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ABSTRACT

We describe a probabilistic method of cross-identifying astrophysical sources in two catalogs from their positions and positional
uncertainties. The probability that an object is associated with a source from the other catalog, or that it has no counterpart, is derived
under two exclusive assumptions: first, the classical case of several-to-one associations, and then the more realistic but more difficult
problem of one-to-one associations.

In either case, the likelihood of observing the objects in the two catalogs at their effective positions is computed and a maximum
likelihood estimator of the fraction of sources with a counterpart – a quantity needed to compute the probabilities of association – is
built. When the positional uncertainty in one or both catalogs is unknown, this method may be used to estimate its typical value and
even to study its dependence on the size of objects. It may also be applied when the true centers of a source and of its counterpart at
another wavelength do not coincide.

To compute the likelihood and association probabilities under the different assumptions, we developed a Fortran 95 code called
Aspects ([aspε], “Association positionnelle/probabiliste de catalogues de sources” in French); its source files are made freely avail-
able. To test Aspects, all-sky mock catalogs containing up to 105 objects were created, forcing either several-to-one or one-to-one
associations. The analysis of these simulations confirms that, in both cases, the assumption with the highest likelihood is the right one
and that estimators of unknown parameters built for the appropriate association model are reliable.
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1. Introduction

The most basic method of cross-identifying two catalogs K and K′ with known circular positional uncertainties is to consider that
a K′-source M′ is the same as an object M of K if it falls within a disk centered on M and having a radius equal to a few times
their combined positional uncertainty; if the disk is void, M has no counterpart, and if it contains several K′-sources, the nearest
one is identified to M. This solution is defective for several reasons: it does not take the density of sources into account; positional
uncertainty ellipses are not properly treated; the radius of the disk is arbitrary; positional uncertainties are not always known; K and
K′ do not play symmetrical roles; the identification is ambiguous if a K′-source may be associated to several objects of K. Worst of
all, it does not provide a probability of association.

Beyond this naïve method, the cross-identification problem has been studied by Condon et al. (1975), de Ruiter et al. (1977),
Prestage & Peacock (1983), Sutherland & Saunders (1992), Bauer et al. (2000), and Rutledge et al. (2000), among others. As
shown by the recent papers of Budavári & Szalay (2008), Brand et al. (2006), Rohde et al. (2006), Roseboom et al. (2009), and
Pineau et al. (2011), this field is still very active and will be more so with the wealth of forthcoming multiwavelength data and the
virtual observatory (Vignali et al. 2009). In these papers, the identification is performed using a “likelihood ratio”. For two objects
(M,M′) ∈ K × K′ with known coordinates and positional uncertainties, and given the local surface density of K′-sources, this ratio
is typically computed as

λ B
P(position | counterpart)

P(position | chance)
, (1)

where P(position | counterpart) is the probability of finding M′ at some position relative to M if M′ is a counterpart of M, and
P(position | chance) is the probability that M′ is there by chance. As noticed by Sutherland & Saunders (1992), there has been some
confusion when defining and interpreting λ, and, more importantly, in deriving the probability1 that M and M′ are the same.

To associate sources from catalogs at different wavelengths, some authors include some a priori information on the spectral
energy distribution (SED) of the objects in this likelihood ratio. When this work started, our primary goal was to build template
observational SEDs from the optical to the far-infrared for different types of galaxies. We initially intended to cross-identify the
Iras Faint Source Survey (Moshir et al. 1992, 1993) with the Leda database (Paturel et al. 1995). Because of the high positional
inaccuracy of Iras data, special care was needed to identify optical sources with infrared ones. While Iras data are by now quite

? Available at www2.iap.fr/users/fioc/Aspects/ .
1 For instance, de Ruiter et al. (1977) wrongly state that, if there is a counterpart, the closest object is always the right one.
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outdated and have been superseded by Spitzer and Herschel observations, we think that the procedure we began to develop at that
time may be valuable for other studies. Because we aimed to fit synthetic SEDs to the template observational ones, we could not
and did not want to make assumptions on the SED of objects based on their type, since this would have biased the procedure. We
therefore rely only on positions in what follows.

The method we use is in essence similar to that of Sutherland & Saunders (1992). Because thinking in terms of probabilities
rather than of likelihood ratios highlights some implicit assumptions, we found it however useful for the sake of clarity to detail
hereafter our calculations. This allows us moreover to propose a systematic way to estimate the unknown parameters required to
compute the probabilities of association and to extend our work to a case not covered by the papers cited above (see Sect. 4).

After some preliminaries (Sect. 2), we compute in Sect. 3 the probability of association under the hypothesis that a K-source has
at most one counterpart in K′ but that several objects of K may share the same one (“several-to-one” associations). We also compute
the likelihood to observe all the sources at their effective positions and use it to estimate the fraction of objects with a counterpart
and, if unknown, the positional uncertainty in one or both catalogs. In Sect. 4, we do the same calculations under the assumption
that a K-source has at most one counterpart in K′ and that no other object of K has the same counterpart (“one-to-one” associations).
In Sect. 5, we present a code, Aspects, implementing the results of Sects. 3 and 4, and with which we compute the likelihoods and
probabilities of association under the aforementioned assumptions. We test it on simulations in Sect. 6. The probability distribution
of the relative positions of associated sources is modeled in App. A.

2. Preliminaries

2.1. Notations

We consider two catalogs K and K′ defined on a common surface of the sky, of area S, and containing respectively n sources
(Mi)i∈~1, n� and n′ sources (M′j) j∈~1, n′�. We define the following events:

– ci: Mi is in the infinitesimal surface element d2ri located at ri;
– c′j: M′j is in the infinitesimal surface element d2r′j located at r′j;
– C B

⋂n
i=1 ci: the coordinates of all K-sources are known;

– C′ B
⋂n′

j=1 c′j: the coordinates of all K′-sources are known;
– Ai, j, with i , 0 and j , 0: M′j is a counterpart of Mi;
– Ai, 0: Mi has no counterpart in K′, i.e. Ai, 0 =

⋃
j,0 Ai, j, where ω is the negation of an event ω;

– A0, j: M′j has no counterpart in K.

We denote by f (resp. f ′) the unknown a priori (i.e., not knowing the coordinates) probability that any element of K (resp. K′)
has a counterpart in K′ (resp. K). In terms of the events (Ai, j), for any (Mi,M′j) ∈ K × K′,

P
(⋃

k,0

Ai, k

)
= f ; P(Ai, 0) = 1 − f ; P

(⋃

k,0

Ak, j

)
= f ′; P(A0, j) = 1 − f ′. (2)

We see in Sects. 3.2 and 4.2 how to estimate f and f ′.
The angular distance between two points Y and Z is written ψ(Y,Z). More specifically, we put ψi, j = ψ(Mi,M′j).

2.2. Assumptions

Calculations are carried out under one of three exclusive assumptions:

– Several-to-one hypothesis: {
for all Mi, the events (Ai, j) j∈~1, n′� are exclusive;
for all M′j, the events (Ai, j)i∈~1, n� are independent.

(Hs:o)

Therefore, a K-source has at most one counterpart in K′, but a K′-source may have several counterparts in K. Since more K-
sources have a counterpart in K′ than the converse, f n > f ′ n′. This assumption is reasonable if the angular resolution in K′
(e.g. Iras) is much poorer than in K (e.g. Leda), since several distinct objects of K may then be confused in K′.

– One-to-several hypothesis: the symmetric of assumption Hs:o, i.e.,
{

for all Mi, the events (Ai, j)i∈~1, n� are independent;
for all M′j, the events (Ai, j) j∈~1, n′� are exclusive.

(Ho:s)

In that case, f n 6 f ′ n′. This assumption is appropriate for catalogs of extended sources that, although observed as single at the
wavelength of K, may look broken up at the wavelength of K′.

– One-to-one hypothesis: any K-source has at most one counterpart in K′ and reciprocally, i.e.

all the events (Ai, j)i∈~1, n�, j∈~1, n′� are exclusive. (Ho:o)

Then, f n = f ′ n′. This assumption is the most relevant one for high-resolution catalogs of point sources or of well-defined
extended sources.
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Probabilities, likelihoods, and estimators specifically derived under either assumption Hs:o, Ho:s, or Ho:o are written with the subscript
“s:o”, “o:s”, or “o:o”, respectively; the subscript “:o” is used for results valid for both Hs:o and Ho:o. The “several-to-several”
hypothesis where all the events (Ai, j)i∈~1, n�, j∈~1, n′� are independent is not considered here.

We make two other assumptions: all the associations Ai, j with i , 0 and j , 0 are considered a priori as equally likely, and the
effect of clustering is negligible.

2.3. Approach

Our approach is the following. For each of the assumptions Hs:o, Ho:o, and Ho:s, we

– find an expression for the probabilities of association,
– build estimators of the unknown parameters needed to compute these probabilities, and
– compute the likelihood of the assumption from the data.

Then, we compute the probabilities of association for the best estimators of unknown parameters and the most likely assumption.
Although Hs:o is less symmetrical and neutral than Ho:o, we begin our study with this assumption: first, because computations

are much simpler under Hs:o than under Ho:o and serve as a guide for the latter; second, because they provide initial values for the
iterative procedure (Sect. 5.4.3) used to effectively compute probabilities under Ho:o.

3. Several-to-one associations

In this section, we assume that hypothesis Hs:o holds. As shown in Sect. 3.3, this is also the assumption implicitly made by the
authors cited in the introduction.

