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The cross-identification problem

Consider two catalogs of astrophysical sources

K = {M1, . . ., Mn} and K′ = {M′1, . . ., M′n′ }

defined on a common surface of area S.
How can one decide, just from the positions c1, . . ., cn and c′1, . . ., c′n′ of K- and

K′-sources and from their uncertainties, whether
I Mi is identical to (“is associated with”) M′j , (event Ai, j)

or
I Mi has no counterpart in K′? (event Ai, 0)



Probability distribution of the position of a source

Assume the observed positions of Mi and M′j , ~ri and ~r ′j , are normally distributed

around their true positions, ~r 0
i and ~r ′0j :

~ri ∼ N(~r 0
i , Γi) and ~r ′j ∼ N(~r ′0j , Γ′j ).

If Mi and M′j are the same point source, their true positions are identical. Then,

~ri, j = ~r ′j − ~ri ∼ N(0, Γi, j),

where Γi, j = Γi + Γ′j , and Γi and Γ′j are given in the same basis (warning: near the
poles, the North of Mi differs from that of M′j ), i.e.

P(ci | c′j ∩ Ai, j) =
exp(− 1

2 ~r
t

i, j · Γ
−1
i, j ·

~ri, j)

2π
√

det Γi, j
= ξi, j.

(For extended sources, one may add to Γi, j a term depending on unknown
parameters to account for the possible difference between the true positions.)

If Mi has no counterpart, it is randomly distributed in S:

P(ci | Ai, 0) =
1
S

= ξi, 0.



Naïve “answer”

If Γi = σ2 for all K-sources and Γ′j = σ′2 for all K′-sources,

1. define R = some factor ×
√

σ2 + σ′2 ;

2. if there is a source M′j in the disk of radius R centered on Mi, M′j is the
counterpart of Mi;

3. if not, Mi has no counterpart.

Weaknesses

I The factor is somewhat arbitrary.
I There may be more than one K′-source in the disk around Mi: which one is the

counterpart?
I The higher the density of K′-sources, the more likely that an unrelated one will

be close to Mi.
I If positional uncertainties are elliptical, there are different ellipses for each

(Mi, M′j ): M′j may be considered as a counterpart for the ellipse defined by
(Mi, M′j ), but not for that defined by (Mi, M′k).

I Positional uncertainties are not always known.



A probabilistic answer

What is really wanted is the probability that Mi is associated with M′j (j > 0), or
that Mi has no counterpart in K′ (j = 0), given the positions of all sources and the
uncertainties on these, i.e.

P(Ai, j | C ∩ C′),

where C = c1 ∩ . . . ∩ cn and C′ = c′1 ∩ . . . ∩ c′n′ .

Unknown parameters
This probability depends on at least one unknown: the a priori probability (not

knowing C and C′) that any K-source has a counterpart in K′,

f = P
(⋃

j>0

Ai, j
)

= 1 − P(Ai, 0).

(We will also use the a priori probability that any K′-source has a counterpart in K,

f ′ = P
(⋃

i>0

Ai, j
)

= 1 − P(A0, j).)

P(Ai, j | C ∩ C′) may also depend on other unknowns, such as the positional
uncertainty in one catalog, or the combined uncertainty of both.



Possible assumptions on associations

To compute the probabilities, some model of association must be assumed:

Several-to-one: several K-sources may be associated with the same K′-source, but at
most one K′-source is associated to a given K source. More precisely, for all Mi, the events (Ai, j)j∈~1, n′� are exclusive;

for all M′j , the events (Ai, j)i∈~1, n� are independent.
(Hs:o)

Reasonable if the angular resolution is much poorer in K′ than in K.

One-to-several: symmetric of several-to-one (K and K′ swapped). (Ho:s)
Appropriate for extended sources looking single at the wavelength of K but
breaking up at that of K′.

One-to-one: any K-source has at most one counterpart in K′ and reciprocally, i.e.

all the events (Ai, j)i∈~1, n�, j∈~1, n′� are exclusive. (Ho:o)

One has then f n = f ′n′. Natural assumption for point sources if the angular
resolution is high in both K and K′.

Several-to-several: not considered.

