A MULTIPOLAR EXTENDED SOURCE 

The mathematical tools introduced in ? 3, namely the ON(rN) and the Ln classes offunctions, 
have been useful both to construct the general MPM metric and to study its near-zone behaviour. 
However, in order to study the far-zone behaviour of the general MPM metric it is necessary 
to introduce some new mathematical tools: an explicit formula for the retarded integral of a 
multipolar extended source, a class of functions of two variables (r, u = t-r/c), the 0??(l/rN) 
class, and a class of functions of four variables, the yn class. We shall discuss here the former 
integration formula, and we shall introduce the latter classes of functions in the next section 
directly devoted to the far-zone behaviour of the general MPM metric. 

It is known (see, for example, Fock 1959) that, if an 'extended source' S(x, t) is sufficiently 
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regular (e.g. C2(Rt 4)) and is zero in the past, there exists one and only one past-zero C2(RtI4) 
solution of the inhomogeneous wave equation 

Elu(x, t) = S(x, t), (6.1a) 
namely the retarded integral of S: 

u(x', t') = -Ijj(S(X, t)) = d41fiIx S(x, t'-Ix'-xI/c). (6.2) 

In general, the explicit solution (6.2) is somewhat awkward to handle because it contains a 
triple integral. For instance it is not straightforward to use (6.2) to control the far-zone 
behaviour of u, knowing the far-zone behaviour of S. However, if S has a known (orbital) 
multipolarity 1, that is if there exists a function of two variables, denoted also by the letter S, 
such that 

S(x, t) = fiLS(r, t-r/c), (6.1b) 

where, for the sake of convenience, we have suppressed indices and have used as variables the 
radius r and the retarded time t- r/c instead of r and t, then the retarded integral (6.2) can 
be reduced (under the conditions of theorem 6.1 below) to a simpler line integral of some 
integrand constructed from an antiderivative off(r) = (2/r)1-1S(r, s) (s fixed). Let us define 
the following functions: r (r x)' 

R(r, s):= rn dx 1! (2/x)1-8S(x, s), (6.3) 
and (with c = 1): 

uL(x,t): r AX 
ds R[l(t--r-s) s]-R[I(t+r-s),s]} 64 

Then, we have the following theorem. 
THEOREM 6.1. Let S(r, u) be a complex valuedfunction on R8: = {(r, u)Ir O} that satisfies: 
(a) there exists T such that S(r, u) = 0 when u T- I 
(b) there exists a positive integer N such that, for all i < N+ 1 + 1, D0/DrV (S(r, u) ) exists and belongs 

to CN(R2); 

(c) when r-?O, Di/Dri (S(r, u)) is O(r2N?+1l?-i) uniformly in u, i.e. Vuo, Vi < 2N+1+ 1, 3M > 0, 
3d > 0 such that when u < uo and r < d, JDi/Dri (S(r, u))I < Mr2N+tl-i. 

Then thefunction on R4 UL(x, t) defined by (6.4) (with (6.3)) is CN(R 4), and when N 2, UL is 
equal to the retarded integral of the 'source' (6.1 b), i.e.: 

N > 2 =uL(X, t ) = 1-l(tLS(r, t-r)). (6.5) 

Proof. A formal way to find (6.5) uses the multipolar expansion of the retarded Green 
function GR = 8(t'-t-Ix'-xj)/Ix'-xj (see Appendix D). We now outline an indirect but 
rigorous proof of (6.5) under the hypotheses of theorem 6.1. 

By using the lemma E 1 of Appendix E it is easy to deduce from the hypotheses of theorem 
6.1, that, successively, 

V/I < N+l 1)fL(Oi/Ori) S(r, u) c- CN(R 4), 
Vi < N+ 1, (ai/ari) [ (2/r) 1-1S(r, u) ] E CN ( 2), 

Vj < 2N+21+2, (?Y/Dr1) R(r, s) is uniformly O(r2N?+21+3-i) when r --> 0, 

VJ <A N+21+2, (?-/Dri) R(r, s) eCN( 2 ). 
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Then applying Taylor's formula, with integral remainder, at order N + 1+2 to R[I(t-s+ r), s] 
A 

(around r = 0) leads one to express aL{(l/r) [R(A(t-s-r), s)-R(Q(t-s+r), s)]} as a sum of 
terms of the type "L r2j-1 (02j+'R/Or2j+1) (1 (t-s), s), with 1 < j < (N+ 1 + t) /2 plus a remainder: 
4L rN+lP(r, t, s), where, thanks to the results above, P is checked to be CN(OR3). Then uL(x, t) 
((6.4)) can be written as a sum of terms of the type nL r2F-1 fr/2 dx(a2 1 R/ar2+ 1) (x, t-2x) plus 
a remainder: 

fiLrN+1J dxP(r, t, t-2x). 
2r 

The results above, thanks to lemma E 1, show then that UL- eCN(R 4). Now let us define 

IL(X, t, s):= aL{r [R(2(t-s-r), s)-R(A(t-s+r), s)]}. 

It is evident that LIfL = 0 if r = 0, i.e. in the domain A: = Rx 3 IxR. Therefore the value of EjuL 
comes only from the differentiation of the upper limit of the integral in (6.4). One finds that, 
in A (the replacement s = t- r being done last) 

DuL (x, t) =-2 [(I /r) (a/ar + a/at) (rfL(x, 1, S)]s=-r. 

ExpandingfL by means of (A 35a) and noting that, Vk < 1- 1, (Ok/ark) R(O, s) = 0, leads to 
the following complicated expanded expression for DUL: 

[ ~~AL 1+1 _kk 
F- uL = [ 1(1+ 1) E ( 1 (r, s) (-21 O k!(l? I1-k)! Or 

which can be put in the simple form: 

WL (x t) 2 iL(ir) [r1+ ( r( g)) = t-r 

Now by (6.3) we see that, for fixed s, g(r) = R(r, s)/rl is an anti-derivative of order 1+ I of 
f(r) = (2/r)1-1 S(r, s); therefore in the domain A (outside the time-axis) we have 

DUL(X, t) n rLS(r, t-r). (6.6) 

When N > 2 both sides of the latter equation are at least continuous all over R 4 (because UL 

and iL S are CN(RD4)), thus we see that the latter equality is also valid in R4 (i.e. including 
the time-axis). Finally it can be seen from (6.3) and (6.4) that UL(X, t) is zero when t-r < -T, 
therefore by the uniqueness theorem for the past-zero solution of the wave equation (6.1) we 
conclude that UL, as defined by (6.3) and (6.4) is indeed the retarded integral of,nLS(r, t-r). 

U 
Remark 1. By using (A 36), it is easily checked that (6.4) is still valid if we replace r-1R(r, s), 

defined by (6.3) as being the (1+ I)th antiderivative (with respect to r) of (2/r)1-1 S(r, s), which 
vanishes, together with its first 1 derivatives, in r = 0, by any other (I+ 1) th antiderivative of 
(2/r) 1- S(r, s) (for fixed s). For instance, we can replace (6.3) by: 

Ra(r, s) = rt dx (r-x) (2/x)'1 S(x, s), (6.7) 

i.e. by the (1+ 1)th antiderivative of (2/r)1 S(r, s), which vanishes, together with its first I 
derivatives, in r = a, where a can be any (sufficiently regular) function of t and s. Two choices 
of a (besides a = 0 used in (6.3)) can be of interest in the applications of (6.4): a - (t-s)/2 
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or a = + oo.The choice a = I(t-s) is useful when one is interested in checking the domain 
of dependence of UL. Indeed it is easily checked that, when a = A(t-s), all the integrations 
appearing in (6.4) and (6.7) are limited to a domain of the (r, t) half plane which is precisely 
the (r, t)-projection of the support of the retarded Green function, (the past light cone of x', t') 
i.e. { (r, t) I r ) 0, t'-r' < t + r < t' + r' and t-r < t'-r'}. This provides an explicit check of the 
causal nature of the solution (6.4). On the other hand the choice, when it is possible, a = + 00 
(the causal nature of which is not obvious although correct) is convenient when one is interested 
in relating the far-zone behaviour of UL to the far-zone behaviour of S. 