3.1. Probability of association: global computation

We want to compute2 the probability P(Ai, j | C ∩ C′) of association between sources Mi and M′j ( j , 0) or the probability that Mi
has no counterpart ( j = 0), knowing the coordinates of all the objects in K and K′. Remembering that, for any events ω1, ω2, and
ω3, P(ω1 | ω2) = P(ω1 ∩ ω2)/P(ω2) and thus

P(ω1 ∩ ω2 | ω3) =
P(ω1 ∩ ω2 ∩ ω3)

P(ω3)
=

P(ω1 | ω2 ∩ ω3) P(ω2 ∩ ω3)
P(ω3)

= P(ω1 | ω2 ∩ ω3) P(ω2 | ω3), (3)

we have, with ω1 = Ai, j, ω2 = C, and ω3 = C′,

P(Ai, j | C ∩C′) =
P(Ai, j ∩C | C′)

P(C | C′) . (4)

3.1.1. Computation of Ps:o(C | C′)
We first compute the denominator of Eq. (4)3. The event

n⋂

k=1

n′⋃

jk=0

Ak, jk =

n′⋃

j1=0

n′⋃

j2=0

· · ·
n′⋃

jn=0

n⋂

k=1

Ak, jk (5)

is certain by definition of the Ak, jk and, under either assumption Hs:o or Ho:o, Ak, ` ∩ Ak,m = ∅ for all Mk if ` , m. Consequently,
using the symbol

⊎
for mutually exclusive events instead of

⋃
, we obtain

Ps:o(C | C′) = Ps:o

(
C ∩

n⋂

k=1

n′⋃

jk=0

Ak, jk | C′
)

= Ps:o

(
C ∩

n′⊎

j1=0

n′⊎

j2=0

· · ·
n′⊎

jn=0

n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

=

n′∑

j1=0

n′∑

j2=0

· · ·
n′∑

jn=0

Ps:o

(
C ∩

n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

=

n′∑

j1=0

n′∑

j2=0

· · ·
n′∑

jn=0

Ps:o

(
C

∣∣∣∣
n⋂

k=1

Ak, jk ∩C′
)

Ps:o

( n⋂

k=1

Ak, jk

∣∣∣∣ C′
)
, (6)

with ω1 = C, ω2 =
⋂n

k=1 Ak, jk , and ω3 = C′ in Eq. (3).
Since C =

⋂n
k=1 ck, the first factor in the product of Eq. (6) is

P:o

(
C

∣∣∣∣
n⋂

k=1

Ak, jk ∩C′
)

= P:o

(
c1

∣∣∣∣
n⋂

k=2

ck ∩
n⋂

k=1

Ak, jk ∩C′
)

P:o

( n⋂

k=2

ck

∣∣∣∣
n⋂

k=1

Ak, jk ∩C′
)
, (7)

2 For the sake of clarity, we mention that we adopt the same decreasing order of precedence for operators as in Mathematica (Wolfram 1996):
× and /;

∏
;
∑

; + and −.
3 Computing Ps:o(C | C′) is easier than for Ps:o(C′ | C): the latter would require calculating Ps:o(c′` |

⋂n
k=1; jk=` [ck ∩ Ak, jk ]) (cf. Eq. (9)) because

several Mk might be associated with the same M′
`. This does not matter for computations made under assumption Ho:o.
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with ω1 = c1, ω2 =
⋂n

k=2 ck, and ω3 = Ak, jk ∩C′ in Eq. (3). Doing the same with
⋂n

k=2 ck instead of C, we obtain

P:o

(
C

∣∣∣∣
n⋂

k=1

Ak, jk ∩C′
)

=

n∏

`=1

P:o

(
c`

∣∣∣∣
n⋂

k=`+1

ck ∩
n⋂

k=1

Ak, jk ∩C′
)

(8)

by iteration.
If j` , 0, M` is only associated with M′j` . Consequently,

P:o

(
c`

∣∣∣∣
n⋂

k=`+1

ck ∩
n⋂

k=1

Ak, jk ∩C′
)

= P:o(c` | A`, j` ∩ c′j` ) = ξ`, j` d2r`, (9)

where, denoting by r`, j` B r′j` − r` the position vector of M′j` relative to M` and by Γ`, j` the covariance matrix of r`, j` (cf. App. A.2),

ξ`, j` =
exp

(
− 1

2 rt`, j` · Γ−1
`, j` · r`, j`

)

2π
√

det Γ`, j`

. (10)

If j` = 0, M` is not associated with any source in K′. Since clustering is neglected,

P:o

(
c`

∣∣∣∣
n⋂

k=`+1

ck ∩
n′⋂

k=1

c′k ∩
n⋂

k=1

Ak, jk

)
= P:o(c` | A`, 0) = ξ`, 0 d2r`, (11)

where the last equality defines the spatial probability density ξ`, 0; for the uninformative prior of a uniform a priori probability
distribution of K-sources without counterpart, ξ`, 0 = 1/S.

From Eqs. (8), (9), and (11), it follows that

P:o

(
C

∣∣∣∣
n⋂

k=1

Ak, jk ∩C′
)

= Ξ

n∏

k=1

ξk, jk , (12)

where

Ξ B
n∏

k=1

d2rk. (13)

We now compute the second factor in the product of Eq. (6). Knowing the coordinates of K′-sources alone, without those of
any in K, does not change the likelihood of the associations (Ak, jk ); in other words, C′ and

⋂n
k=1 Ak, jk are mutually unconditionally

independent (but conditionally dependent on C). Therefore,

Ps:o

( n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

= Ps:o

( n⋂

k=1

Ak, jk

)
. (14)

Let q B #{k ∈ ~1, n� | jk , 0}, where #E denotes the number of elements of any set E. Since the events (Ak, jk )k∈~1, n� are independent
by assumption Hs:o,

Ps:o

( n⋂

k=1

Ak, jk

)
=

n∏

k=1

Ps:o(Ak, jk ). (15)

Using definition (2), and on the hypothesis that all associations (Ak, `)`∈~1, n′� are a priori equally likely if k , 0 (Sect. 2.2), we get

Ps:o(Ak, jk ) =
Ps:o(

⋃
`,0 Ak, `)

#K′
=

f
n′

for jk , 0. (16)

Since Ps:o(Ak, 0) = 1 − f , we have

Ps:o

( n⋂

k=1

Ak, jk

)
=

(
f

n′

)q

(1 − f )n−q. (17)

Hence, from Eqs. (6), (12) and (17),

Ps:o(C | C′) = Ξ

n′∑

j1=0

n′∑

j2=0

· · ·
n′∑

jn=0

(
f

n′

)q

(1 − f )n−q
n∏

k=1

ξk, jk . (18)

By the definition of q, there are q strictly positive indices jk (as many as the factors “ f /n′” in Eq. (18)) and n− q null ones (as many
as the factors “(1 − f )”). Therefore, with

ζk, 0 B (1 − f ) ξk, 0 and ζk, jk B
f ξk, jk

n′
for jk , 0, (19)

Eq. (18) reduces to

Ps:o(C | C′) = Ξ

n′∑

j1=0

n′∑

j2=0

· · ·
n′∑

jn=0

n∏

k=1

ζk, jk = Ξ

n∏

k=1

n′∑

jk=0

ζk, jk , (20)

where the last equality is derived by induction from the distributivity of multiplication over addition.

4



M. Fioc: Probabilistic positional association of catalogs of astrophysical sources: the Aspects code

3.1.2. Computation of Ps:o(Ai, j ∩C | C′)
The computation of the numerator of Eq. (4) is similar to that of Ps:o(C | C′):

Ps:o(Ai, j ∩C | C′) = Ps:o

(
C ∩ Ai, j ∩

n′⊎

j1=0

· · ·
n′⊎

ji−1=0

n′⊎

ji+1=0

· · ·
n′⊎

jn=0

n⋂

k=1
k,i

Ak, jk

∣∣∣∣ C′
)

= Ps:o

(
C ∩

n′⊎

j1=0

· · ·
n′⊎

ji−1=0

n′⊎

ji+1=0

· · ·
n′⊎

jn=0

n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

=

n′∑

j1=0

· · ·
n′∑

ji−1=0

n′∑

ji+1=0

· · ·
n′∑

jn=0

Ps:o

(
C

∣∣∣∣
n⋂

k=1

Ak, jk ∩C′
)

Ps:o

( n⋂

k=1

Ak, jk

∣∣∣∣ C′
)
, (21)

where we put ji B j.
Let q? B #{k ∈ ~1, n� | jk , 0} (indices jk are now those of Eq. (21)). As for Ps:o(C | C′),

Ps:o(Ai, j ∩C | C′) = Ξ

n′∑

j1=0

· · ·
n′∑

ji−1=0

n′∑

ji+1=0

· · ·
n′∑

jn=0

(
f

n′

)q?

(1 − f )n−q?
n∏

k=1

ξk, jk = Ξ ζi, ji

n′∑

j1=0

· · ·
n′∑

ji−1=0

n′∑

ji+1=0

· · ·
n′∑

jn=0

n∏

k=1
k,i

ζk, jk

= Ξ ζi, j

n∏

k=1
k,i

n′∑

jk=0

ζk, jk . (22)

3.1.3. Final results

Finally, from Eqs. (4), (20), and (22),

for i , 0, Ps:o(Ai, j | C ∩C′) =

ζi, j
∏n

k=1
k,i

∑n′
jk=0 ζk, jk

∏n
k=1

∑n′
jk=0 ζk, jk

=
ζi, j

∑n′
k=0 ζi, k

(23)

=



f ξi, j

(1 − f ) n′ ξi, 0 + f
∑n′

k=1 ξi, k
for j , 0,

(1 − f ) n′ ξi, 0

(1 − f ) n′ ξi, 0 + f
∑n′

k=1 ξi, k
for j = 0.

(24)

As to the probability Ps:o(A0, j | C ∩C′) that M′j has no counterpart in K, it can be computed in this way:

Ps:o(A0, j ∩C | C′) = Ps:o

(
C ∩ A0, j ∩

n′⊎

j1=0

n′⊎

j2=0

· · ·
n′⊎

jn=0

n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

= Ps:o

(
C ∩

n′⊎

j1=0
j1, j

n′⊎

j2=0
j2, j

· · ·
n′⊎

jn=0
jn, j

n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

=

n′∑

j1=0
j1, j

n′∑

j2=0
j2, j

· · ·
n′∑

jn=0
jn, j

Ps:o

(
C ∩

n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

= Ξ

n′∑

j1=0
j1, j

n′∑

j2=0
j2, j

· · ·
n′∑

jn=0
jn, j

n∏

k=1

ζk, jk = Ξ

n∏

k=1

n′∑

jk=0
jk, j

ζk, jk (25)

and, using Eqs. (20), (23), and (3),

Ps:o(A0, j | C ∩C′) =
Ps:o(A0, j ∩C | C′)

Ps:o(C | C′) =

Ξ
∏n

k=1
∑n′

jk=0
jk, j

ζk, jk

Ξ
∏n

k=1
∑n′

jk=0 ζk, jk

=

n∏

k=1

∑n′
jk=0 ζk, jk − ζk, j
∑n′

jk=0 ζk, jk

=

n∏

k=1

(
1 − ζk, jk∑n′

jk=0 ζk, jk

)

=

n∏

k=1

(
1 − Ps:o[Ak, j | C ∩C′]

)
for j , 0. (26)

3.2. Likelihood and estimation of unknown parameters

3.2.1. General results

Various methods have been proposed for estimating the fraction of sources with a counterpart (Kim et al. 2012; Fleuren et al.
2012; McAlpine et al. 2012; Haakonsen & Rutledge 2009). Pineau et al. (2011), for instance, fit f to the overall distribution of the
likelihood ratios. We propose a more convenient and systematic method in this section.