In Hs:o and Ho:s, catalogs do not play symmetrical roles. Assumption Ho:o is
therefore more neutral, but calculations with Hs:o are much simpler and will serve as
a guide; they also provide initial values for one-to-one computations.



Three related problems

I Calculate, for each assumption, the probability of association P(Ai, j | C ∩ C′) that
Mi is the same as M′j (j > 0) or that Mi has no counterpart (j = 0), given the
coordinates of all sources and the unknown parameters.

I Estimate unknown parameters from the data, in particular the a priori
probability f that any K-source has some counterpart.

I Select the most likely assumption, i.e. the most appropriate association model,
given the data.



Computation of Ps:o(Ai, j | C ∩ C′)

P(Ai, j | C ∩ C′) =
P(Ai, j ∩ C | C′)

P(C | C′)
.

Computation of the denominator
Mi may be associated to M′j which may be associated to Mk which may be

associated to M′` which may be associated to Mi. . .⇒ One needs to consider all
possible combinations of all the events Ak, jk and order them.

Event
n⋂

k=1

n′⋃
jk=0

Ak, jk =

n′⋃
j1=0

n′⋃
j2=0

· · ·

n′⋃
jn=0

n⋂
k=1

Ak, jk

is certain, so

Ps:o(C | C′) = Ps:o
(
C ∩

n⋂
k=1

n′⋃
jk=0

Ak, jk | C
′
)

=

n′∑
j1=0

n′∑
j2=0

· · ·

n′∑
jn=0

Ps:o
(
C ∩

n⋂
k=1

Ak, jk

∣∣∣∣ C′
)

=

n′∑
j1=0

n′∑
j2=0

· · ·

n′∑
jn=0

Ps:o
(
C

∣∣∣∣ n⋂
k=1

Ak, jk ∩ C′
)
Ps:o

( n⋂
k=1

Ak, jk

∣∣∣∣ C′
)
.



One has

Ps:o
(
C

∣∣∣∣ n⋂
k=1

Ak, jk ∩ C′
)

= cst. ×
n∏

k=1

ξk, jk

and

Ps:o
( n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

= Ps:o
( n⋂

k=1

Ak, jk

)
=

(
f
n′

)q

(1 − f )n−q,

where q is the number of K-sources with a counterpart.
Finally,

Ps:o(C | C′) = cst. ×
n′∑

j1=0

n′∑
j2=0

· · ·

n′∑
jn=0

n∏
k=1

ζk, jk ,

where

ζk, 0 B (1 − f )ξk, 0 and ζk, jk B
fξk, jk

n′
if jk > 0.

Computation of the numerator
Similarly,

Ps:o(Ai, j ∩ C | C′) = cst. × ζi, j

n′∑
j1=0

· · ·

n′∑
ji−1=0

n′∑
ji+1=0

· · ·

n′∑
jn=0

n∏
k=1
k,i

ζk, jk .



Ratio
Ps:o(C | C′) and Ps:o(Ai, j ∩ C | C′) may be factorized:

n′∑
j1=0

n′∑
j2=0

· · ·

n′∑
jn=0

n∏
k=1

ζk, jk =

n∏
k=1

n′∑
jk=0

ζk, jk ,

so

Ps:o(Ai, j | C ∩ C′) =

ζi, j
∏n

k=1
k,i

∑n′
jk=0 ζk, jk∏n

k=1
∑n′

jk=0 ζk, jk

=
ζi, j∑n′

k=0 ζi, k

=


fξi, j

(1 − f )n′ξi, 0 + f
∑n′

k=1 ξi, k
if j > 0,

(1 − f )n′ξi, 0

(1 − f )n′ξi, 0 + f
∑n′

k=1 ξi, k
if j = 0.

The sums on k may be restricted to sources M′k close to Mi.



Likelihood and estimation of unknown parameters under Hs:o

Maximize the likelihood
L = cst. × P(C ∩ C′)

to observe all sources at their effective positions. Maximum likelihood estimates x̂, ŷ,
etc., of the unknown parameters x, y, etc., are thus obtained by solving(

∂L
∂x

)
(x, y, ...)=(x̂, ŷ, ...)

= 0.