Remark 2. Whatever be the choice of the antiderivative, R(r, s), together with its first (1-l) 
derivatives, will be zero in r = 0 (this fails if 1= 0, but then (6.8) below is clearly true). This 
implies that (6.4) can be rewritten as, e.g., 

UL(X, t) = aL{-i ds R, [I (t-r-5s), s]}-f ds aL { [ rs)1 ] (6.8) 

because it is easily checked that the terms coming from the differentiation of the upper limit 
of the first integral are proportional to (ak/ark) Ra(O, s) for k < 1- 1. The first term in the 
right-hand side of (6.8) is clearly a solution of the homogeneous wave equation outside the 
time-axis, of the purely retarded type (? 2). Therefore if one is only interested in finding one 
particular solution, outside the time-axis (r #A 0), of the inhomogeneous wave equation (6.6), 
which vanishes in the past with the source S, it would be sufficient to use only the second term 
in the right-hand side of (6.8) (it seems probable that the formula proposed by Anderson (i 984) 
is simply related to this second term (with a = + oo), although we did not try to relate our 
solution to his). 

Remark 3. The formula (6.4) leads to a very simple result in the special case where the source 
S is S(r, t- r) = rB-k F(t- r) with Fe C?? (R) being zero in the past, k being (for instance) an 
integer and B being a complex number. If Re (B) is large enough, the hypotheses of theorem 
6.1 are satisfied and formula (6.4) yields: 

- 1 ( L B-k_ t__r_S)_A (t-r-S) B-k?1?2 (t + r s -+ 

l(RnLrB kF(t-r)) = D dsF(s) r 2 r-)Bk?l?2} 

(6.9a) 
with the denominator 

D(B-k) = 2B-k+3(B-k+ 2) (B-k+ 1) ... (B-k+2-1). (6.9 b) 

The validity of the formula (6.9) can then be extended to any complex value of B (except 
maybe for some poles when B = k-2, k-1, ..., k-2+1or when B = k-1-3, k-1-4, ...) by 
analytic continuation (the analytic continuation of the potentially divergent integral 

Jtf ds F(s) aL((t-r-) B-k+1+2/r) being, for instance, constructed by integrating by parts). 

7. FAR-ZONE STRUCTURE OF THE GENERAL SOLUTION 

The asymptotic behaviour of the general MPM metric, within the assumptions of ? 1, when 
r oo at fixed time t is simple because, thanks to the assumption of past stationarity, the metric 
becomes stationary (and equal to s, =f+ E Gn ,h-) as soon as r > c(t+ T). Then it is seen 
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from Appendix C, and the works quoted there, that shpartn admits a (truncated) expansion 
in inverse powers of r of the type: 

S partn E FQk k?- (7.1) 
k>n n 

where the FQk are some constant coefficients. In other words, (7.1) describes the asymptotic 
behaviour Of Ypart at (Minkowskian) spatial infinity (r-- 0o, t fixed) as well as at (Minkowskian) 
past-null infinity (r-+ oo, t+r/c fixed). It remains to study the asymptotic behaviour Of Ypart at 
(Minkowskian) future null infinity (r-* oo, at fixed retarded time u = t-r/c). It is therefore useful 
to introduce the following definition of a class of functions of two variables which will play the 
role of 'remainders' in the asymptotic expansions when r -o 00, u = t - r/c fixed: 

Definition 7.1. A complex valued function of lRl2:f(r, u) is said to be OO(1/rN) (or to belong 
to the O? (1/rN) class) for some positive integer N if the following properties hold: 

(a) ] T such thatf(r, u) = 0 when u < -T, 
(b) f(r, u) E C?? (]d, + oo [x DR) for some d > 0, 
(c) am+kf/Drm auk is, uniformly in u, O(I/rN+m) when r- 0o0, i.e. Vu0,u lcR, V(m,k)eBN2, 

]M > 0, 3A > 0 such that 

(/o < u < ul and r > A) ( makaf(r, u)< 
M 

~uo~u~u1anr>)=~k 
rmaOk <rN+m,) 

The OcI(1/rN) functions will replace the ON(rN) functions when studying the asymptotic 
behaviour r-> oo, u fixed, instead of the asymptotic behaviour r--0, t or u fixed. Note that the 
ON(rN) were functions of R4 instead of R2. Note also that we have included explicitly in 
definition 7.1 the condition that the O(1/rN+m) bound be uniform in u, while in definition 3.1 
the uniformity of the O(rN) bound was a consequence of the other conditions. Finally, the 
definition 7.1 would be meaningful for Ne R+. 

The following basic stability properties of the classes O (1 IrN) are easily deduced from the 
definition 7.1 (we use the same simplified notation as with the ON(rN) (see lemma 3.2):f = 0"O 
(1/rN). When needed we mention explicitly the dependence on the two variables: 

f(r, u) = 000(1/rN) (r, u)). 
LEMMA 7.1. We have 

(i) 0? (I /rN) + oc) (1 /rN') = oo (I / rinf (N, N') 

(ii) 0O0 (1 /rN) * 0?? (1 /rN') = 0? (1 /rN+N'), 

(iii) 0O?(I/rN) (r+a, u) = 0?O(I/rN) (r, u) (for any real a), 
(iv) F(u) ra (lg r) P Q' (1 IrN) = 00 (1 /rN-a-e) (for any F(u) E Co(DR), a < N, p > 0; with some 

e > 0 and a+ ce E N if we restrict the definition 7.1 to Ne N ), 
(v) am+k/arm auk O' (1/rN) 0= O (1/rN+m) (for any positive integers m, k), 

(vi) f+? dx 0?O(I/rN) (x, U) u) O(1/rN-1) (r, u) (if N > 1), 

(vii) fU ds 0? (1/rN) (r, s) = 0?? (I/rN) (r, u) 

Another important property of the OO(1/rN) class is its behaviour under the action of the 
'regularized' retarded integral operator FP DOR1I 
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LEMMA 7.2. Iff(r, u) E O(lj1/rN+l) with N > 1 (hence N > 2 if we restrict Ne N) and is such that 
hLf(r, t- r) eLn for some n, then there exist a CO (Ri;) function G(u), zero when u -T, and a function 
g(r, u) E 0?O (l/rN) such that: 

FP Ejl(rB,iLf(r, t-r)) - 

G 
(t r))+lLg(r, t-r). (7.2a) 

Symbolically, we can write lemma 7.2 as: 

N> 1 => FP ] 
- 

(L O (1 /r N+1)) =-aL(G(t-r)/r) +rL O (1/rN). (7.2 b) 

Proof. If Re (B) is large enough the function S(r, u): = rBf(r, u) will fulfil the conditions of 
theorem 6.1. Hence, from (6.8), we find for Bu(x, t):- Dl(rBnLf(r, t-r)): 

Ru = aL { }j| dsaL{Ra r2( )' ]} (7.3) 

with 

BRa(r, s) := nj dx (r x) (2/x) -1xBf(x, s), (7.4) 

and 
u 

BGa(u):= ds BRa [2(u-S), S]. (7.5) 
-00 

The validity of (7.3) can be extended by analytic continuation (because niLf E Ln) to all B E C' 
(:= ?-Z). If Re (B) < N-I we can choose a = + oo. Then let us define 

r?cc 
G(u):= FP BG+. (u) = 2 FP dxBR+oo(x, u-2x). (7.6) 

B=O B=OJO 

Now the hypothesis niLf(r, t-r) e Ln, after a spherical harmonics projection, implies forf(r, t) 
an asymptotic expansion when r - 0 of the type E F(t) ra (lg r)P plus a 'good' remainder 
(O(rK) and CK-1(R2 ) where Ke 1-1 can be chosen arbitrarily large). It is then easy to check, 
by standard methods, that G(u) ((7.6)) is C?(l(R) and zero when u -T. On the other hand 
the last term (with a = + oo) of (7.3) is analytic near B = 0 because we have chosen N > 1. 
Expanding the derivative aL by means of formula (A 35a) we can write: 

-Jf dsaL{r-10R+0?[j(t+r-s), s]} - nLg(r, t-r), 
-O0 

where g(r, u) is a sum over i andj (with 0 < i < 1, 0 <j < 1) of terms of the type 

u + 00 
r-<?+1 f ds [i (u - s) + r]t+1 dx x-i+1ff(x, s). 

-00 r+I(U-s) 

Using the hypothesis fe 0? (1/rN+l) with N> 1 and lemma 7.1, one finds easily that 

gc-Ox (1/r N). 0 

Having thus defined a 'good' class of 'remainder' terms for an asymptotic expansion at 
(Minkowskian) future null infinity (r-> oo, u = t-r fixed) we can now introduce a class of 
functions which will play when r-* o0 (u fixed) the role played by the Ln class when r-? 0. 