Besides f , the probabilities P(Ai, j | C ∩ C′) may depend on other unknowns, such as the parameters σ̊ and ν̊ modeling the
positional uncertainties (cf. Apps. A.2.2 and A.2.3). We write here x1, x2, etc., for all these parameters, and put x B (x1, x2, . . .). An
estimate x̂ of x may be obtained by maximizing with respect to x (and with the constraint f̂ ∈ [0, 1]) the overall likelihood

L B
P(C ∩C′)

(
∏n

i=1 d2ri)
∏n′

j=1 d2r′j
(27)
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to observe all the K- and K′-sources at their effective positions. Unless the result is outside the possible domain for x (i.e., if L
reaches its maximum on the boundary of this domain), the maximum likelihood estimator x̂ is a solution to

(
∂ ln L
∂x

)

x=x̂
= 0. (28)

From now on, all quantities calculated at x = x̂ bear a circumflex.
We have

P(C ∩C′) = P(C | C′) P(C′), (29)

and, since clustering is neglected,

P(C′) =

n′∏

j=1

P(c′j) =

n′∏

j=1

ξ0, j d2r′j, (30)

where ξ0, j is the spatial probability density defined by P(c′j) = ξ0, j d2r′j; for the uninformative prior of a uniform a priori probability
distribution of K′-sources, ξ0, j = 1/S. From Eqs. (27), (29), (30), and (13), we obtain

L =
P(C | C′)

Ξ

n′∏

j=1

ξ0, j. (31)

In particular, under assumption Hs:o, Eqs. (31), (20), and (13) give

Ls:o =
( n∏

i=1

n′∑

k=0

ζi, k

) n′∏

j=1

ξ0, j. (32)

Therefore, for any parameter xp and because the ξ0, j are independent x,

∂ ln Ls:o

∂xp
=

n∑

i=1

∂ ln
∑n′

k=0 ζi, k

∂xp
=

n∑

i=1

n′∑

j=0

∂ζi, j/∂xp
∑n′

k=0 ζi, k
=

n∑

i=1

n′∑

j=0

∂ ln ζi, j

∂xp

ζi, j
∑n′

k=0 ζi, k
=

n∑

i=1

n′∑

j=0

∂ ln ζi, j

∂xp
Ps:o(Ai, j | C ∩C′). (33)

(For reasons highlighted just after Eq. (73), it is convenient to express most results as a function of the probabilities P(Ai, j | C∩C′).)
Uncertainties on the unknown parameters may be computed from the covariance matrix V of x̂. For large numbers of sources,

V is asymptotically given (Kendall & Stuart 1979) by

(
V−1

)
p, q

= −
(
∂2 ln L
∂xp ∂xq

)

x̂=x
. (34)

3.2.2. Fraction of sources with a counterpart

Consider, in particular, the case xp = f . We note that

∂ ln ζi, 0

∂ f
= − 1

1 − f
and

∂ ln ζi, j

∂ f
=

1
f

for j , 0. (35)

Under the assumption Hs:o or Ho:o (but not under Ho:s),

n′∑

j=0

P:o(Ai, j | C ∩C′) = P:o

( n′⊎

j=0

Ai, j

∣∣∣∣ C ∩C′
)

= 1, (36)

so, using Eq. (35),

n′∑

j=0

∂ ln ζi, j

∂ f
P:o(Ai, j | C ∩C′) = −P:o(Ai, 0 | C ∩C′)

1 − f
+

n′∑

j=1

P:o(Ai, j | C ∩C′)
f

= −P:o(Ai, 0 | C ∩C′)
1 − f

+
1 − P:o(Ai, 0 | C ∩C′)

f

=
(1 − f ) − P:o(Ai, 0 | C ∩C′)

f (1 − f )
. (37)

Summing Eq. (37) on i, we obtain from Eq. (33) that

∂ ln Ls:o

∂ f
=

n (1 − f ) −∑n
i=1 Ps:o(Ai, 0 | C ∩C′)
f (1 − f )

. (38)
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Consequently, the maximum likelihood estimator of the fraction f of K-sources with a counterpart in K′ is

f̂s:o = 1 − 1
n

n∑

i=1

P̂s:o(Ai, 0 | C ∩C′) (39)

=
1
n

n∑

i=1

n′∑

j=1

P̂s:o(Ai, j | C ∩C′). (40)

After some tedious calculations, it can be shown that

∂2 ln Ls:o

∂ f 2 = −
∑n

i=1

(
[1 − f ] − Ps:o[Ai, 0 | C ∩C′]

)2

f 2 (1 − f )2 < 0 (41)

for all f , so ∂ ln Ls:o/∂ f has at most one zero in [0, 1]: f̂s:o is unique.
Since f̂s:o appears on the two sides of Eq. (39) (remember that P̂s:o is the value of Ps:o at f = f̂s:o), we may try to determine it

through an iterative back and forth computation between the lefthand and the righthand sides of this equation. (A similar idea was
also proposed by Benn 1983.) We prove in Sect. 5.3 that this procedure converges for any starting value f ∈ ]0, 1[.

An estimate f̂ ′s:o of the fraction f ′ of K′-sources with a counterpart is given by

f̂ ′s:o = 1 − 1
n′

n′∑

j=1

P̂s:o(A0, j | C ∩C′). (42)

It can be checked from Eqs. (40), (42), and (26) that, as expected if assumption Hs:o is valid (cf. Sect 2.2), f̂s:o n > f̂ ′s:o n′. (Just notice
that, for any numbers yi ∈ [0, 1],

∏n
i=1 (1 − yi) > 1 −∑n

i=1 yi, which is obvious by induction; apply this to yi = P̂s:o(Ai, j | C ∩C′) and
then sum on j.)

3.3. Probability of association: local computation

Under assumption Hs:o, a purely local computation (subscript “loc” hereafter) of the probabilities of association is also possible.
Consider a region Ui of area Si containing the position of Mi, and such that we can safely hypothesize that the counterpart in K′ of
Mi, if any, is inside. We assume that the local surface density ρ′i of K′-sources unrelated to Mi is uniform on Ui. To avoid biasing the
estimate if Mi has a counterpart, ρ′i may be evaluated from the number of K′-sources in a region surrounding Ui, but not overlapping
it (an annulus around a disk Ui centered on Mi, for instance).

Besides the Ai, j, we consider the following events:

– N′i : Ui contains n′i sources;
– C′i B

⋂
j∈Ji

c′j, where Ji B { j | M′j ∈ Ui}.
We want to compute the probability that a source M′j in Ui is the counterpart of Mi, given the positions relative to Mi of all its

possible counterparts (M′k)k∈Ji
, i.e. Ploc(Ai, j | C′i ∩ N′i ). Using Eq. (3) with ω1 = Ai, j, ω2 = C′i , and ω3 = N′i in the first equality

below, and then with ω1 = C′i , ω2 = Ai, k, and ω3 unchanged in the last one, we obtain

Ploc(Ai, j | C′i ∩ N′i ) =
Ploc(Ai, j ∩C′i | N′i )

Ploc(C′i | N′i )
=

Ploc(C′i ∩ Ai, j | N′i )
Ploc(C′i ∩

⊎
k∈Ji∪{0} Ai, k | N′i )

=
Ploc(C′i ∩ Ai, j | N′i )∑

k∈Ji∪{0} Ploc(C′i ∩ Ai, k | N′i )
=

Ploc(C′i | Ai, j ∩ N′i ) Ploc(Ai, j | N′i )∑
k∈Ji∪{0} Ploc(C′i | Ai, k ∩ N′i ) Ploc(Ai, k | N′i )

. (43)

Now,

Ploc(Ai, 0 | N′i ) =
Ploc(N′i ∩ Ai, 0)

Ploc(N′i )
=

Ploc(N′i | Ai, 0) Ploc(Ai, 0)

Ploc(N′i | Ai, 0) Ploc(Ai, 0) + Ploc(N′i | Ai, 0) Ploc(Ai, 0)
(44)

and

Ploc(Ai, j | N′i ) =
Ploc(Ai, 0 | N′i )

n′i
=

1 − Ploc(Ai, 0 | N′i )
n′i

for j , 0. (45)

(The probability Ploc(Ai, j) itself could not have been computed as Ploc(Ai, 0)/n′i because n′i would be undefined, which is why event
N′i was introduced.) If clustering is negligible, the number of K′-sources randomly distributed with a mean surface density ρ′i in an
area Si follows a Poissonian distribution, so

Ploc(N′i | Ai, 0) =
(ρ′i Si)n′i−1 exp(−ρ′i Si)

(n′i − 1)!
(one counterpart and n′i − 1 sources by chance in Si) (46)

7
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and

Ploc(N′i | Ai, 0) =
(ρ′i Si)n′i exp(−ρ′i Si)

n′i!
(no counterpart and n′i sources by chance in Si). (47)

Thus, from Eqs. (45), (44), (46), (47), and (2),

Ploc(Ai, j | N′i ) =



f
n′i f + (1 − f ) ρ′i Si

for j , 0,

(1 − f ) ρ′i Si

n′i f + (1 − f ) ρ′i Si
for j = 0.

(48)

We have

Ploc(C′i | Ai, 0 ∩ N′i ) =
∏

k∈Ji

d2r′k
Si

and Ploc(C′i | Ai, j ∩ N′i ) = ξi, j d2r′j
∏

k∈Ji
k, j

d2r′k
Si

for j , 0 (49)

(rigorously, ξi, j should be replaced by ξi, j/Ploc(M′j ∈ Ui | Ai, j), but Ploc(M′j < Ui | Ai, j) is negligible by definition of Ui), so, using
Eqs. (43), (48), and (49), we obtain

Ploc(Ai, j | C′i ∩ N′i ) =



f λi, j

(1 − f ) + f
∑

k∈Ji
λi, k

for j , 0,

(1 − f )
(1 − f ) + f

∑
k∈Ji

λi, k
for j = 0,

(50)

where λi, k B ξi, k/ρ
′
i is the likelihood ratio (cf. Eq. (1)). Mutatis mutandis, we obtain the same result as Eq. (14) of Pineau et al.

(2011) and the aforementioned authors. When the computation is extended from Ui to the whole surface covered by K′, ρ′i is
replaced by n′/S in Eq. (50),

∑
k∈Ji

by
∑n′

k=1, and we recover Eq. (24) since ξi, 0 = 1/S for a uniform distribution.
The index jMLC(i) of the most likely counterpart M′jMLC(i) of Mi is the value of j , 0 maximizing λi, j. Very often, λi, jMLC(i) �∑

k∈Ji; k, jMLC(i) λi, k, so

Ps:o(Ai, jMLC(i) | C′i ∩ N′i ) ≈
f λi, jMLC(i)

(1 − f ) + f λi, jMLC(i)
. (51)

As a “poor man’s” recipe, if the value of f is unknown and not too close to either 0 or 1, an association may be considered as true if
λi, jMLC(i) � 1 and as false if λi, jMLC(i) � 1. Where to set the boundary between true associations and false ones is somewhat arbitrary
(Wolstencroft et al. 1986). For a large sample, however, f can be estimated from the distribution of the positions of all sources, as
shown in Sect. 3.2.