Under the several-to-one assumption,

Ls:o = cst. ×
n∏

i=1

n′∑
k=0

ζi, k,

from which one derives that

∂ ln Ls:o

∂f
=

n(1 − f ) −
∑n

i=1 Ps:o(Ai, 0 | C ∩ C′)
f (1 − f )

,

so

f̂s:o = 1 −
1
n

n∑
i=1

P̂s:o(Ai, 0 | C ∩ C′), where P̂s:o = (Ps:o)f=f̂s:o
.

As f̂s:o appears on both sides, we calculate it by a back and forth iteration between the
l.h.s. and the r.h.s., starting from some arbitrary f ∈ [0, 1] (this converges very fast).



Theoretical computation of Po:o(Ai, j | C ∩ C′)

A K′-source associated to a K-source may not be associated to another one, so

Po:o(C | C′) = cst. ×
n′∑

j1=0
j1<X0

n′∑
j2=0

j2<X1

· · ·

n′∑
jn=0

jn<Xn−1

n∏
k=1

ηk, jk ,

where
X0 B ∅, Xk B (Xk−1 ∪ {jk}) \ {0},

ηk, 0 B (1 − f )ξk, 0 and ηk, jk B
fξk, jk

n′ − #Xk−1
if jk > 0.

(At depth k in the recursive sum, Xk−1 is the set of excluded K′-sources: it contains
the counterparts associated with M1, . . ., Mk−1, which may therefore not be
associated with Mk, . . ., Mn.)

Po:o(Ai, j | C ∩ C′) is computed similarly and

Po:o(Ai, j | C ∩ C′) =

ζi, j
∑n′

j1=0
j1<X∗0

· · ·
∑n′

ji−1=0
ji−1<X∗i−2

∑n′
ji+1=0
ji+1<X∗i

· · ·
∑n′

jn=0
jn<X∗n−1

∏n
k=1
k,i

η∗k, jk∑n′
j1=0
j1<X0

∑n′
j2=0
j2<X1

· · ·
∑n′

jn=0
jn<Xn−1

∏n
k=1 ηk, jk

(the asterisk means that j is also excluded if j > 0).



Likelihood and estimation of unknown parameters under Ho:o

The recursive sums may not be factorized, so the ratio may not be simplified,
contrary to the several-to-one case. Because of the combinatorial explosion of the
number of terms, Po:o(Ai, j | C ∩ C′) and Lo:o seem impossible to evaluate.

Assume nonetheless that one can compute Po:o(Ai, j | C ∩ C′). Then, one can
show that one still has

∂ ln Lo:o

∂f
=

n(1 − f ) −
∑n

i=1 Po:o(Ai, 0 | C ∩ C′)
f (1 − f )

,

which gives f̂o:o by the back and forth iteration described earlier.

Since Lo:o(f = 0) (i.e., when all sources are randomly distributed) is known, Lo:o
may also be obtained for any f by integrating ∂ ln Lo:o/∂f .

One can also compute Lo:o like this:

Lo:o = cst. ×
n∏

i=1

(1 − f )ξi, 0

Po:o(Ai, 0 | C ∩ C′ ∩
⋂i−1

k=1 Ak, 0)
.



Practical computation of Po:o(Ai, j | C ∩ C′)

A partially true idea:

Po:o(Ai, j | C ∩ C′) depends only on the neighbors of Mi and M′j .

One may indeed expect that, although the numerator Po:o(Ai, j ∩ C | C′) and the
denominator Po:o(C | C′) depend on distant sources, the effect of these cancels in their
ratio.

Therefore, order K-sources by increasing distance to Mi and consider the ratio of
the recursive sums in the numerator and denominator up to some depth `,

p` B

ζi, j
∑n′

j2=0
j2<X̃∗1

· · ·
∑n′

j`=0
j`<X̃∗

`−1

∏`
k=2 η̃

∗

k, jk∑n′
j1=0
j1<X̃0

∑n′
j2=0
j2<X̃1

· · ·
∑n′

j`=0
j`<X̃`−1

∏`
k=1 η̃k, jk

.

(The tilde is for the reordering.)
One has

pn = Po:o(Ai, j | C ∩ C′).

When ` ↗, more distant neighbors are progressively included in p`. The ratio p`
oscillates for small `, then stabilizes for some `0.