34 Vol. 320. A 
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Definition 7.2. A complex valued functionf(x, t) defined in a domain D of Rl4(r > rO for some 

ro > 0) is said to belong to the class of functions fn (n e RJ) if the following properties hold. 
For any positive integer N there exists a finite sum 

SN(X, t) = E FQkp(t-r) nQ r-k (lg r) P, (7.7 a) 
p < n 

where ke %, k > 1, pe RJ and p < n, and where the coefficients FQkp(u) are both C??(RA) and 
zero in the past (u < -T for some fixed T), such that the differencef(x, t) -SN(X, t) is a finite 
sum of terms of the type fiLg(r, t-r) where each g(r, u) is Oc? (1/rN): 

VN,f(x, t) = SN(X, t) +Y fiL 0?(1/rN) (r, t-r). (7.7 b) 

In short we can say that fn is the class of functions that admit when r-? 00, u = t-r fixed, 
an asymptotic expansion to all order N along the scale functions r-k (lg r)P, with k > 1 and 
0 < p < n, with coefficients admitting a finite multipolar expansion (the coefficients of which 
are smooth past-zero functions of u) and with a 'good' E fiL oo (1/r N) (r, u) remainder. 

Now, the class YO is essentially sufficient to describe the far-zone behaviour of the linearized 
MPM metric hparti. Indeed, after (4.7), (2.32), (2.33) and (A 35a), hparti can be written as 

hpart 1 = EFQk(t-r) nQ r k, (7.8) 

which means that the 'dynamic' part of hpart 1 belongs to YO. As the general MPM metric can 
be described by the particular MPM metric 9part =1f+ i Gn hpart n of ? 4 and that hpartn is 
obtained from the preceding hpart ms by an algorithm based essentially on algebraic and 
differential operations and the application of the integral operator FP EZj1 we need to study 
the behaviour of the f/n class under such operations. By using lemma 7.1 it is easy to check 
the following stability properties of the f/n classes under algebraic and differential operations. 

LEMMA 7.3. Iff(x, t) E fn and g(x, t) E /m, then 

(i) f(x, t) +g (x, t) E ysup (n, m), 
(ii) f (x, t) . g (x, t) E yn+m) 
(iii) VqE x-, VpE x-, aq ai f(x, t) c yn. 

Let us now prove the more difficult result. 
THEOREM 7.1. Iffe yn andfcE Lm for some n and m, and if all the powers of 1 /r appearing in SN 

((7.7 a)) are of order k > 2, then FP Dj1fe f/n+l (and E Lm+1 from theorem 3.1). 
Proof. Let us write for any chosen N, f = SN+1 + RN+1 with 

SN+ E F k(t- r) n'Q r-k (Ig r) P, 
p < n 

2 < k < N+1 

RN+1 = E 0nLQ00(1/rN+1) (r, t-r). 

It is easily proven that SN+1 E Ln, thence RN+1 E LSUP (n, m). Applying now lemma 7.2 (or rather 
a parallel lemma where the condition ALfe Ln is replaced by (E Lf) E Ln), we get 

FPDi1R N+1 = E OL(G(t-r)/r) + nl 0O?(I/r). 

Now as FP EZ11f = FP Djj1 SN+1 + FP Djj1 RN?1, it is clear that if we prove that, for all 
p < n, FP Dj1 (F(t-r) hQ rk (lg r)P) E ?n+1 the theorem will be proven. This will be a 
consequence of the following lemma. 
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LEMMA 7.4. We have: 
nR1 (F(t-r) rB2 fiQ (lgr)P) IB 0,Y'P+ 

and ifk> 3: 
FP CR1(F(t -r) rB- nQ (Ig r) P) E- YP. 
B=O 

(The 'FP' prescription has been dropped in the first relation because the retarded integral 
converges near B = 0.) 

The main tool in the proof of lemma 7.4 is the identity 

n-1 (nQ rBk F (t-r)) = -2(B k2) rB-k+l (-1)F(t-r) 

+ (B-k+ 1 -q) (B-k+2+q) Dl1 (nQ rB-k-1 (-1)F(t-r)), (7.9) 
+2(B-k+2) 

where Fe Coo(DR) is past-zero, and (-1)F is its past-zero antiderivative. The identity (7.9) is 
proven either by integrating by parts the s-integration in (6.9a) or by using the same reasoning 
as for proving the identity (3.11). Then we can iterate (7.9) (which increases the power of l/r 
in the last term) and differentiate it p times with respect to B (which adds a factor (lg r)P). 
This leads to a formula of the type 

r1 o- r11 - ?JP N+2-k 
F-11(fQ rB k(Igr) PF(t -r)) = aBp E Ci C(B) nAQ r + t( tF (t -r) 

+ DN(B) -1 (fiQ rB-N-2 (-N-2+k)F(t-r))} (7.10) 

If k > 3 all the coefficients Ci and DN are analytic at B = 0, and if k = 2 only the first q + 1 
coefficients Ci have a (simple) pole at B = 0. Taking the finite part at B = 0 of (7.10) and 
applying lemma 7.2 to the 'remainder terms' which have precisely the structure FP ZI1 
(fiQ 0?O (1/rN+l)) (with 0?(1/rN+1) being a sum of terms of the type r-(N+2) (lgr)1 G(t-r)), 
finally proves lemma 7.4 and thereby theorem 7.1. U 

It is to be noted that only the powers 1/r2 in the 'source' increase (by one) the number of 
logarithms in the 'solution' = FP Dj1 'source'. A closer examination of the new logarithms 
in the solution leads to the relation (with a slightly generalized angular part and B = 0 taken 
from the start because the retarded integral converges anyway) 

Zlj1 (kx kP2 ... .kx r-2 (Ig r)P F(t- r)) + ( (g ) I 
1 

xi (-1--)F(t-r) ))E YP, R ~~~~~~~2(p+ 1)r 
(7.11) 

where k: = (1, ni), ax: = 
(- ai)) (-)F(u) = u dxF(x) etc.... In particular, by expanding 

the derivatives da and by re-summing the multipolar expansion we find at the 'leading 
logarithm approximation' when r -* + oo, t - r fixed, 

ER (r (Ig r) = F(t-r,n 2(p ) r ds F(s, n') + O( (lg r)P/r). (7.12) 

With lemma 7.3 and theorem 7.1 in hand, it is a simple matter (adapting the proof of 
theorem 4.1) to prove that the 'dynamic' part of hpart n belongs to yn-l1, in other words we 
have the following theorem. 

34-2 
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THEOREM 7.2. Thefar-zone behaviour of hpart [M, W] (x, t) is described by thefollowing asymptotic 
expansion (up to an arbitrary order N): 

hpartn(X, t) = Ir2 tr{ E) +RL (r, t-r)}, (7.13) 
1 <_ k <_ N 

where thefunctions FLkP (u) are C R (ll;) and constant when u < - T and where the 'remainders' RL (r, u) 
are 0?O (1/rN) (if N is large enough; if N is smaller than n(lmax [M, W] + 3), where lmax [M, W] 
is the maximum order of multipolarity in M and W, RN (r, u) will be a 'constant in the past' 0? (1/rN) 
function). 

The appearance of lg r/r terms in the far-zone behaviour of a radiative metric in harmonic 
coordinates has been known since the work of Fock (I959) (see also Isaacson & Winicour I968; 
Madore 1970). Our result (theorem 7.2) is, in a sense, more general and more precise than 
Fock's result because it deals with all orders in 1/r (and in G) and because it shows how the 
powers of the logarithms increase with n. However, in another sense, (7.13) is less precise than 
Fock's result because we do not control which logarithms come from a formal expansion of 
the multipoles expressed in terms of a 'better' retarded time, u* = u-2GMlg r (with u = t-r), 
according to 

ML(u*) = ML(u) - 2GM lg r (1)ML(u) + 2G2M2 (lg r) 2 (2) ML (u) .... (7.14) 

This problem, as well as the link with the Bondi-Sachs-Penrose approach to the far-zone 
behaviour, will be considered in more details in sequel papers. For the time being let us only 
emphasize that, in the present MPM approach, the main interest of the expansion (7.13) lies 
in its proof where it is tied to the definition Of 9part, which means that in this approach, one 
can link thefar-zone behaviour of a radiative metric to the 'multipole moments', ML(u), SL(u), 
and thereby also to its near-zone behaviour (? 5). 