4. One-to-one associations

Under Hs:o (Sect. 3), a given M′j can be associated with several Mi: there is no symmetry between K and K′ under this assumption
and, while

∑n′
j=0 Ps:o(Ai, j | C ∩ C′) = 1 for all Mi,

∑n
i=1 Ps:o(Ai, j | C ∩ C′) could be strictly larger than 1 for some sources M′j. We

assume here that the much more constraining assumption Ho:o holds. As far as we know and despite some attempt by Rutledge et al.
(2000), this problem has not been solved previously (see also Bartlett & Egret 1998 for a simple statement of the question).

Since a K′-potential counterpart M′j of Mi within some neighborhood Ui of Mi might in fact be the true counterpart of another
source Mk outside of Ui, there is no obvious way to adapt the exact local several-to-one computation of Sect. 3.3 to the case of the
one-to-one assumption. We therefore have to consider all the K- and K′-sources, as in Sect. 3.1.

Under assumption Ho:o, catalogs K and K′ play symmetrical roles; in particular,

Po:o(Ai, j) =
f

n′
=

f ′

n
if i , 0 and j , 0. (52)

For practical reasons (cf. Eq. (61)), we nonetheless name K the catalog with the fewer objects and K′ the other one, so n 6 n′ in the
following.

4.1. Probability of association

4.1.1. Computation of Po:o(C | C′)
The denominator of Eq. (4) is

Po:o(C | C′) = Po:o

(
C ∩

n′⊎

j1=0

n′⊎

j2=0

· · ·
n′⊎

jn=0

n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

(53)

(same reasons as for Eq. (6)). Because Ak,m ∩ A`,m = ∅ if k , ` and m , 0 by assumption Ho:o, this reduces to

Po:o(C | C′) = Po:o

(
C ∩

n′⊎

j1=0
j1<X0

n′⊎

j2=0
j2<X1

· · ·
n′⊎

jn=0
jn<Xn−1

n⋂

k=1

Ak, jk

∣∣∣∣ C′
)
, (54)
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where, to ensure that each K′-source is associated with at most one of K, the sets Xk of excluded counterparts are defined iteratively
by

X0 B ∅ and Xk B (Xk−1 ∪ { jk}) \ {0} for all k ∈ ~1, n�. (55)

As a result,

Po:o(C | C′) =

n′∑

j1=0
j1<X0

n′∑

j2=0
j2<X1

· · ·
n′∑

jn=0
jn<Xn−1

Po:o

(
C ∩

n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

=

n′∑

j1=0
j1<X0

n′∑

j2=0
j2<X1

· · ·
n′∑

jn=0
jn<Xn−1

Po:o

(
C

∣∣∣∣
n⋂

k=1

Ak, jk ∩C′
)

Po:o

( n⋂

k=1

Ak, jk

∣∣∣∣ C′
)
. (56)

The first factor in the product of Eq. (56) is still given by Eq. (12), so we just have to compute the second factor,

Po:o

( n⋂

k=1

Ak, jk

∣∣∣∣ C′
)

= Po:o

( n⋂

k=1

Ak, jk

)
. (57)

Let q B #Xn and Q be a random variable describing the number of associations between K and K′:

Po:o

( n⋂

k=1

Ak, jk

)
= Po:o

( n⋂

k=1

Ak, jk

∣∣∣∣ Q = q
)

Po:o(Q = q) + Po:o

( n⋂

k=1

Ak, jk

∣∣∣∣ Q , q
)

Po:o(Q , q). (58)

Since Po:o(
⋂n

k=1 Ak, jk | Q , q) = 0 by definition of q, we only have to compute Po:o(
⋂n

k=1 Ak, jk | Q = q) and Po:o(Q = q).
There are n!/(q! [n − q]!) choices of q elements among n in K, and n′!/(q! [n′ − q]!) choices of q elements among n′ in K′. The

number of permutations of q elements is q!, so the total number of one-to-one associations of q elements from K to q elements of
K′ is

q!
n!

q! (n − q)!
n′!

q! (n′ − q)!
. (59)

The inverse of this number is

Po:o

( n⋂

k=1

Ak, jk

∣∣∣∣ Q = q
)

=
q! (n − q)! (n′ − q)!

n! n′!
. (60)

With our definition of K and K′, n 6 n′, so all the elements of K may have a counterpart in K′ jointly. Therefore, Po:o(Q = q) is
given by the binomial law:

Po:o(Q = q) =
n!

q! (n − q)!
f q (1 − f )n−q. (61)

From Eqs. (56), (12), (60), and (61), we obtain

Po:o(C | C′) = Ξ

n′∑

j1=0
j1<X0

n′∑

j2=0
j2<X1

· · ·
n′∑

jn=0
jn<Xn−1

(n′ − q)!
n′!

f q (1 − f )n−q
n∏

k=1

ξk, jk (62)

= Ξ

n′∑

j1=0
j1<X0

n′∑

j2=0
j2<X1

· · ·
n′∑

jn=0
jn<Xn−1

( q∏

`=1

f
n′ − ` + 1

) (n−q∏

`=1

[1 − f ]
) n∏

k=1

ξk, jk . (63)

There are q factors “ f /(n′ − ` + 1)” in the above equation, one for each index jk , 0. There are also n − q factors “(1 − f )”, one for
each null jk. For every jk , 0, #Xk = #Xk−1 + 1; and, since q = #Xn, a different jk corresponds to each ` ∈ ~1, q�, so ` = #Xk. With

ηk, 0 B ζk, 0 and ηk, jk B
f ξk, jk

n′ − #Xk−1
for jk , 0, (64)

Eq. (63) therefore simplifies to

Po:o(C | C′) = Ξ

n′∑

j1=0
j1<X0

n′∑

j2=0
j2<X1

· · ·
n′∑

jn=0
jn<Xn−1

n∏

k=1

ηk, jk . (65)
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4.1.2. Computation of Po:o(Ai, j ∩C | C′)
The denominator of Eq. (4) is computed in the same way as Po:o(C | C′):

Po:o(Ai, j ∩C | C′) = Po:o

(
C ∩ Ai, j ∩

n′⊎

j1=0
j1<X?

0

· · ·
n′⊎

ji−1=0
ji−1<X?

i−2

n′⊎

ji+1=0
ji+1<X?

i

· · ·
n′⊎

jn=0
jn<X?

n−1

n⋂

k=1
k,i

Ak, jk

∣∣∣∣ C′
)

= Po:o

(
C ∩

n′⊎

j1=0
j1<X?

0

· · ·
n′⊎

ji−1=0
ji−1<X?

i−2

n′⊎

ji+1=0
ji+1<X?

i

· · ·
n′⊎

jn=0
jn<X?

n−1

n⋂

k=1

Ak, jk

∣∣∣∣ C′
)
, (66)

where
X?

0 B { j} \ {0}, ji B j and X?
k B (X?

k−1 ∪ { jk}) \ {0} for all k ∈ ~1, n�, (67)

so

Po:o(Ai, j ∩C | C′) =

n′∑

j1=0
j1<X?

0

· · ·
n′∑

ji−1=0
ji−1<X?

i−2

n′∑

ji+1=0
ji+1<X?

i

· · ·
n′∑

jn=0
jn<X?

n−1

Po:o

(
C

∣∣∣∣
n⋂

k=1

Ak, jk ∩C′
)

Po:o

( n⋂

k=1

Ak, jk

∣∣∣∣ C′
)
. (68)

Let q? B #X?
n . As for Po:o(C | C′),

Po:o(Ai, j ∩C | C′) = Ξ

n′∑

j1=0
j1<X?

0

· · ·
n′∑

ji−1=0
ji−1<X?

i−2

n′∑

ji+1=0
ji+1<X?

i

· · ·
n′∑

jn=0
jn<X?

n−1

(n′ − q?)!
n′!

f q? (1 − f )n−q?
n∏

k=1

ξk, jk

= Ξ ζi, j

n′∑

j1=0
j1<X?

0

· · ·
n′∑

ji−1=0
ji−1<X?

i−2

n′∑

ji+1=0
ji+1<X?

i

· · ·
n′∑

jn=0
jn<X?

n−1

n∏

k=1
k,i

η?k, jk , (69)

where

η?k, 0 B ζk, 0 and η?k, jk B
f ξk, jk

n′ − #X?
k−1

for jk , 0. (70)

4.1.3. Final results

Finally, from Eqs. (4), (65), and (69),

for i , 0, Po:o(Ai, j | C ∩C′) =

ζi, j
∑n′

j1=0
j1<X?

0

· · ·∑n′
ji−1=0
ji−1<X?

i−2

∑n′
ji+1=0
ji+1<X?

i

· · ·∑n′
jn=0
jn<X?

n−1

∏n
k=1
k,i

η?k, jk

∑n′
j1=0
j1<X0

∑n′
j2=0
j2<X1

· · ·∑n′
jn=0
jn<Xn−1

∏n
k=1 ηk, jk

. (71)

The probability that a source M′j has no counterpart in K is simply given by

Po:o(A0, j | C ∩C′) = 1 −
n∑

k=1

Po:o(Ak, j | C ∩C′). (72)

4.2. Likelihood and estimation of unknown parameters

As in Sect. 3.2, an estimate x̂o:o of the set x of unknown parameters may be obtained by solving Eq. (28). Under assumption Ho:o,
we obtain from Eqs. (65), (31), and (13) that

Lo:o =
( n′∑

j1=0
j1<X0

n′∑

j2=0
j2<X1

· · ·
n′∑

jn=0
jn<Xn−1

n∏

k=1

ηk, jk

) n′∏

k=1

ξ0, k. (73)

Because the number of terms in Eq. (73) grows exponentially with n and n′, this equation seems useless. In fact, the prior computa-
tion of Lo:o is not necessary if the probabilities Po:o(Ai, j | C ∩C′) are calculable (we see how to evaluate these in Sect. 5.4).