It is therefore tempting to conclude that the sequence (p`) has converged and to
set Po:o(Ai, j | C ∩ C′) = p`0 (all the more tempting that, when Mi is the only K-source
considered, p1 = Ps:o(Ai, j | C ∩ C′)).



All-sky simulations with known circular positional uncertainties
Combined positional uncertainty σ̊ =

√

σ2 + σ′2 known ⇒ only f must be
estimated.

Input values: f = 1/2; σ̊ = 10−3 rad; n′ = 105; n ∈ ~103, 105�.

n

f̂

(a)

f̂ = f̂s:o

f̂ = f̂o:o

f̂ = f̂o:s

f̂ = f̂ ∗o:s

n

f̂

(b)

f̂ = f̂s:o

f̂ = f̂o:o

f̂ = f̂o:s

f̂ = f̂ ∗o:s

Figure : Mean value of different estimators f̂ of f as a function of n.
f̂ ∗o:s = f̂ ′o:sn′/n is an estimator derived from f̂ ′o:s, assuming one-to-one associations.
f̂o:s is not a maximum likelihood estimator.

(a) Several-to-one simulations.

(b) One-to-one simulations (f̂s:o and f̂ ∗o:s overlap).



Simulations with unknown circular positional uncertainties

Both f and σ̊ must be estimated.
Input values: f = 1/2; σ̊ = 10−3 rad; n = n′ = 2 × 104.

f

σ̊
/r
a
d

(a)

f

σ̊
/r
a
d

(b)

Figure : Contour lines of Ls:o (solid) and Lo:o (dashed). The input values of f and σ̊ are
indicated by dotted lines.

(a) Several-to-one simulations.

(b) One-to-one simulations.



Comparison of maximum likelihoods

Circular positional uncertainties. Combined positional uncertainty known.
Input values: f = 1/2; σ̊ = 10−3 rad; n′ = 105; n ∈ ~103, 105�.

n

(l
n
L̂
−
ln
L̂
o
:o
)/
(n
+
n
′ )

(a)

L̂ = L̂s:o

L̂ = L̂o:s

n

(l
n
L̂
−l

n
L̂
o
:o
)/
(n
+
n
′ )

(b)

L̂ = L̂s:o

L̂ = L̂o:s

Figure : Normalized mean value of different likelihoods at their maximum as a function of n.

(a) Several-to-one simulations.

(b) One-to-one simulations.



Analysis of simulations

I Several-to-one estimators always provide closer values to f and σ̊ than
one-to-one estimators, even for one-to-one simulations!

I One-to-one estimators are statistically inconsistent: the bias does not tend to 0
when n ↗.
Note however that maximum likelihood estimators may be inconsistent in some
circumstances. Conditions used to prove their consistency are not applicable
here.

I The maximum of the several-to-one likelihood is larger than that of the
one-to-one likelihood, even for one-to-one simulations.

I One also has

f̂s:on > f̂ ′o:sn′ for several-to-one simulations,

≈ for one-to-one simulations,

< for one-to-several simulations.



Practical recommendations

The failure of one-to-one estimators and the fact that L̂o:o < L̂s:o for one-to-one
simulations are embarrassing, but no algorithmic or numerical mistake was found in
the numerous tests we made, both analytically and numerically, manually and with
Mathematica. The same problem occurs on a circle.

For want of a better solution, we therefore recommended the following to
compute P(Ai, j | C ∩ C′):

I if f̂s:on >0 f̂ ′o:sn′, assume Hs:o and use Ps:o with f = f̂s:o;

I if f̂s:on <0 f̂ ′o:sn′, assume Ho:s and use Po:s with f ′ = f̂ ′o:s;

I if f̂s:on ≈ f̂ ′o:sn′, assume Ho:o and use Po:o. As f̂s:o and f̂ ′o:s are, respectively, good
estimators of f and f ′ in the case of one-to-one simulations and as one must then
have f n = f ′n′, take

f =

√
f̂s:o f̂ ∗o:s .

The version on arXiv corresponds to this stage.



Reconsideration

After scrutiny of a simple example (n = n′ = 2), it became clear that distant sources
do matter, but only by their number, not their exact positions: they only lock some
number of counterparts which may not be associated to Mi and its neighbors.