APPENDIX A. SYMMETRIC TRACE-FREE TENSORS AND MULTIPOLE EXPANSIONS 

A 1. Notation 

We treat the harmonic coordinates (xO, xi) (i = 1, 2, 3) as if they were Minkowskian 
coordinates in flat space. In particular the spatial coordinates xi are treated as Cartesian 
coordinates and are raised and lowered by means of the Euclidean metric aij = Kronecker 
delta, so that: Ai = Ai, Aaa = Aaa Ea Aaa. We denote by eijk the fully antisymmetric 
Levi-Civita symbol (6123 = + 1) . In order to deal conveniently with sequences of many spatial 
indices we use an abbreviated notation for 'multi-indices', where an upper-case latin letter 
denotes a multi-index while the corresponding lower-case letter denotes its number of indices: 
L:= i1 i2..i1; P:= i1i2..ip; TQ:I = When several multi-indices appear simultaneously 
it is understood that different carrier-letters are used, for instance: TPQ = Til . i j7. When 
needed we use also P-1:= 1 i2 ... ip1 so that the tensor Tap-1 Tail...ip _ has p indices. 
We denote also r= ((x1)2+(x2)2+(x3)2) ; ni=xi/r;Di=D/Dx ; nL:= nil... n; DL:=oil...Oil. 

For any positive integer 1 we shall denote 1!:= l(l-1)...2.1; 1!!:= l(l-2)...(2 or 1). A 
multi-summation is always understood for repeated multi-indices: Sp TP = Sp Tp = 
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Given a Cartesian tensor Tp, we denote its symmetric part by parentheses 

T(p): Toi ) =p; Ty(l)f o(P) (A 1) 

(o running over all permutations of (12.. .p)). The symmetric-and-trace-free (STF) part of Tp 
is denoted indifferently by Tp T<P> =-T<i1,p>. The explicit expression of the STF part is 
(Pirani I964; Thorne I980) 

P= T< P> k= 0k 1 i2. i2kit2k Si2k+l ...P ip)a,a, ... akak (A 2a) 

where 
SP = T(P), (A 2b) 

ap = P!_ (_)k (2p_- 2k -1) !! (A 2G) ak (2p_1)!! (p -2k)! (2k)! (A2c) 

[lp] denoting the integer part of ljp. For instance, Taa; 
T7jk = T(ijk) 5 [6i T(kaa)+ 8jk T7iaa) + kS TUlai 

A 2. Algebraic reduction of Cartesian tensors 

It is well known (see, for example, Gel 'fand et al. I 963) that the set of all symmetric trace-free 
Cartesian tensors of rank l (sTF-l tensors) generates an irreducible representation of 'weight' l 
(and dimension 21 + 1) of the group of proper rotations (SO (3)). Any tensor of rank p (member 
of a reducible tensorial representation of SO (3)) can be decomposed in a sum of algebraically 
independent pieces each of which belongs to an irreducible representation and, therefore, can 
be expressed in terms of some STF tensor. More precisely, any tensor TP can be decomposed 
in a finite sum of terms of the type yL RL where yL is a tensor invariant under SO(3) (a product 
of some Kronecker and Levi-Civita symbols) and RL a STF-l tensor (l < p) obtained by 
contracting T. by some other invariant tensor y'P (Coope et al. I 965, I 970). The highest-weight 
piece of this decomposition is always TP. These assertions are easily proven by induction if one 
uses the following (straightforwardly checked) formula (which generalizes the well-known 

Ui Vi = U<i Vj) + '26aii ( U x V ) a + 3ldij (U. V ) ): 

Ui TL = iL L+ 1 ai<il il._.%11>a 2l+ 1 w< I t...%> (A 3) 

where 
Rj(.) t1+ = U<l+1 T, ... .l>) (A 4a) 

R10(t.)i = Ua Tbb<Ki...iCl_, ei>ab (A 4b) 

I ... = Ua Tail i._j (A 4c) 

The well-known law of multiplication of representations D. 0 D, = D,- . 0 D1+8 
(which corresponds, in quantum language, to the law of addition of angular momenta: 
J = L + S) corresponds, in STF language, to an algebraic reduction of the tensorial product of 
tWO STF tensors: 

US VL E YSL-J) (A 5) 
It-si < j < I+s 

where each weight j appears only once, where ySL is an invariant '3 -j tensor', which is 
separately STF in S, L and J, and where each RJ is bilinearly builtot out of Us and VL (see Coope 
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1970). The 'Clebsch-Gordan reduction' (A 5) is easily calculable, for low values of s, from (A 3) 
and involves only simple numerical coefficients. This simplicity is to be contrasted with the 
complicated numerical factors which plague the usual angular-momentum theory employed 
in quantum mechanics (with its apparatus of 3-j, 6-j symbols, etc.). Moreover, Cartesian 
tensors are more intuitively related to directional properties in three-dimensional space than 
the canonical basis of irreducible tensors (eigenvectors of J3) of the usual angular-momentum 
theory. For these reasons we have followed the numerous authors (notably, in the context of 
general relativity, K. S. Thorne) who advocate the use of STF tensors. 

A 3. Canonical basis of the vector space of STF tensors 

If we denote by ei (i = 1, 2, 3) the Cartesian basis vectors (e, = 81), it can be easily verified 
that a basis of the (21 + 1) -dimensional vector space of STF-1 tensors is made out of the STF parts 
of the i-fold tensorial products (el + ie2) (0 ... (0 (el + ie2) (0 e3 0 ... 0 e3 (with i2- 1) and 
their complex conjugates. More precisely such a basis is t YLm; -1 < m < l} where, when m > 0, 

and 
A'tm = (-_ )m (21- 1) !! [(21? 1)/(4xr (I-rn)! (l? m) !)]1, (A 6c) 

and when m < 0 (the asterisk denoting the complex conjugate) 
vim = (Al)m (Ey2l) (A 6d) 

The normalization is such that 

yn (ll - il (2 ?)* = 4 ! ...!!i3.. (A 7) 

The expanded form Of yl iS (Pirani I964; Thorne 1980) (for m ) 0): 

ylmn _ ( A lm (21?1 (-m (i-n !_! \ (21+, ( 4)k (21-2k- 1)! ! 

(t1 i2.. t2k-1i2k( 2k+1+ 2k+1) (2k+m ib2k+m) t92k+m+1 j8i. (A 6e) 
This basis is linked in a simple manner to the usual scalar spherical harmonics on the unit sphere 

ylm(, -) = lmnL = lmL. (A 7) 

A 4. Multipole expansions and STF tensors 

The spherical harmonics expansion of a scalar function f on the unit-sphere 82, 
f(OJ, 0i) = Ft, mufm Yl(@ 0), can alternatively be written as (with summation over L) 

00 

f(n) = 1 2fLk, (A29a) 
k =o 

wherefL = ilmiJim inm. The STF tensor coefftcientsfL in (A 9a) are unique and can be directly 
computed as the following integrals over 82 (Thorne 1980): 

flm (0 !! f =df(n) L f(l)L (A 9b) 
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Let us now consider a tensor field of 'integer spin s' on the unit sphere, i.e. a STF-S tensor 
function of n: Ts(n). First each component of P. can be considered as a scalar and expanded 
along the hLS (the validity of such expansions will be discussed in Appendix B): 

00 

Ts(n) = E TSLji', (A 10) 
1=0 

where the coefficients TSL are separately STF with respect to S and L. Then, thanks to the 
'Clebsch-Gordan' reduction (A 5), one can decompose TSL in irreducible pieces YSL RJ/ so that 

00 

T.(n) = YSL ARS i (A 11) 
1 = 0 1-sI < j < I+s 

where Rfi is STF and where YSL is some invariant tensor (made out of 8s and es), which is 
separately STF in S, L and J. The decomposition (A 11) is nothing but an expansion in tensor 
spherical harmonics in STF guise. The usual canonical-basis form of this expansion is obtained 
by decomposing each Rs on the (2j + 1) -dimensional canonical basis of the STF-j tensors: 
{ Jfm; -j < m <j}. It is convenient to introduce some normalization coefficients Csl,j, namely 

Rsl = Csl J Rsl,jm yP (A 12) 
m =-j 

so that (A 11) can be rewritten as 
00 j+S +j 

T.(n) = S,jm yslsjm() (A 13) 
j=0 o=Ij-sl m=-j 

where f ys, im(n)= Cst JL YiJm nL. (A 14) 

We can choose the normalization coefficients so that 

Jdf?(n) E fsl Im(n) (ys' J m (n))* = d'i'djj amm (A 15) 

The ysl m (n) are the generalization for any integer spin s of the 'pure orbital harmonics' 
(simultaneous eigenfunctions of L2, J2 and J3) thoroughly studied by Thorne (I980) when 
s < 2 (remark that Thorne denotes (sl', Im) the superscripts that we have denoted (sl,jm) in 
accordance with the customary 'quantum' usage: J = L + S). 