Indeed, for any parameter xp, we get the same result (Eq. (33)) as under assumption Hs:o. First, we note that, since the ξ0, j are
independent of x, we obtain from Eq. (31) that

∂ ln L
∂xp

=
1

P(C | C′)
∂P(C | C′)

∂xp
. (74)
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Now, for any set Υ of indices and any product of strictly positive functions hk of some variable y,

∂
∏

k∈Υ hk

∂y
=

∑

`∈Υ

∂h`
∂y

∏

k∈Υ
k,`

hk =
∑

`∈Υ

∂ ln h`
∂y

∏

k∈Υ
hk. (75)

With hk = ηk, jk , y = xp and Υ = ~1, n�, we therefore obtain from Eq. (65) that

∂Po:o(C | C′)
∂xp

= Ξ

n′∑

j1=0
j1<X0

n′∑

j2=0
j2<X1

· · ·
n′∑

jn=0
jn<Xn−1

n∑

i=1

∂ ln ηi, ji

∂xp

n∏

k=1

ηk, jk . (76)

The expression of Po:o(Ai, j ∩C | C′) (Eq. (69)) may also be written

Po:o(Ai, j ∩C | C′) = Ξ

n′∑

j1=0
j1<X0

n′∑

j2=0
j2<X1

· · ·
n′∑

jn=0
jn<Xn−1

χ( ji = j)
n∏

k=1

ηk, jk , (77)

where χ is the indicator function (i.e. χ( ji = j) = 1 if proposition “ ji = j” is true and χ( ji = j) = 0 otherwise), so

n∑

i=1

n′∑

j=0

∂ ln ζi, j

∂xp
Po:o(Ai, j ∩C | C′) = Ξ

n∑

i=1

n′∑

j1=0
j1<X0

n′∑

j2=0
j2<X1

· · ·
n′∑

jn=0
jn<Xn−1

n′∑

j=0

χ( ji = j)
∂ ln ζi, j

∂xp

n∏

k=1

ηk, jk

= Ξ

n∑

i=1

n′∑

j1=0
j1<X0

n′∑

j2=0
j2<X1

· · ·
n′∑

jn=0
jn<Xn−1

∂ ln ζi, ji

∂xp

n∏

k=1

ηk, jk . (78)

If ji = 0, then ηi, ji = ζi, ji ; and if ji , 0, the numerators of ηi, ji and ζi, ji are the same and their denominators do not depend on xp:
in all cases, ∂ ln ηi, ji/∂xp = ∂ ln ζi, ji/∂xp. The righthand sides of Eqs. (76) and (78) are therefore identical. Dividing their lefthand
sides by Po:o(C | C′) and using Eqs. (74) and (4), we obtain, as announced,

∂ ln Lo:o

∂xp
=

n∑

i=1

n′∑

j=0

∂ ln ζi, j

∂xp
Po:o(Ai, j | C ∩C′). (79)

For xp = f in particular, because of Eq. (37), and as under assumption Hs:o, Eq. (79) reduces to

∂ ln Lo:o

∂ f
=

n (1 − f ) −∑n
i=1 Po:o(Ai, 0 | C ∩C′)
f (1 − f )

. (80)

From Eq. (28), a maximum likelihood estimator of f is thus

f̂o:o = 1 − 1
n

n∑

i=1

P̂o:o(Ai, 0 | C ∩C′), (81)

where P̂o:o is the value of Po:o at f = f̂o:o.
To compare assumptions Hs:o, Ho:o, and Hs:o and to select the most appropriate one to compute P(Ai, j | C ∩C′), an expression is

needed for Lo:o. If probabilities Po:o(Ai, 0 | C∩C′) are calculable, Lo:o may be obtained for any f by integrating Eq. (80) with respect
to f . Since all K- and K′-sources are unrelated and randomly distributed for f = 0, the integration constant is (cf. Eq. (73))

(
ln Lo:o

)
f =0 =

n∑

i=1

ln ξi, 0 +

n′∑

j=1

ln ξ0, j. (82)

5. Practical implementation: the Aspects code

5.1. Overview

To implement the results established in Sects. 3.1, 3.2, 4.1, and 4.2, we have built a Fortran 95 code, Aspects – a French acronym
(pronounced [aspε] in International Phonetic Alphabet, not [æspekts]) for “Association positionnelle/probabiliste de catalogues
de sources”, or “probabilistic positional association of source catalogs” in English. The source files are freely available4 at
www2.iap.fr/users/fioc/Aspects/ . The code compiles with IFort and GFortran.

4 Fortran 90 routines from Numerical Recipes (Press et al. 1992) are used to sort arrays and locate a value in an ordered table. Because of license
constraints, we cannot provide them, but they may easily be replaced by free equivalents.
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Given two catalogs of sources with their positions and the uncertainties on these, Aspects computes, under assumptions Hs:o,
Ho:o, and Ho:s, the overall likelihood L, estimates of f and f ′, and the probabilities P(Ai, j | C ∩ C′). It may also simulate all-sky
catalogs for various association models (cf. Sect. 6.1).

We provide hereafter explanations of general interest for the practical implementation in Aspects of Eqs. (23), (39), (32), (71),
(81), and (73). Some more technical points (such as the procedures used to search for nearby objects, simulate the positions of
associated sources and integrate Eq. (80)) are only addressed in appendices to the documentation of the code (Fioc 2014). The latter
also contains the following complements: another (but equivalent) expression for Lo:o, formulae derived under Ho:s, computations
under Ho:o for n > n′, a calculation of the uncertainties on unknown parameters under Hs:o, and a proof of Eq. (41).

5.2. Elimination of unlikely counterparts

Under assumption Hs:o, computing the probability of association Ps:o(Ai, j | C ∩C′) between Mi and M′j from Eq. (23) is straightfor-
ward if f and the positional uncertainties are known. However, the number of calculations for the whole sample or for determining
x̂ is on the order of n n′, a huge number for the catalogs available nowadays. We must therefore try to eliminate all unnecessary
computations.

Since ξi, k is given by a normal law if i , 0 and k , 0, it rapidly drops to almost 0 when we consider sources M′k at increasing
angular distance ψi, k from Mi. Therefore, there is no need to compute Ps:o(Ai, j | C ∩ C′) for all couples (Mi,M′j) or to sum on all k
from 1 to n′ in Eq. (24). More explicitly, let R′ be some angular distance such that, for all (Mi,M′k), if ψi, k > R′ then ξi, k ≈ 0, say

R′ >∼ 5
√

max
`∈~1, n�

a2
` + max

`∈~1, n′�
a′2` , (83)

where the a` and a′` are the semi-major axes of the positional uncertainty ellipses of K- and K′-sources (cf. App. A.2.1; the square
root in Eq. (83) is thus the maximal possible uncertainty on the relative position of associated sources). We may set Ps:o(Ai, j | C∩C′)
to 0 if ψi, j > R′, and replace the sums

∑n′
k=1 by

∑n′
k=1;ψi, k6R′ in Eq. (24): only nearby K′-sources matter.

5.3. Fraction of sources with a counterpart

All the probabilities depend on f and, possibly, on other unknown parameters like σ̊ and ν̊ (cf. Apps. A.2.2 and A.2.3). Under
assumption Hs:o, estimates of these parameters may be found by solving Eq. (28) using Eq. (33).

If the fraction of sources with a counterpart is the only unknown, the ξi, j need to be computed only once and f̂s:o may easily be
determined from Eq. (39) by an iterative procedure. Denoting by g the function

g : f ∈ [0, 1] 7−→ 1 − 1
n

n∑

i=1

Ps:o(Ai, 0 | C ∩C′), (84)

we now prove that, for any f0 ∈ ]0, 1[, the sequence ( fk)k∈� defined by fk+1 B g( fk) tends to f̂s:o.
As is obvious from Eq. (24b), Ps:o(Ai, 0 | C ∩ C′) decreases for all i when f increases: g is consequently an increasing function.

Note also that, from Eqs. (38) and (84),

g( f ) = f +
f (1 − f )

n
∂ ln Ls:o

∂ f
. (85)

The only fixed points of g are thus 0, 1 and the unique solution f̂s:o to ∂ ln Ls:o/∂ f = 0. Because ∂2 ln Ls:o/∂ f 2 < 0 (cf. Eq. (41)) and
∂̂ ln Ls:o/∂̂ f = 0, we have ∂ ln Ls:o/∂ f > 0 if f ∈ [0, f̂s:o], so g( f ) > f in this interval by Eq. (85). Similarly, if f ∈ [ f̂s:o, 1], then
∂ ln Ls:o/∂ f 6 0 and thus g( f ) 6 f .

Consider the case f0 ∈ ]0, f̂s:o]. If fk 6 f̂s:o, then as just shown, g( fk) > fk; we also have g( fk) 6 g( f̂s:o) = f̂s:o, because g is an
increasing function and f̂s:o is a fixed point of it. Since g( fk) = fk+1, the sequence ( fk)k∈� is increasing and bounded from above by
f̂s:o: it therefore converges in [ f0, f̂s:o]. Because g is continuous and f̂s:o is the only fixed point in this interval, ( fk)k∈� tends to f̂s:o.
Similarly, if f0 ∈ [ f̂s:o, 1[, then ( fk)k∈� is a decreasing sequence converging to f̂s:o.

Because of Eq. (81), this procedure also works in practice under assumption Ho:o (with Ps:o replaced by Po:o in Eq. (84)), although
it is not obvious that Po:o(Ai, 0 | C ∩ C′) decreases for all i when f increases, nor that ∂2 ln Lo:o/∂ f 2 < 0. A good starting value f0
may be f̂s:o.

5.4. Computation of one-to-one probabilities of association

What was said in Sect. 5.2 about eliminating unlikely counterparts in the calculation of probabilities under Hs:o still holds under
Ho:o. However, because of the combinatorial explosion of the number of terms in Eq. (71), computing Po:o(Ai, j | C ∩ C′) exactly is
still clearly hopeless. Yet, after some wandering (Sects. 5.4.1 and 5.4.2), we found a working solution (Sect. 5.4.3).

5.4.1. A first try

Our first try was inspired by the (partially wrong) idea that, although all K-sources are involved in the numerator and denominator
of Eq. (71), only those close to Mi should matter in their ratio. A sequence of approximations converging to the true value of
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Po:o(Ai, j | C ∩ C′) might then be built as follows (all quantities defined or produced in this first try are written with the superscript
“w” for “wrong”).

To make things clear, consider M1 and some possible counterpart M′j within its neighborhood (ψ1, j 6 R′) and assume that M2 is
the first nearest neighbor of M1 in K, M3 its second nearest neighbor, etc. For any d ∈ ~1, n�, define

pw
d (1, j) B

ζ1, j
∑n′

j2=0
j2<X?

1

· · ·∑n′
jd=0
jd<X?

d−1

∏d
k=2 η

?
k, jk

∑n′
j1=0
j1<X0

∑n′
j2=0
j2<X1

· · ·∑n′
jd=0
jd<Xd−1

∏d
k=1 ηk, jk

. (86)

The quantity pw
d (1, j) thus depends only on M1 and its d − 1 nearest neighbors in K. As pw

n (1, j) is the one-to-one probability of
association between M1 and M′j (cf. Eq. (71)), the sequence (pw

d [1, j]) tends to Po:o(A1, j | C ∩C′) when the depth d of the recursive
sums tends to n. After some initial fluctuations, pw

d (1, j) enters a steady state. This occurs when ψ(M1,Md+1) exceeds a distance
R equal to a few times R′ (at least 2 R′). We may therefore think that the convergence is then achieved and stop the recursion at
this d. It is all the more tempting that pw

1 (1, j) = Ps:o(A1, j | C ∩ C′) and that the several-to-one probability looks like a first-order
approximation to Po:o. . .