In p`, n′ must be repaced by n′eff
, the number of K′-sources that may effectively be

associated with Mi and its ` − 1 nearest neighbors. One has

n′eff = n′ −
∑

distant Mk

(1 − Po:o[Ak, 0 | C ∩ C′]).

For ` = n, n′eff
= n′ and one recovers the theoretical result for Po:o(Ai, j | C ∩ C′).

As Po:o depends on n′eff
which itself depends on Po:o, both may be computed with

a back and forth iteration, taking Ps:o as the initial value of Po:o.

What happened with the partially true idea that only neighbors matter is that,
after a transient phase where p` oscillated, a steady state was reached. The ratio p`
had however not converged, but was slowly drifting to pn = Po:o(Ai, j | C ∩ C′).



Simulations with known circular positional uncertainties (revised)

σ̊ known. Only f must be estimated.
Input values: f = 1/2; σ̊ = 10−3 rad; n′ = 105; n ∈ ~103, 105�.

n

f̂

(a)

f̂ = f̂s:o

f̂ = f̂o:o

f̂ = f̂o:s

n

f̂

(b)

f̂ = f̂s:o

f̂ = f̂o:o

f̂ = f̂o:s

Figure : Mean value of different estimators f̂ of f as a function of n.

(a) Several-to-one simulations.

(b) One-to-one simulations.



Simulations with unknown circular positional uncertainties (revised)

Both f and σ̊ must be estimated.
Input values: f = 1/2; σ̊ = 10−3 rad; n = n′ = 2 × 104.

f

σ̊
/r
a
d

(a)

f

σ̊
/r
a
d

(b)

Figure : Contour lines of Ls:o (solid) and Lo:o (dashed). The input values of f and σ̊ are
indicated by dotted lines.

(a) Several-to-one simulations.

(b) One-to-one simulations.



Simulations with unknown elliptical positional uncertainties
Both f and σ̊ must be estimated.
Input values: f = 1/2; randomly oriented positional uncertainty ellipses with a

semi-major axis of 1.5 × 10−3 rad and a semi-minor axis of 0.5 × 10−3 rad;
n = n′ = 2 × 104.

f

σ̊
/r
a
d

(a)

f

σ̊
/r
a
d

(b)

Figure : Contour lines of Ls:o (solid) and Lo:o (dashed). The input value of f is indicated by a
dotted line.

(a) Several-to-one simulations.

(b) One-to-one simulations.



Comparison of maximum likelihoods (revised)

Circular positional uncertainties. Combined positional uncertainty known.
Input values: f = 1/2; σ̊ = 10−3 rad; n′ = 105; n ∈ ~103, 105�.

n

(l
n
L̂
−
ln
L̂
o
:o
)/
(n
+
n
′ )

(a)

L̂ = L̂s:o

L̂ = L̂o:o

L̂ = L̂o:s

n

(l
n
L̂
−l

n
L̂
o
:o
)/
(n
+
n
′ )

(b)

L̂ = L̂s:o

L̂ = L̂o:o

L̂ = L̂o:s

Figure : Normalized mean value of different likelihoods at their maximum as a function of n.

(a) Several-to-one simulations.

(b) One-to-one simulations.



Conclusions

I Several-to-one estimators provide unbiased values of f for several-to-one
simulations, but also for one-to-one simulations.

I Revised one-to-one estimators provide unbiased values of f for one-to-one
simulations, but not for several-to-one simulations (not a problem).

I The same holds for σ̊ if it is unknown.

I These estimators are robust: if σ̊ is unknown or if positional uncertainties are
elliptical, the right value of f is still recovered.

I For several-to-one simulations, L̂s:o > L̂o:o > L̂o:s, as expected.

I For one-to-one simulations, L̂o:o > L̂s:o and L̂o:o > L̂o:s, as expected.



The Aspects code
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All these simulations were created and analyzed
with the Fortran 95 code Aspects ([aspε]), an acro-
nym for

Association positionnell
robabiliste de catalogues de sources.

Version 1 available at www2.iap.fr/users/fioc/Aspects/ .
Version 2 in preparation.