Let us write the explicit form of the STF-tensor spherical harmonics expansion (A 11) for 
s-=0, 1,2: 

T(n) = E Ajfj, (A 16) 
J 0 

T7(n) = E hij 

+ E {CiJ-lfJ4-1+?iabDbJ-lfiaJ-1}i (A 17) 
J> 1 

T<ik> (n) =E EJ nikJ 

+ E {F-Jl<in k>J-1 + GbJ-1 6ab(i ik) aJ-1} 

?j HJ J?6b')Jan (A 18) + E AkJ-2 AJ-2 +6ab(i fk) bJ-2 hia-2} A 8 
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The general multipole expansion of a symmetric 2-tensor field is obtained by adding (A 18) 
and times (A 16). When multipole-expanding a space-time tensor field TS(X , t)- T(rn , t) 
the tensor coefficients of the STF expansion (A I 1) become functions of the 0 (3) invariants r and 
t: RJI (r, t). Finally it should be remarked that when dealing with the full 0 (3) group (including 
spatial inversions) it is convenient to attribute an 'intrinsic parity' t = + 1 to each tensor (so 
that ES = n . ( )S T. under x'i = -xi) 4ij being endowed with a positive intrinsic parity, but 
6ijk with a negative one. Then, if the left-hand sides of (A 16)-(A 18) have t = + 1, the 
multipole tensor coefficients A, B, C, E, F, H, will have t = + 1 but D, G and I will have 

= =-1 (for instance, the mass multipole moments ML have t = + 1 but the spin multipole 
moments SL have zT = -1). 

A 5. A compendium of useful formulae 

Let us gather here, without proofs, some formulae which are of frequent use when dealing 
with STF multipole expansions. Some of these formulae are taken from (or are equivalent to 
results of) Thorne (i 980), others come from Blanchet (i 984). Other formulae are contained 
in Thorne (I980) which is a basic reference for STF multipole expansions (the latter work uses 
a notation for multi-indices different from ours: I,, instead of L, for i ...il). In the first formulae 
we introduce the special notation (convenient in practical calculations) A,i. ill for the 
(un-normalized) sum oEfSAi, (1) f(1) where S is the smallest set of permutations of (1... 1), 
which makes A{i,. il fully symmetrical in i1 ... i1; for instance 8{ab nc} = 3abnc + 3bc na + ca nb. 

8(i i2" n2kl2k t2k+1tl) -l!(2k- 1)!! 
- 2k 

112" *. 82k-l'2k n2k+ (A 19) 

[1/2] (21- 2k -1) ! 
E k=O (21-1) f i ... 

2k-1 2kn.2k+1 l} 
(A 20a) 

kd=o (21 1)!! t2klt2k t2k+l il}( 

A [1/2] (1 k -1 

DL = E ((2k12a'+tl2k+ .. ilA ; (A 21 b) 

1(2 = q (2p?4-k+ 1)!!,. } 

PQ AP BQ E k ! (p-k) ! (q-k) ! (2p?+2q-2k?+1) ! If7RS AKR BKS' (A 22 b) 

(where r = p-k, s = q-k); 

nL E 11 (A 23) 

[1/2]L (2 +1 )ni-( 21 + 1 ) Ai ( 4 

AL n1 =AL L L L ll !!P n) A15 

A~~~~( 5 
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where Pl(x) is the usual Legendre polynomial of order 1 (for a generalization of this formula 
to the Gegenbauer polynomials see Lucquiaud I984a, b); 

F(n.nI) = 1 (2 1? -)' dzF(z) P,(z) (A 26) 
1=0 " - 

is the expansion of an arbitrary function of x = n. n' in a series of Legendre polynomials; 

Id?nL = ? if I1; (A 27) 

jd?Qnin..n. '2p+l 
= 0; (A 28 a) 

47!; 
dQni, ... n'2p 

= +)!!l i2** t8'2p_1 2p); (A 28b) 

Ap BQ IdnpQ = 4pq (2p+ Ap Bp; (A 29a) 

4 Q Q?pq, 4i 4q! Ai 
APBQnjdQfiPQ=8P,q+1(2p+l A)!! B (2+1) !! B ; (A 29b) 

A 

aLf(r) = nLrl(r-' /ar)lf(r) = nL(2r)l (a/a(r2))lf(r); (A 30) 

A 
- ____ (-2)(21-k-1)! 

(-2)l k= (k- 1)! (1-k)! rk-(a/r)kf(r); (A 31) 

A 

aLr = A (A -2)-..(A -21+ 2) nL rA 1, (VA C ). (A 32) 

Two particular cases of (A 32) are 

aLr2X=0 if j=O,1, 2, ...,-1 (A33) 

aL r= aLr = () (21- 1)!! (A. 34) 

( rG) )( o7 (l?)j)!(F( ! t-r , (62 =1); (A35a) 

aL ( ) = ( L ) vualvl (F(u)) (A 35b) 

Lf r) = nL(v-u) aul, Fv (v-) 
I (A 35c) 

(where u = t-r, v = t+r); 

L {r}= O if i=O,1, ... ,2; (A 36) 

A(TViL) = (A-I) (A+i 1)W - 2,L_ (A 37) 
35 Vol. 320. A 



420 L. BLANCHET AND T. DAMOUR 

APPENDIX B. POINTWISE CONVERGENCE OF MULTIPOLE EXPANSIONS 

Most text-books of mathematical physics discuss only the convergence in the quadratic mean 
of multipole expansions. An exception is the work of Courant & Hilbert (I953, volume I, 
p. 513), which discusses the pointwise convergence of the usual scalar spherical harmonics 
expansion, although by means of quite indirect arguments. In the MPM approach to gravitational 
radiation theory one needs to perform many nonlinear pointwise operations on tensor spherical 
harmonics expansions, it is therefore useful to have a good direct control of the pointwise 
convergence of tensor spherical harmonics expansions. 

It has been pointed out to one of us in a personal communication by B. Simon (i984) that 
a useful identity to control the pointwise convergence of scalar spherical harmonics expansions 
is +1 21? 1 ( 1S ~~~~~~~~E I YlM(el (P)12= 411 (B 1) 

M =-l 

We shall first generalize the identity (B 1) to the tensorial case. We have introduced in 
Appendix A an orthonormal set of STF-S tensor spherical harmonics: { Yi8l."(n);j ) 0, 
-j < m < j, j-sl -< 1/ j+s}. It is easily seen from the definition (A 14) (where y!L is a 
location-independent invariant tensor) that under a proper (active) rotation R the (2j + 1) 
tensor fields {fsl 'm(n); -j K m K j} transform as 

R(fYSt"m) (n) = Csl JyALR(Y&m) (B2) 

(the rotation R = (Ri1) acts both on the spin indices S and the field point n, hence the transform 
of a tensor field is R(T7, . ) (n) = Ri a .. Ria Ta a (R-1(n)), where R-1(n)i = Raina). By 
definition, the canonical basis {f PT; -j < m Aj} of the (2j+ ?1)-dimensional set of STF-j 

(location-independent) tensors generates a unitary representation (of weight j) of SO(3); i.e. 
there is a unitary matrix DUm m(R) such that 

R(Y3jm)- Dm D(m,(R) yJ (B 3) 
M/ =-3 

Hence the (2j+ 1) tensor fields Ys1jim(n) (-j m?j) transform under the same unitary 
transformation: 

R(YSlI m) (n) = E Dm )m/(R) ysl m (n)- (B 4) 
M/ =-j 

Now (B 4) and the unitary character of the matrix D(j) imply that the scalar field 

+1 
fSzzy(n)-E E iyS m(nt) 12 (B 5) 

s m=-j 

is invariant under a rotation (R(f) (n) =f(R-1n) =f(n)). Thereforefslj(n) is constant on S2 
and the value of the constant is easily obtained from the orthonormality relations (A 15). This 
leads to the following generalization of (B 1): 

.IE . E 1.Yt. j?s (n) 12 = i4z_(B 6) 
z1 , ts I mS--j 
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Let us consider a STF-S tensor field on the unit-sphere (n2 = 1), say TS(n), and its associated 
(formal) expansion in tensor-spherical harmonics: 

00 j+s 

where 

JY.lJ (.n): = E Asl, Im YS hg (n) (B 8) 
m-=-j 

with 
AslJ'm:= dQ?(n) (fsl im(n)) * Ts(n). (B 9) 

s S2 

At this point we assume only that Ts;(n) is regular enough (e.g. continuous) for the integrals 
(B 9) to exist. Then because of Bessel's inequality (valid for any orthonormal system, see 
Courant & Hilbert 1953, p. 51) we already know that the series 1j I IAs JMj2 converges. This 
result is, however, too weak to ensure the pointwise convergence of the series (B 7). 