More formally and generally, for any Mi, let φ be a permutation on K ordering the elements Mφ(1), Mφ(2), . . . , Mφ(n) by increasing
angular distance to Mi (in particular, Mφ(1) = Mi). For j = 0 or M′j within a distance R′ (cf. Sect. 5.2) from Mi, and for any d ∈ ~1, n�,
define

pw
d (i, j) B

ζi, j
∑n′

j2=0
j2<X̃?

1

· · ·∑n′
jd=0
jd<X̃?

d−1

∏d
k=2 η̃

?w
k, jk

∑n′
j1=0
j1<X̃0

∑n′
j2=0
j2<X̃1

· · ·∑n′
jd=0
jd<X̃d−1

∏d
k=1 η̃

w
k, jk

, (87)

where, as in Eqs. (55), (67), (64), and (70),

X̃k B Xk for all k ∈ ~0, n�; X̃?
1 B { j} \ {0}; X̃?

k B (X̃?
k−1 ∪ { jk}) \ {0} for all k ∈ ~2, n�; (88)

η̃w
k, 0 B η̃?w

k, 0 B ζφ(k), 0; η̃w
k, jk B

f ξφ(k), jk

n′ − #X̃k−1
and η̃?w

k, jk B
f ξφ(k), jk

n′ − #X̃?
k−1

for jk , 0. (89)

Let
dmin(i) B min

(
d ∈ ~1, n�

∣∣∣ ψ[Mi,Mφ(d+1)] > R
)
. (90)

Given above considerations, Po:o(Ai, j | C ∩C′) can be evaluated as pw
o:o(i, j) B pw

dmin(i)(i, j).
The computation of pw

d (i, j) may be further restricted (and in practice, because of the recursive sums in Eq. (87), must be) to
sources M′jk in the neighborhood of the objects (Mφ(k))k∈~1, d�, as explained in Sect. 5.2.

5.4.2. Failure of the first try

To test the reliability of the evaluation of Po:o(Ai, j | C ∩ C′) by pw
o:o(i, j), we simulated all-sky mock catalogs for one-to-one

associations and analyzed them with a first version of Aspects. Simulations were run for f = 1/2, n′ = 105, n ∈ ~103, 105�, and
known circular positional uncertainties with σ̊ = 10−3 rad (see Sects. 6.1 and 6.2 for a detailed description).

Three estimators of f were compared to the input value:

– f̂s:o, the value maximizing Ls:o (Eq. (39));
– f̂ w

o:o, the value maximizing the one-to-one likelihood Lw
o:o derived from the pw

o:o. This estimator is computed from Eq. (81) with
pw

o:o(i, 0) instead of Po:o(Ai, 0 | C ∩C′);
– f̂o:s, an estimator built from the one-to-several assumption in the following way: because Ho:s is fully symmetric to Hs:o, we just

need to swap K and K′ (i.e., swap f and f ′, n and n′, etc.) in Eqs. (24), (26), and (39) to obtain f̂ ′o:s instead of f̂s:o, and then,
from Eq. (42), f̂o:s instead of f̂ ′s:o. The one-to-several likelihood Lo:s is computed from Eq. (32) in the same way.

The mean values of these estimators are plotted as a function of n in Fig. 1a (error bars are smaller than the size of the points). As is
obvious, the ad hoc estimator f̂ w

o:o diverges from f when n increases. This statistical inconsistency5 seems surprising for a maximum
likelihood estimator since the model on which it is based is correct by construction. However, all the demonstrations of consistency
of maximum likelihood estimators we found in the literature (e.g., in Kendall & Stuart 1979) rest on the assumption that the overall
likelihood is the product of the probabilities of each datum, which is not the case for Lo:o (cf. Eq. (73)). Since f̂s:o is a good estimator
of f , it might be used to compute Po:o(Ai, j | C ∩ C′) from pw

o:o(i, j) – if the latter correctly approximates the former. By itself, the
inconsistency of f̂ w

o:o is therefore not a problem.
More embarrassing is that Ho:o is not the most likely assumption (see Fig. 1b): the mean value of L̂w

o:o is less than that of L̂s:o over
the full interval of n ! These two failures hint that the sequence (pw

d [i, j]) has not yet converged to Po:o(Ai, j | C ∩C′) at d = dmin(i).

5 A consistent estimator is a statistic converging to the true value of a parameter when the size of the sample from which it is derived increases.
The concept of consistency is not very clear in the context of this paper, since there are two sample sizes, n and n′.
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n

f̂

(a)

f̂ = f̂s:o

f̂ = f̂wo:o

f̂ = f̂o:s

n

( ln
L̂
−l

n
L̂
w o
:o

) /
(n
+
n
′ )

(b)

L̂ = L̂s:o

L̂ = L̂wo:o

L̂ = L̂o:s

Fig. 1. One-to-one simulations for f = 1/2, n′ = 105, and circular positional uncertainty ellipses with σ̊ = 10−3 rad (see Sects. 6.1 and 6.2 for
details). (a) Mean value of different estimators f̂ of f as a function of n. The dotted line indicates the input value of f . (b) Normalized average
maximum value L̂ of different likelihoods as a function of n, compared to L̂w

o:o.

To check this, we ran simulations with small numbers of sources (n and n′ less than 10), so that we could compute pw
n (i, j)

exactly and study how (pw
d [i, j]) tends to it. To test whether source confusion might be the reason for the problem, we created mock

catalogs with very large positional uncertainties6 σ̊, comparable to the distance between unrelated sources. Because the expressions
given in App. A for ξi, j are for planar normal laws and become wrong when the distance between Mi and M′j is more than a few
degrees because of the curvature, we ran simulations on a whole circle instead of a sphere; nevertheless, we took σ̊ <∼ 30◦ because
the linear normal law is inappropriate on a circle for higher values, due to its finite extent. What we found is that, after the transient
phase where it oscillates, (pw

d [i, j]) slowly drifts to Po:o(Ai, j | C ∩C′) and only converges at d = n ! This drift was imperceptible for
the high values of n and n′ used in Sect. 5.4.1.

5.4.3. Reconsideration and solution

To understand where the problem comes from, we consider the simplest case of interest: n = n′ = 2. We assume moreover that
ξ1, 2 ≈ ξ2, 1 ≈ 0. We then have

Po:o(C | C′) ≈
(
[1 − f ]2 ξ1, 0 ξ2, 0 +

[1 − f ] f
2

[ξ1, 0 ξ2, 2 + ξ1, 1 ξ2, 0] +
f 2

2
ξ1, 1 ξ2, 2

)
d2r1 d2r2, (91)

Po:o(A1, 0 ∩C | C′) ≈ (1 − f ) ξ1, 0

(
[1 − f ] ξ2, 0 +

f
2
ξ2, 2

)
d2r1 d2r2, (92)

Po:o(A1, 1 ∩C | C′) ≈ f
2
ξ1, 1

(
[1 − f ] ξ2, 0 + f ξ2, 2

)
d2r1 d2r2. (93)

The probabilities Po:o(A1, j | C ∩C′) = Po:o(A1, j ∩C | C′)/Po:o(C | C′) obviously depend on ξ2, 2. In particular,

if ξ2, 2 � ξ2, 0, Po:o(A1, 0 | C ∩C′) ≈ (1 − f ) ξ1, 0

(1 − f ) ξ1, 0 + f ξ1, 1/2
and Po:o(A1, 1 | C ∩C′) ≈ f ξ1, 1/2

(1 − f ) ξ1, 0 + f ξ1, 1/2
; (94)

in that case, Po:o(A2, 2 | C ∩C′) ≈ 0, and both M′1 and M′2 are free for M1. On the other hand,

if ξ2, 2 � ξ2, 0, Po:o(A1, 0 | C ∩C′) ≈ (1 − f ) ξ1, 0

(1 − f ) ξ1, 0 + f ξ1, 1/1
and Po:o(A1, 1 | C ∩C′) ≈ f ξ1, 1/1

(1 − f ) ξ1, 0 + f ξ1, 1/1
; (95)

in that case, Po:o(A2, 2 | C ∩C′) ≈ 1: M2 and M′2 are almost certainly bound, so M′2 may not be associated to M1, and M′1 is the only
possible counterpart of M1.

The difference between the results obtained for ξ2, 2 � ξ2, 0 and ξ2, 2 � ξ2, 0 shows that probabilities Po:o(A1, j | C ∩ C′) depend
on the relative positions of M2 and M′2, even when both M2 and M′2 are distant from M1 and M′1: unlike the idea stated in Sect. 5.4.1,
distant K-sources do matter for Po:o probabilities! However, as highlighted by the “/2” and “/1” factors in Eqs. (94) and (95), the
distant K-source M2 only changes the number of K′-sources (two for ξ2, 2 � ξ2, 0, one for ξ2, 2 � ξ2, 0) that may be identified to M1:
its exact position is unimportant.

6 Small positional uncertainties could also be used if sources were distributed on a small fraction of the sky, but there might be side effects.
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This suggests the following solution: replace n′ in Eq. (89) by the number n′eff(i, d) of K′-sources that may effectively be associ-
ated to Mi and its d − 1 nearest neighbors in K; i.e., dropping the superscript “w”, define

pd(i, j) B

ζi, j
∑n′

j2=0
j2<X̃?

1

· · ·∑n′
jd=0
jd<X̃?

d−1

∏d
k=2 η̃

?
k, jk

∑n′
j1=0
j1<X̃0

∑n′
j2=0
j2<X̃1

· · ·∑n′
jd=0
jd<X̃d−1

∏d
k=1 η̃k, jk

, (96)

where

η̃k, 0 B η̃?k, 0 B ζφ(k), 0; η̃?k, jk B
f ξφ(k), jk

n′eff(i, d) − #X̃?
k−1

and η̃k, jk B
f ξφ(k), jk

n′eff(i, d) − #X̃k−1
for jk , 0, (97)

and use po:o(i, j) B pdmin(i)(i, j), where dmin(i) is defined by Eq. (90), to evaluate Po:o(Ai, j | C ∩C′).
An estimate of n′eff is given by7

n′eff(i, d) = n′ −
n∑

k=d+1

(
1 − Po:o[Aφ(k), 0 | C ∩C′]

)
. (98)

The sum in Eq. (98) is nothing but the typical number of counterparts in K′ associated to distant K-sources. Note that n′eff(i, d =
n) = n′, so we recover the theoretical result for Po:o(Ai, j | C ∩C′) when all sources are considered. As Po:o depends on n′eff which in
turn depends on Po:o, both may be computed with a back and forth iteration; this procedure converges in a few steps if, instead of
Po:o, the value of Ps:o is taken to initiate the sequence.

5.5. Tests of Aspects

As computations made under assumption Ho:o are complex (they involve recursive sums for instance), we made several consistency
checks of the code. In particular, we swapped K and K′ for n , n′ and compared quantities resulting from this swap (written with
the superscript “↔”) to original ones: within numerical errors, f̂ ′↔o:o = f̂o:o and, for f ′↔ = f , we get L↔o:o = Lo:o and P↔o:o(A j, i |
C′ ∩C) = Po:o(Ai, j | C ∩C′) for all (Mi,M′j).

We moreover numerically checked for small n and n′ (<∼ 5) that Eq. (73) and the integral of Eq. (80) with respect to f are
consistent and that Aspects returns the same value as Mathematica (Wolfram 1996). For even smaller n and n′ (6 3), we confirmed
that manual analytical expressions, obtained from the enumeration of all possible associations between K and K′, are identical to
Mathematica’s symbolic calculations. For the large n and n′ of practical interest, although we did not give a formal proof of the
solution of Sect. 5.4.3, the analysis of simulations (Sect. 6) makes us confident in the code.

6. Simulations

In this section, we analyze various estimators of the unknown parameters. Because of the complexity of the expressions we obtained,
we did not try to do it analytically but used simulations. We also compare the likelihood of the assumptions Hs:o, Ho:o, and Ho:s,
given the data.

6.1. Creation of mock catalogs

We have built all-sky mock catalogs with Aspects in the cases of several- and one-to-one associations. To do this, we first selected the
indices of f n objects in K, and associated randomly the index of a counterpart in K′ to each of them; for one-to-one simulations, a
given K′-source was associated at most once. We then drew the true positions of K′-sources uniformly on the sky. The true positions
of K-sources without counterpart were also drawn in the same way; for sources with a counterpart, we took the true position of
their counterpart. The observed positions of K- and K′-sources were finally computed from the true positions for given parameters
(ai, bi, βi) and (a′j, b

′
j, β
′
j) of the positional uncertainty ellipses (see App. A.2.1).

6.2. Estimation of f if positional uncertainty ellipses are known and circular

Mock catalogs were created with ai = bi = σ (see notations in App. A.2.1) for all Mi ∈ K and with a′j = b′j = σ′ for all M′j ∈ K′.
Positional uncertainty ellipses are therefore circular here. Only two parameters matter in that case: f and

σ̊ B
√
σ2 + σ′2. (99)

Hundreds of simulations were run for f = 1/2, n′ = 105, σ̊ = 10−3 rad, and n ∈ ~103, 105�. We analyzed them with Aspects,
knowing positional uncertainties, and plot the mean value of the estimators of f listed in Sect. 5.4.2 as a function of n in Fig. 2. This
time, however, we replaced f̂ w

o:o by the estimator f̂o:o computed from the po:o.
For several-to-one simulations, f̂s:o is by far the best estimator of f and does not show any significant bias, whatever the value

of n. Estimators f̂o:o and f̂o:s do not recover the input value of f , which is not surprising since they are not built from the right

7 Equation (98) is valid for any f ∈ [0, 1]. When f ≈ f̂o:o, it is more efficient to make the approximation n′eff(i, d) ≈ n′ − f (n−d): this expression
accelerates the convergence to f̂o:o of the sequence ( fk) defined in Sect. 5.3.
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n

f̂

(a)

f̂ = f̂s:o

f̂ = f̂o:o

f̂ = f̂o:s

n

f̂

(b)

f̂ = f̂s:o

f̂ = f̂o:o

f̂ = f̂o:s

Fig. 2. Mean value of different estimators f̂ of f as a function of n for f = 1/2 (dotted line), n′ = 105, and circular positional uncertainty ellipses
with σ̊ = 10−3 rad (see Sects. 6.1 and 6.2 for details). (a) Several-to-one simulations. (b) One-to-one simulations ( f̂s:o and f̂o:o overlap).

f

σ̊
/r
a
d

(a)

f

σ̊
/r
a
d

(b)

Fig. 3. Contour lines of Ls:o (solid) and Lo:o (dashed) in the ( f , σ̊) plane. Input parameters are the same as in Fig. 2, except that n = n′ = 2 × 104;
the input values of f and σ̊ are indicated by dotted lines (see Sect. 6.3.1 for details). (a) Several-to-one simulations. (b) One-to-one simulations.

assumption here; moreover, while f̂s:o, f̂ ′o:s, and f̂o:o are obtained by maximizing Ls:o, Lo:s, and Lo:o, respectively, f̂o:s is not directly
fitted to the data.

For one-to-one simulations, and unlike f̂ w
o:o, f̂o:o is a consistent estimator of f , as expected. Puzzlingly, f̂s:o also works very well,

maybe because Hs:o is a more relaxed assumption than Ho:o; whatever the reason, this is not a problem.

6.3. Simultaneous estimation of f and σ̊

6.3.1. Circular positional uncertainty ellipses

How do different estimators of f and σ̊ behave when the true values of positional uncertainties are also ignored? We show in Fig. 3
the result of simulations with the same input as in Sect. 6.2, except that n = n′ = 2 × 104. The likelihood Ls:o peaks very close to
the input value of x B ( f , σ̊) for both types of simulations: x̂s:o is still an unbiased estimator of x. For one-to-one simulations, Lo:o
is also maximal near the input value of x, so x̂o:o is unbiased, too.

6.3.2. Elongated positional uncertainty ellipses

To test the robustness of estimators of f , we ran simulations with the same parameters, but with elongated positional uncertainty
ellipses: we took ai = a′j = 1.5 × 10−3 rad and bi = b′j = ai/3 for all (Mi,M′j) ∈ K × K′. These ellipses were randomly oriented; i.e.,
position angles (cf. App. A.2.1) βi and β′j have uniform random values in [0,π[. We then estimated f , but ignoring these positional
uncertainties (see Fig. 4).

Although the model from which the parameters are fitted is inaccurate here (the ξi, j are computed assuming circular positional
uncertainties instead of the unknown elliptical ones), the input value of f is still recovered by f̂s:o for both types of simulations
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Fig. 4. Contour lines of Ls:o (solid) and Lo:o (dashed) in the ( f , σ̊) plane. Input parameters are the same as in Fig. 2, except that positional uncertainty
ellipses are elongated and randomly oriented (see Sect. 6.3.2 for details); the input value of f is indicated by a dotted line. (a) Several-to-one
simulations. (b) One-to-one simulations.
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Fig. 5. Normalized average maximum value L̂ of different likelihoods as a function of n, compared to L̂o:o. Simulations are the same as in Fig. 2.
(a) Several-to-one simulations. (b) One-to-one simulations.

and by f̂o:o for one-to-one simulations. The fitting also provides the typical positional uncertainty σ̊ on the relative positions of
associated sources.

6.4. Choice of association model

Now, given the two catalogs, which assumption should we adopt to compute the probabilities P(Ai, j | C ∩ C′): several-to-one,
one-to-one or one-to-several? As shown in Fig. 5, for known positional uncertainties and a given n′, source confusion is rare at low
values of n (there is typically at most one possible counterpart) and all assumptions are equally likely. At larger n, L̂s:o > L̂o:o > L̂o:s
for several-to-one simulations; as expected, for one-to-one simulations, L̂o:o > L̂s:o and L̂o:o > L̂o:s, with L̂s:o ≈ L̂o:s for n = n′. In all
cases, on average, the right assumption is the most likely. This is also true when positional uncertainties are ignored (Sect. 6.3).

The calculation of Lo:o is lengthy, and as a substitute to the comparison of the likelihoods, the following procedure may be applied
to select the most appropriate assumption to compute the probabilities of association: if f̂s:o n ≈ f̂ ′o:s n′, use Ho:o; if f̂s:o n 0 f̂ ′o:s n′,
then use Hs:o if f̂s:o n > f̂ ′o:s n′, and Ho:s, otherwise.

7. Conclusion

In this paper, we computed the probabilities of positional association of sources between two catalogs K and K′ under two different
assumptions: first, the easy case where several K-objects may share the same counterpart in K′, then the more natural but numerically
intensive case of one-to-one associations only between K and K′.

These probabilities depend on at least one unknown parameter: the fraction of sources with a counterpart. If the positional
uncertainties are unknown, other parameters are required to compute the probabilities. We calculated the likelihood of observing all
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the K- and K′-sources at their effective positions under each of the two assumptions described above, and estimated the unknown
parameters by maximizing these likelihoods. The latter are also used to select the best association model.

These relations were implemented in a code, Aspects, which we make public and with which we analyzed all-sky several-to-one
and one-to-one simulations. In all cases, the assumption with the highest likelihood is the right one, and estimators of unknown
parameters obtained for it do not show any bias.

In the simulations, we assumed that the density of K- and K′-sources was uniform on the sky area S: the quantities ξi, 0 and ξ0, j
used to compute the probabilities are then equal to 1/S. If the density of objects is not uniform, we might take ξi, 0 = ρ(Mi)/n and
ξ0, j = ρ′(M′j)/n′, where ρ and ρ′ are, respectively, the local surface densities of K- and K′-sources; but if the ρ′/ρ ratio varies on
the sky, so will the fraction of sources with a counterpart – something we did not try to model. Considering clustering or the side
effects8 due to a small S, as well as taking priors on the SED of objects into account was also beyond the scope of this paper.

In spite of these limitations, Aspects is a robust tool that should help astronomers cross-identify astrophysical sources automat-
ically, efficiently and reliably.

Appendix A: Probability distribution of the observed relative positions of associated sources

A.1. Properties of normal laws

We first recall a few standard results. The probability that an m-dimensional normally distributed random vector W of mean µ and
variance Γ falls in some domain Ω is

P(W ∈ Ω) =

∫

w∈Ω

exp
(
− 1

2 [w − µ]tB · Γ−1
B · [w − µ]B

)

(2π)m/2
√

det ΓB
dmwB, (A.1)

where B B (u1, . . . ,um) is a basis, w is a vector, wB = (w1, . . . ,wm)t (resp. µB) is the column vector expression of w (resp. µ) in B,
dmwB B

∏m
i=1 dwi, and ΓB is the covariance matrix of W (i.e. the matrix representation of Γ) in B. We denote this by W ∼ Gm(µ,Γ).