LEMMA B 1. If Ts (n) is a twice continuously differentiable STF-S Cartesian tensor field on the 
unit-sphere S2(n2 = 1), then there exists a numerical sequence c1 tending to zero whenj o->- , such that each 
'harmonic' piece of the tensor spherical harmonic expansion (B 7) of Ts admits thefollowing uniform bound 
on S2 (for anyj > 1 and I with Ij-s - sl j+s): 

I MHs' j (n) 122 
3 

.j (B 10) 

Proof. The infinitesimal generator of rotations acting on the tensor field TS(n) is a first-order 
differential operator J = L + S (where L = - ir x a acts tangentially to S2 and S is a matrix 
acting on the spin indices). Hence (J)2 is a second-order differential operator on S2, so that 
by hypothesis the (STF) tensor field Ts:(n) := (J)2 TS(n) is continuous on S2. We can then 
consider the multipole expansion of TS(n). As (J)2 is self-adjoint, the expansion coefficients 
Asl,jm of TS(n) (equation (B 9)) will be equal to YsfdQ((J)2 ysl jm)* Ts. As ys' im(n) 
generates an irreducible representation of the rotation group of weight j (equation (B 4)), it 
is an eigenfunction of (J)2 with eigenvalue j(j + 1). Therefore 

Asl, jm j(j+ 1) Asl Xm (B 11) 

Now by Schwarz inequality (with respect to Zm) followed by a summation over S, we deduce 
from (B 8) that / 

H-s, ?(n) IIA1 , ( IJ( s m (n)2) (B 12) 
S m=-j S m =-' 

Using now (B 6) and (B 11) we get (j > 1), 

EH-s, j In lJS1mI2) (2j+ 1)/(4irj2(j+ 1)2). (B 13) 

Because of Bessel's inequality (applied to TS) the series m lAst imj2 converges, thus 
: t%1 1J [jslimjm2 tends to zero whenj tends to infinity. Hence (B 13) implies (B 10). 

Note that if Ts(n) is C2u(S2) a similar reasoning (using (J)2n) leads to a faster uniform 
decrease of the 'harmonic pieces' (, ej/j2(4n-1)). Let us now use the bound (B 10) to prove 
that the tensor spherical harmonics series (B 7) converges pointwise to T_(n). 

35-2 



422 L. BLANCHET AND T. DAMOUR 

THEOREM B 1. Any twice continuously differentiable STF-S Cartesian tensorfield on the unit sphere, Ts (n), 
can be pointwise expanded in a tensor spherical harmonics series (namely (B 7)) which is uniformly convergent 
on the unit sphere. 

Proof. As the right-hand side of (B 10) is a convergent numerical series, we first conclude 
that the series (B 7) must converge pointwise to some tensor field, say Ts(n). Moreover, as 
each 'harmonic piece' H's I (n) is continuous on S2, and as the convergence to r,(n) is uniform 
on S2 (because the bound (B 10) is uniform) we deduce from standard theorems on uniform 
convergence that the limit field T,(n) is continuous on S2. Therefore, if we show (denoting 
I 2 Us1I2= f dQX ISUs(n) 12) that I Ts-TsIL2 = 0, 11 US II L 

22 =0 ~~~~~~~~~~~~~~(B 14) 
the continuity of T. (n) and T. (n) will imply that Vn, T. (n) = Ts (n) and the theorem will be 
proved. Now, (B 14) will be true if we only prove that 

k j+s 2 
limit Ts-E E Hsl = 0 (B 15) 
k - oo = OI =0 l=j-sI L 

(indeed, as we have shown that (B 7) is uniformly convergent we can go to the limit inside the 
integral in (B 15)). By well-known reasonings (see Courant & Hilbert 1953, P. 51), equation 
(B 15) is equivalent to saying that the set of tensor spherical harmonics is (L2) 'complete', i.e. 
that any continuous STF tensor field on S2 can be approximated in the quadratic mean, with 
any prescribed accuracy, by some finite linear combination of the Ys VS. Finally this 
completeness follows from Weierstrass's approximation theorem, which implies that the 
continuous field r. Ts(n) can be uniformly approximated in the cube -2 < xi < 2 by 
polynomials in xi (i = 1, 2, 3) and therefore that TS(n) can be uniformly approximated on S2 
by polynomials in ni that, by (A 21 a) and the reduction (A 10)-(A 11), can be written as some 
finite linear combination of the Y"s .jmm 

APPENDIX C. STATIONARY MPM METRICS 

It is known that stationary asymptotically flat space-times are analytic in a neighbourhood 
of spatial infinity (Beig & Simon I98I; Beig I98I) and thus that there exists a 'good' class 
of coordinate systems in which the metric coefficients admit expansions when r-o 00 in 
powers of 1/r (without lg r). These expansions are uniquely determined in the conformal space 
by the Geroch-Hansen multipole moments (Geroch 1970; Hansen I974) or, in the physical 
space, by the Thorne (I980) multipole moments or the Simon-Beig (I983) ones (see Gursel 
I983; Simon & Beig I983 for equivalence between these various moments). We wish here to 
recover, and to construct explicitly, these expansions within the framework of MPM metrics, using 
harmonic coordinates in physical space and the Thorne moments. This will prove that 
harmonic coordinates belong to the 'good' class of coordinates. More details about what follows 
are contained in Blanchet (I984). 

C 1. Construction 

We recursively assume that some 'particular' hIp#artm [SM, S W], for m < n, are constructed 
which admit a finite expansion in powers of 1/r of the type 

nQ 
hprtm [sM, S1] = r FQk k (C 1) 

q, k 
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where FQk is a contracted product of 0 or 1 Levi-Civita tensor, p Kronecker tensors and 
m stationary STF tensors chosen among the SM = {ML, SL} or sW= {WL, XL, YL, ZL} 

which generate hpartl [sMW SW] ((4.7) with (2.32) and (2.33)). Replacing the hpartms into 

N, (hm; m < n) leads to a finite sum 
1jQ 

Nartn [SM, SW] = GQk k+2 (C2) 
q,k r 

where GQk has the same structure as FQk. If nL1 1i is the total number of indices on the n tensors 
ML1, ZL. n composing GQk and if a, b and d are respectively the numbers of Wps, XQS and 
ZRS among the nML, ..., ZL , then (by a dimensional argument): 

n 
k = n+ E I,+a+2b+d. (C 3) 

In the following we will need the inequality 

n 
1,-q+s > O (C 4) 

i=l 

relating En1i and q with the number s of spatial indices on Njp rtn (s = 0, 1, 2 according to 

a,# = 00, i, ij). This inequality can be proven by an argument of 'addition of angular 
momenta' (Thorne, personal communication I984) or equivalently by equating the number 
of free (i.e. non-contracted) spatial indices on both sides of (C 2). 

Using the function B- A-1(4Q rB+a) (analytic in C' = C-Z) of (3.9) we define 

hpart n [sM~ s W]:=5 GQk FP A- (Q rBk2 (C 5) 
q, k B=O 

Then hk2rt solves Einstein's stationary equations. Indeed, first Ah/lrt n = NM rt is checked to 
be true (adapting the proof of (3.15)); second, h,h# is a sum of terms 

GQ Residue GQk *RSde (B-k- I-q) (B-k +q)} 

(similarly to (4.10)) which are zero unless q =k. But, by (C 3) and (C 4) (with s =0 or 1), 
we have: q = k =n <s 1. Therefore: @,1p'l =0O, as was to be proven. 

However, it is necessary to prove that each function 

BA1 (QrB-k-2) = nQ r -)-krl ~(B-k- q) (B-k+1I+q) 

in (C 5) is well defined for B = 0 (no pole at B = 0); because if it is not, taking the finite part 
will produce a lg r and our recursive assumption (C 1) will fail at order n. A pole arises when 
q = k- 1, which implies, thanks to (C 3) and (C 4), 

n 
n = q- lI+ 1-a-2b-d < s+ 1-a-2b-d, (C 6) 

i=1 

so that necessarily n < 3 (Thorne, personal communication i 984; correcting section X (ii) of 
Thorne i980). In the quadratic case n = 2 we easily see, thanks to the structure of NPart2 
( ap r-1laQ r-1) that B-- A-1 (rB Npart 2) has no pole in B = 0. In the cubic case n = 3, the 
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'critical' terms in Npart3,)which generate a pole, are such that s = 2, a = b = d = 0 (see (C 6)) 
and q = 11+12+13+ 2. We find 

(-part3)critical 1E r12+13+ {AML ML2 ML3 + BML SL2 SL3 
11, 12,13r 

+ CYLl YL2 YL3 + DML1 YL2 YL3 +EML ML2 YL3+ FSLI SL3 YL3} (C 7) 

(note the even number of current multipoles SL), where J, A, 6, D, E and P are constant 
coefficients that we shall prove to be all zero; A = = C = D = F = F = 0. 

(i) Proof that MMMA13 - 0 (hence A = 0). Two remarkable facts allow us to prove that 

MMMN3 (the part of MA which is composed by three interacting mass multipoles ML) is 
identically zero (not only the 'critical' part is zero). First, mmhOO and Es MMhii = aij MMhV (the 

ML1 X ML2 parts of hpart2 = A-1(rB Npart 2)IB =0) satisfy (Mh?0 being the part of hk?arti composed 
with ML) 

AMMhO-0 = MM 2 =-8akMhlaOkMhl, (C 8a) 

A hii M hlmOa hO1 (C 8b) 
i 

In (C 8) and in the following we use for computations of the 'sources' N2 and N3 the Appendix 
A of Bel et al. (I98I). From ak h, ak hA = 'A (h ) and the structure of h1 (' L F) we can prove 

A 1(rBok/hlak hl)IB0 2kh, (C 9) 

which gives 
MMh2 --7 (MhOO()2, (C lOa) 

E MMhi2 =- 1 ((Mh0) 2. (C lOb) 
i 

Second MMMN'3j involves only terms with Mhl3v hO0 and X MA2 and does not depend on terms M 1 'MM 2 an2 Mnt O 

MM'h2 : 

MMMN '3 2 (iMlaj) (MM2 + MM2 ) j k m0 k(MM20 + E MMh2m) 
m m 

+ 2 hOO? 6i mhO? ? hOj M^l-lj 16 ? hoo M^? hOk M h? (C 1 1) +2MhlDlMhj 1 4 j 1 kMhl akMh 11' 

(by using Mhli = Mhli = 0). Now, replacing in (C 11) MMhO2 + EMMh2mm by -2(Mh0l0)2 
(equations (C 10)) leads to MMM73= 0 (in particular A = 0). Note that, since the mass 
multipoles ML are arbitrary, any static metric will have the latter property (in harmonic 
coordinates). For instance, this is true for the Schwarzschild metric for which we have hi/ = 0 
for n ) 3. 

(ii) Proof that BO0. In order to reach the critical MSSN , we must control the terms in 

ssh?0 + Es sshii and Msh2i which have 'maximum multipolarity' (i.e. terms -L with I = 11+12 
for interactions ML1 X SL or SLi X SL2). We replace Mhl0 = 4-Z > (- )l/l! (aL r-1) ML and 
h i ()l/(l+1)6iab (=4Ll r 1) SbL-1 into 

SSN0 +I SSN=i2-)k Sh/iOam mshok (C 12 a) 
i 

MS'~ = akhl (6IShi 
ok 

sl (C 12 b) 
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we keep only the terms iL1L2 and apply the operator A-1(rB...)-B=0. This leads to 

hO +~ E = shii -321112(21 - 1)!! (212 -1)!1! f1L1 L2 . C.13 (C SsS?,^ 2 2; 2(11 + l)! ()2+1)! rll+12+2SL1SL2? 13a) 

hOi E812 (211 + 1 )!t! (212 + 1 ) C iai5 

M 1D12 1l!(12+1)!(1l+12+1) rll+12?2 

X(2l11 1bL1i L2MaLi1l SL2 +211 faL, L2-1ML1 SbL2-1) + .. (C 13 b) 

(Note that ssh?? and 2i sshii, unlike MSh0i, could be computed exactly by the same method as 
the one employed for (C 10)). Now the only pieces in MSSA13 which will contribute to 'critical' 
terms are those of the type Di hI Dj h2 or h1 at h, Dj h1, i.e. 

MSSNf3? = 1 a 
ha? 8j) (SshOO + sshii)-2 (sh?kE /hok 2J (i2 j(S1 0j)MS 2 

-MhklatS hk / hok _ hok a hok aj) Mhi? + (C 14) m 1 s1js 1 Si1 (iS j) (C14 

Plugging (C 13) into (C 14), we readily find (MSSN3U)criticai = 0, hence B = 0. 
(iii) Proof that 6= 13 = D = F = 0. We have just shown that the 'canonical' stationary 

metric (that is, the 'particular' metric with WL = XL = YL = ZL = 0) satisfies (C 1) (no lgr). 
Now we extend this result to the particular metric by showing that Npart3 - Ncan3 is a sum 
of 'non-critical' terms. To do that we perform upon the canonical metric the non-harmonic 
coordinate transformation x't = xO + GwO [s W] (where wO [s W] is the vector of (2.33)). Then 
hcani [SM] is transformed into hparti [sM, SW] (by (4-7)), and hcan2 [sM] and hcan3 [sM] are 
transformed into 

h4 [sM, sW] = hcan2 [sM] +k2 [kM, 5W], (C 15a) 

h3 [sMA sW] = hcan 3 [sM] +k3 [sk 5W], (C 15 b) 

where k2 and k3 are sums of terms of the following type: 

k2 [sM sW] - hcan 1 Dw + w Dhcan 1 + Dw Dw, (C 16a) 

k3 [SM, S W ] - hean 2 OW + w ahcan 2 + heani a ?Uw w + ww ? ahcan i + aw aww. (C 16 b) 

We have included in k2 and k3 the necessary terms such that (C 15) are functional equalities, 
that is that both sides of (C 15) are computed at the same values of the coordinates. The 
divergences of h1 and h1 are 

hlh,ja [5M, sW] = 0) (C 17 a) 

aflh3fL [sM, SW] = hcan 2 [SM] a1jWO [SW], (C 17b) 

where we have used hiicani [SM] = 0. Writing Einstein's (harmonic) equations for hVj- then 
shows (via (C 15a)) that 

N21(lhparti [sM, SW]) = NL2'f(hcani [SM]) +Akel [SM, SW], (C 18) 
and thus 

rt2 [sM, sW] = hL2 [sM]+A1 (rBA2 [sM, SW]) IB = o. (C 19) 
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Now, thanks to the structure (C 16a) of k2 (- apr-I Qr-), we find (similarly to (C 9)) 
-1 (rB AkMO)IB = =k, and therefore h'2 [sM, sW] = hpart 2 [sM, s Wl Consider h3 [SM, sW]: 

it satisfies Einstein's non-harmonic equations (see (4.2)-(4.4)) with 'source' Npart3 (since 
h'i=hparti and h'2 = part 2). Thus we have the looked-for relation (using (C 15 b) and (C 17 b)): 

Npart 3 -Nan3 - -a (hi 2aP 1 W-(han2 a) 2 k) + Ae3)f. (C 20) 

It is a simple matter to verify that the four terms in the right-hand side of (C 20) are 
'non-critical'. Indeed critical terms should come from YW0 = 0 or yWk = E l (aL-1 r-1) YkL- 

(remember a = b = d = 0) so the first three terms cannot contribute to terms of the type 
nijL, L2 L3, and the last term, being a 'Laplacian', is inverted without lg r. (However note that 
a priori A-l(rBAk3)IB0o : k3). Hence C= D = E= F= 0. U 

C 2. Study of the quantity SwO 

Assuming for swm(m < n) a structure similar to shpartmi1 (equation (C 1)), we have to solve 
(using (C 1)): Q 