In another basis B′ B (u′1, . . . ,u′m), we have wB = TB→B′ · wB′ , where TB→B′ is the transformation matrix from B to B′ (i.e.
u′j =

∑m
i=1 (TB→B′ )i, j ui). Since dmwB = |det TB→B′ | dmwB′ and

(w − µ)tB · Γ−1
B · (w − µ)B = (w − µ)tB′ ·

(
T−1

B→B′ · ΓB · [T−1
B→B′ ]

t
)−1 · (w − µ)B′ , (A.2)

we still obtain

P(W ∈ Ω) =

∫

w∈Ω

exp
(
− 1

2 [w − µ]tB′ · Γ−1
B′ · [w − µ]B′

)

(2π)m/2
√

det ΓB′
dmwB′ , (A.3)

where ΓB′ B T−1
B→B′ · ΓB · (T−1

B→B′ )
t is the covariance matrix of W in B′. In the following, B and B′ are orthonormal bases, so TB→B′

is a rotation matrix. From T tB→B′ = T−1
B→B′ , we get

ΓB′ = T tB→B′ · ΓB · TB→B′ . (A.4)

For independent random vectors W1 ∼ Gm(µ1,Γ1) and W2 ∼ Gm(µ2,Γ2), we have

W1 ±W2 ∼ Gm(µ1 ± µ2,Γ1 + Γ2). (A.5)

A.2. Covariance matrix of the probability distribution of relative positions

We now use these results to derive the probability distribution of vector ri, j B r′j − ri, where ri and r′j are, respectively, the observed
positions of source Mi of K and of its counterpart M′j in K′. Introducing the true positions r0, i and r′0, j of Mi and M′j, we have

ri, j = (r′j − r′0, j) + (r′0, j − r0, i) + (r0, i − ri). (A.6)

A.2.1. Covariance matrix for identical true positions and known positional uncertainties

Assume9, as is usual, that
ri − r0, i ∼ G2(0,Γi) and r′j − r′0, j ∼ G2(0,Γ′j). (A.7)

If the true positions of Mi and M′j are identical (case of point sources), then, from Eqs. (A.5), (A.6), and (A.7),

ri, j ∼ G2(0,Γi, j), where Γi, j B Γi + Γ′j. (A.8)

(See also Condon et al. 1995.) In Eqs. (A.7), ri− r0, i and r′j− r′0, j must be considered as the projections (gnomonic ones, for instance)
of these vectors on the planes tangent to the sphere at Mi and M′j, respectively; Eqs. (A.7) are approximations, valid only because

8 The impact of clustering or of side effects on estimators of unknown parameters might however easily be tested through simulations.
9 None of the results established outside of App. A depends on this assumption.

18



M. Fioc: Probabilistic positional association of catalogs of astrophysical sources: the Aspects code

positional uncertainties are small10. Equation (A.8) is also an approximation: it is appropriate because the observed positions of
associated sources Mi and M′j are close, so the tangent planes to the sphere at both points nearly coincide.

To use Eq. (A.8), we now compute the column vector expression of ri, j and the covariance matrices associated to Γi, Γ′j, and Γi, j
in some common basis. For convenience, we drop the subscript and the “prime” symbol in the following whenever an expression
only depends on either Mi or M′j.

Let (ux,uy,uz) be a direct orthonormal basis, with uz oriented from the Earth’s center O to the North Celestial Pole and ux from
O to the Vernal Point. At a point M of right ascension α and declination δ, a direct orthonormal basis (ur,uα,uδ) is defined by

ur B
OM
‖OM‖ = cos δ cosαux + cos δ sinαuy + sin δuz, (A.9)

uα B
∂ur/∂α

‖∂ur/∂α‖ = −sinαux + cosαuy, (A.10)

uδ B
∂ur/∂δ

‖∂ur/∂δ‖ = −sin δ cosαux − sin δ sinαuy + cos δuz. (A.11)

The uncertainty ellipse on the position of M is characterized by the lengths a and b of its semi-major and semi-minor axes, and
by the position angle β between the north and the semi-major axis. Let ua and ub be unit vectors directed along the major and the
minor axes, respectively, and such that (ur,ua,ub) is a direct orthonormal basis and that β B ∠(uδ,ua) is in [0,π[ when counted
eastward. Since (uα,uδ) is obtained from (ua,ub) by a (β − π/2)-counterclockwise rotation in the plane oriented by +ur, we have
T(ua,ub)→(uα,uδ) = Rot(β − π/2), where, for any angle τ,

Rot τ B
(
cos τ −sin τ
sin τ cos τ

)
. (A.12)

Using notation

Diag
(
d1, d2

)
B

(
d1 0
0 d2

)
(A.13)

for diagonal matrices, we have11 Γ(ua,ub) = Diag
(
a2, b2) and

Γ(uα,uδ) = Rott(β − π/2) · Diag
(
a2, b2) · Rot(β − π/2). (A.14)

As noticed by Pineau et al. (2011), around the Poles, even for sources Mi and M′j close to each other, we may have (uα, i,uδ, i) 0
(uα′, j,uδ′, j): the covariance matrices (Γi)(uα, i,uδ, i) and (Γ′j)(uα′, j,uδ′, j) must therefore be first converted to a common basis before their
summation in Eq. (A.8). We use the same basis as Pineau et al. (2011), denoted by (t, n) below. While the results we get are
intrinsically the same, some people may find our expressions more convenient.

Denote by nB ur, i ×ur′, j/‖ur, i ×ur′, j‖ a unit vector perpendicular to the plane (O,Mi,M′j). Because ψi, j B ∠(ur, i,ur′, j) ∈ [0,π],
we have ur, i · ur′, j = cosψi, j and ‖ur, i × ur′, j‖ = sinψi, j, so

ψi, j = arccos
(
cos δi cos δ′j cos[α′j − αi] + sin δi sin δ′j

)
, (A.15)

and
n =

ur, i × ur′, j

sinψi, j
. (A.16)

Let γi B ∠(n,uδ, i) and γ′j B ∠(n,uδ′, j) be angles oriented clockwise around +ur, i and +ur′, j, respectively. Angle γi is fully
determined by the following expressions (cf. Eqs. (A.16), (A.10) and (A.11)):

cos γi = n · uδ, i =
(ur, i × ur′, j) · uδ, i

sinψi, j
=

(uδ, i × ur, i) · ur′, j

sinψi, j
=

uα, i · ur′, j

sinψi, j
=

cos δ′j sin(α′j − αi)

sinψi, j
; (A.17)

sin γi = −n · uα, i = − (ur, i × ur′, j) · uα, i
sinψi, j

= − (uα, i × ur, i) · ur′, j

sinψi, j
=

uδ, i · ur′, j

sinψi, j
=

cos δi sin δ′j − sin δi cos δ′j cos(α′j − αi)

sinψi, j
. (A.18)

Similarly,

cos γ′j =
cos δi sin(α′j − αi)

sinψi, j
and sin γ′j =

cos δi sin δ′j cos(α′j − αi) − sin δi cos δ′j
sinψi, j

. (A.19)

Let
t B n× ur, i (A.20)

10 If it were not the case, the probability of ri − r0, i and r′j − r′0, j might be modeled using Kent (1982) distributions (an adaptation to the sphere
of the planar normal law), but no result like Eq. (A.8) would then hold: unlike Gaussians, Kent distributions are not stable.

11 We seize this opportunity to correct equations (A.8) to (A.11) of Pineau et al. (2011): a and b should be replaced by their squares in these
formulae.
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(≈ n× ur′, j since Mi and M′j are close): vector t is a unit vector tangent in Mi to the minor arc of great circle going from Mi to M′j.
Project the sphere on the plane (Mi, t, n) tangent to the sphere in Mi (the specific projection does not matter since we consider only
K′-sources in the neighborhood of Mi). We have

ri, j ≈ ψi, j t, (A.21)

and the basis (t, n) is obtained from (ua,ub) by a (β + γ − π/2)-counterclockwise rotation around +ur, so,

(Γi)(t, n) = Rott(βi + γi − π/2) · Diag
(
a2

i , b
2
i
) · Rot(βi + γi − π/2), (A.22)

(Γ′j)(t, n) = Rott(β′j + γ′j − π/2) · Diag
(
a′2j , b

′2
j
) · Rot(β′j + γ′j − π/2). (A.23)

A.2.2. Case of unknown positional uncertainties

If the positional uncertainty on Mi is unknown, we may model it with (Γi)(t, n) = σ2 Diag(1, 1), using the same σ for all K-sources,
and derive an estimate of σ̊ B σ by maximizing the likelihood to observe the distribution of K- and K′-sources (see Sects. 3.2 and
4.2). For a galaxy, however, the positional uncertainty on its center is likely to increase with its size. If the position angle θi (counted
eastward from the north) and the major and minor diameters Di and di of the best-fitting ellipse of some isophote are known for
Mi (for instance, parameters PA, D25 and d25 B D25/R25 taken from the RC3 catalog (de Vaucouleurs et al. 1991) or HyperLeda
(Paturel et al. 2003)), we may model the positional uncertainty with

(Γi)(t, n) = Rott(θi + γi − π/2) · Diag
(
σ2 + [νDi]2, σ2 + [ν di]2

)
· Rot(θi + γi − π/2)

= σ2 Diag(1, 1) + ν2 Rott(θi + γi − π/2) · Diag
(
D2

i , d
2
i
) · Rot(θi + γi − π/2), (A.24)

and derive estimates of σ̊ B σ and ν̊ B ν from the likelihood. Such a technique might indeed be used to estimate the accuracy of
coordinates in some catalog (see Paturel & Petit (1999) for another method).

If the positional uncertainty on M′j is unknown too, we can also put

(Γ′j)(t, n) = σ′2 Diag(1, 1) + ν′2 Rott(θ′j + γ′j − π/2) · Diag
(
D2

i , d
2
i
) · Rot(θ′j + γ′j − π/2), (A.25)

with the same σ′ and ν′ for all K′-sources. As γ′j + θ′j = γi + θi, only estimates of σ̊ B
(
σ2 + σ′2

)1/2 and ν̊ B
(
ν2 + ν′2

)1/2 may be
obtained12 by maximizing the likelihood, not the values of σ, σ′, ν or ν′ themselves.

A.2.3. Possibly different true positions

A similar technique can be applied if the true centers of K-sources and of their counterparts in K′ sometimes differ. This might
be useful in particular when associating galaxies from an optical catalog and from a ultraviolet or far-infrared one, because, while
the optical is dominated by smoothly-distributed evolved stellar populations, the ultraviolet and the far-infrared mainly trace star-
forming regions. Observations of galaxies (e.g., Kuchinski et al. 2000) have indeed shown that galaxies are very patchy in the
ultraviolet, and the same has been observed in the far-infrared.

Since the angular distance between the true centers should increase with the size of the galaxy, we might model this as

r′0, j − r0, i ∼ G2(0,Γ0, i), where (Γ0, i)(t, n) = ν2
0 Rott(θi + γi − π/2) · Diag

(
D2

i , d
2
i
) · Rot(θi + γi − π/2). (A.26)

We then have
ri, j ∼ G2(0,Γi, j), with Γi, j B Γi + Γ′j + Γ0, i. (A.27)

Once again, if σ, σ′, ν, ν′ and ν0 are unknown, only σ̊ B
(
σ2 +σ′2

)1/2 and ν̊ B
(
ν2 +ν′2 +ν2

0
)1/2 may be estimated through likelihood

maximization.
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