A (C 21) AS n = Qk rk+2'(21 
q, k 

with k = n -1+ ,,1 + a + 2b + d (notations of (C 3): a is for instance the total number of 
functions Wp and W'Q). Then we apply the operator A-1 (rB...) to the right-hand side of (C 21) 
and find that poles at B = 0 arise for q = k- 1 which implies, similarly to (C 6), 
n < s+2-a-2b-d < 3 (since s = 0, 1 according to c = 0, i). The case n = 2 is readily 
treated using the structure -p r-1 F r-1 of the 'source'; the case n = 3 is treated by noticing 
that the 'spin' index i of eventual critical terms in swi will be carried by one function YL 
(because of a = b = d = 0 and thanks to the form of the sources Aw2 h___wa (4.27)): 
therefore critical terms of the type nAiLl L2 L3 cannot appear and we have, for all n > 1, 

nQ 
Sn = FQ (C 22) 

q, k 

(with k ?1). U 

APPENDIX D. MULTIPOLAR EXPANSION OF THE GREEN FUNCTION GR 

The aim of this appendix is to recover by a direct butformal calculation the result of theorem 
6.1 (i.e. equation (6.5) with (6.4)) using a multipolar expansion of the retarded Green function 
(with c = 1) GR(X'-X) = 8(t'-t-Ix'-xI)/Ix'-xI (D 1) 

(such that DGR(x'-x) =-4ir4(x'-x)) . G. is a function of r = IxI, r' = Ix'l, t'-t and 
n n= x x'/ (rr'); it can be expanded in a series of Legendre polynomials of n n' (Campbell 
et al. 1977). By using (A 26) this series can be written as 

=Y(t'-t) Y( - I vI) ?'XO (2q + 1)! GR(X -X)= 2rr' q 
! 

nQ q (V), (D 2a) 

where Y is the Heaviside function and 
r'2+r2- (t'-t)2 

V = 2rr' (D 2b) 

The expansion (D 2) of GR is useful when dealing with the retarded integral 
Llij1(S(x, t)) = (- 1/4ir) d3x dtGR(x'-x) S(x, t) where S has a known multipolarity 
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1: S(x, t) = nL S(r, t - r), because we can explicitly perform the integration over the angles. This 
leads to noL 

EI lI(*L S(r, t-r)) = J jdrdt Y(t'-t) Y(1 -lvi) rS(r, t-r) Pl(v) (D 3) 

(with n?L = n'K...i 0l>). It is convenient to introduce advanced and retarded variables both 
for the source point (rn, t) and the field point (r'n', t'): 

u=t-r; u'= t'-r' (D4a) 

v = t+r; v' = t'+r' (D4b) 

In these variables it is apparent that the domain 9 of integration is precisely the (u, v)-projection 
of the past null cone of (x', t'), that is: 9 = {(u, v); u' < v < v' and u < u'}. We find 

:R1(nLS[1v-8), 8])=-4( . ,)JJ dudv(vu) S [I (v -u), u] Pl 120 ?( 

(D 5) 
A long but straightforward calculation shows that the following equality holds: 

P, (1 2_ _____v- (-)' (v' uOt?1al{(u--u)l(atv (D 6) 

A more elegant way to prove (D 6) is to notice that the function (u', v'; u, v)-> 
P1(I -2[(u'-u) (v'-v)/(v'-u') (v-u)]) is the (local) Riemann function of the self-adjoint 
Euler-Poisson-Darboux equation [U 1(1+ 1 ) )/(v'- u') 2]f = 0 (equivalent to (2.10)) (see 
Darboux I889) that is the only solution which takes the value one along the characteristic lines 
u' = u and v' = v. Therefore the right-hand side of (D 6), which is easily checked to satisfy these 
properties, is equal to the left-hand side. Now, we use the operator O' (acting on x') and (A 35 b) 
and find (re-establishing the variables r' and t') 

-1 _J( AL S [1 ( du(v-u $[1(V_ u),u] L(t u) 1(t'r-)] ( 

Equation (D 7) is apparently quite different from (6.4). However, these results can be 
reconciled; indeed plugging (6.7) into (6.4) we obtain 

( j(-rin , 
A Rtf-rA-OJ dx (t'-r'-s)1 (t'-r'-s-2x)1 

=(lln S(r, t-r)) j dS j xl1 r' S(x, s) 

fl(t?+r'-s) dx (t'+r'-s)l (t'+r'-s-2x)t S( s) (D 8) 

1Ai' S(x, s-)j(D8 
We can commute the operator O' with the two integral signs f 2 (for e = + 1) because, 
thanks to the factor (t'-er'-s-2x)1 inside the integrals, all differentiations of the upper 
limits 2(t'-cr'-s) vanish. Then the resulting two integrands: a{{(t'-er'-s)' x 
(t'-er'-s-2x)1/r'}S(x, s) are equal (thanks to (A 36)). We thus obtain 

-t 2I J d +jd A, (to-er'-s) Y (t'-er'-s-2x) 
n 

~21+11! 1-? Jlt_ X-1S(,S aL r J 
(D 9) 

(value independent of e). Equation (D 9) is easily seen to be identical (when e = + 1)t tothe 
right-hand side of (D 7) with u = s and v = s+2x. e 
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APPENDIX E. SOME MATHEMATICAL PROOFS 

E 1. Proof of lemma 3.1 

Lemma 3.1 will be a corollary of the following lemma. 
LEMMA E 1. Let N and K be some non-negative integers andf(x, t) be a function on In* X Ra (where 

X = (X1, X2 ..., X)n)e = IR* -{O}) satisfying 
(1) f(x, t) C CN (fn X R); 
(2) Vto, t1e O R, Vm < N, Ve > O, Id > O such that to t t1 and 0 < IxI=( x)1 < d 

zmply (a1, ..., am = O, 1, ..., n, with xo-t) 

|at f( ,t) .6 |X|K-m. (E 1) 
Then f(x, t) can be extended by continuity to a function on Rfl?, which is CN' (oRn+1) with 
N' = inf(N, K). Moreover, Vm < N', Vt cR, we have: 

oza .*.* amf(O? t) = 0. (E2) 

Proof. Becausef(x, t) is.at least C,o(Oln x OR), we see from (E 1) with m = 0 thatf(x, t), when 
extended to Rnfl+1 byf(O, t) = 0, belongs to Co (Dltn+l). Suppose N > 1 and K > 1. Then (E 1), 
when m = 0, implies thatf(x, t) is differentiable in (0, t) with OJ(O, t) = 0, and, when m = 1, 
that DJ(x, t) is continuous in (0, t). Thus :f(x, t) e Cl (Rn?1) withf(0, t) = OJ(O, t) = 0. By the 
same reasoning we have f(x, t) e CP(ORn+i) with f(0, t) = ... = D,,f(O, t) = 0 for all p less 
than N and K. Hence the result. U 

Now) iff(x, t) satisfies the hypotheses of lemma 3.1, then, by lemma E 1 with n = 3, we have: 
Vqe N,f(q)(x, t) e CN'(OR4). This proves lemma 3.1. 

E 2. Proof of lemma 3.3 

Let us write the retarded integral (3.4) off(x, t) e ON(rN) under the form 

( IO lf) (x', t') =- Idpf dO pd p sin ef(x' + pn, t'-p) (E 3) 

(with x - x'- pn = p (sin e cos P, sin 6? sin P, cos e)). Then, by a standard theorem for 
integrals with compact support, such as (E 3), we have (with primes suppressed) 

Vqe R, (D/at)q (LI|j1f) (X, t) C CN(OR4) (E 4) 

and we can differentiate under the sign ORj1. We apply Taylor's formula with integral 
remainder to (D-1f) (x, t) between the points (x, t) and (0, t), up to order N: 

N-iX1. 
il.(t)N 

- NI- X N1 ai. XN _11f cxt E5 
E-lf_ , ... Xi, Fi i(t) = xilxN dcx (-1 f ((xxl t)NO (E)( 

l=0 N ! 

with t a 
Fwt J i1(t) =EQila. l f) (, t). (E 6) 

From (E 4) we check that Fi, .j(t) is zero for t -T and CO(OR). Hence, applying (a/at)q to 
the left-hand side of (E 5) leads to a function which is zero for t < - T and CN (R4)). Therefore 
the right-hand side of (E 5) satisfies the defining properties (a) and (b) of the ON(rN) class 
(definition 3.1). Requirement (c) follows from the continuity of (aN/axil[.RXiN) (D/Dt)q Djjf, 
which provides for this right-hand side the desired bound Mlxill.. Axlf < MrN. U 
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